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Abstract
Cardiovascular diseases are the number one cause of morbidity and mortality in
the United States and worldwide. The induction of the endoplasmic reticulum
(ER) stress, a result of a disruption in the ER homeostasis, was found to be highly
associated with cardiovascular diseases such as hypertension, diabetes, ischemic
heart diseases and heart failure. This review will discuss the latest literature on
the different aspects of the involvement of the ER stress in cardiovascular
complications and the potential of targeting the ER stress pathways as a new
therapeutic approach for cardiovascular complications.

Key words: Heart complications; Endoplasmic reticulum stress; Inflammation; Apoptosis;
Autophagy
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Core tip: The central mechanisms involved in heart failure, a public health crisis, remain
unknown. Current therapies, in addition to their strong side effects, neither halt nor
reverse heart complications. The endoplasmic reticulum (ER) stress has been shown to
be involved in cardiovascular diseases. Here we analyzed the role and mechanism of the
ER stress in heart failure.
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INTRODUCTION
The endoplasmic reticulum (ER), one of the largest organelles in the eukaryotic cells
was described for the first time in 1945 by Porter et al[1]. The ER is responsible for
protein  synthesis,  and  folding  of  most  secreted  and  membrane  protein,  which
represent  approximately  35%  of  all  protein[2].The  ER  is  also  the  site  of  protein
translocation, calcium homeostasis, lipid, and steroid biosynthesis[3].  Effective ER
function relies  on various  quality  control  factors  such as  molecular  chaperones,
protein  oxidoreductases,  and  enzymes  involved  in  glycosylation,  sulfation  and
proteolysis[4]. This highly organized machinery requires an optimal ER environment.
Various factors such as myocardial ischemia, diabetes, hypertension, and heart failure
can disrupt this environment provoking the accumulation of misfolded proteins[4].
When the ER homeostasis is  altered by the accumulation of unfolded/misfolded
protein; signaling pathways are activated triggering an adaptive response known as
the unfolded protein response (UPR). The primary goal of the UPR is to restore the
protein balance by suppressing protein translation, increased clearance of unfolded or
misfolded proteins and promoting cell survival. Unfortunately, if the ER homeostasis
is not restored, the cell dysfunction and death signaling pathways is launched. The
UPR re-establishes homeostasis through three distinct branches that are initiated by
the  ER-resident  protein  folding  sensors,  inositol-requiring  protein-1  (IRE1α),
activating transcription factor-6 (ATF6) or protein kinase RNA-like ER kinase (PERK).
Each branch uses  a  unique  mechanism to  activate  transcription  factors  and up-
regulate UPR target genes. These three ER-transmembrane proteins serve both as
sensors for the ER stress and effectors for the response to the ER stress induction.
Under basal conditions, the ER-resident transmembrane proteins ATF6, IRE1, and
PERK are  maintained in  an inactive  state  via  their  binding to  the  ER chaperone
glucose-regulated  protein  (GRP78)[5].  Under  stress  conditions  where  misfolded
proteins are increased in the ER, GRP78 binds misfolded protein and releases from the
ER stress sensors, leading to their activation.

IRE1 is  the most ancient ER transmembrane protein containing an ER-luminal
sensor domain recognizing unfolded peptides, kinase and endoribonuclease (RNase)
domain on its cytosolic portion[6]. IRE1 has two isoforms, IRE1α and IRE1β[6]. IRE1α is
ubiquitously expressed whereas IRE1β is only expressed in the gut[6]. In the absence of
the ER stress, GRP78 binds to the luminal domain of IRE1α. Under stress situations,
IRE1  is  activated  by  homodimerization  after  release  from  GRP78  and  auto-
phosphorylation leading to the activation of the kinase and the endoribonuclease
activity of IRE1. Active IRE1α splices a transcription factor X-box-binding-protein-1
(XBP1) mRNA to spliced XBP1 (XBP1s). XBP1s is a potent transcription factor for a
variety of genes involved in retrograde transport of proteins from the ER to cytosol
and in  ER-induced protein  degradation[7].  Moreover,  IRE1 degrades  mRNAs via
regulated IRE1-dependent mRNA decay (RIDD) mechanism to reinstate homeostasis
in the ER.

ATF6, a 670 amino acids type II transmembrane protein with a bZIP transcription
factor motif. At resting conditions ATF6 is localized at the ER through its interaction
with  GRP78.  Following  the  stress,  unfolded/misfolded  proteins  accumulation
enhance the release of the ATF6 and its translocation to the Golgi apparatus where the
luminal and transmembrane domains are cleaved by site-1 and site-2 proteases (S1P
and S2P) via regulated intra-membrane proteolysis. This results in an active ATF6
capable of interacting with regulatory sequences called ER stress response elements
and regulating the expression of chaperones, X box-binding protein 1 (XBP1) toward
restoring protein folding and cellular homeostasis[8,9].

Like  IRE1,  PERK has  a  protein  kinase  activity,  and after  its  dissociation from
GRP78, PERK dimerizes and autophosphorylates. Active PERK phosphorylates the
eukaryotic initiation factor 2α (eIF2α), which blocks unfolded protein translation
promoting cell survival and also activates the transcription of the ATF4 to decrease
Unfolded protein level in the ER via  the activation of various UPR genes[10].  If the
adaptive mechanisms do not sufficiently recover the ER homeostasis, the UPR can
switch from a pro-adaptive to a pro-apoptotic role[11].

ER STRESS AND HEART
Numerous  studies  have  linked  the  disruption  of  the  ER  homeostasis  to  the
pathophysi-ology of many diseases including heart diseases. However, the specific
role of the ER stress signaling in the heart is yet to be defined and whether ER stress
signaling is detrimental or protective in the heart is still a challenging question that
needs to be answered[4,12]. In cardiomyocyte, Bcl2 proteins family was shown to induce
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apoptosis via calcium signaling during ER stress induction[13]. In line with this study,
prolonged ER stress triggered cardiomyocyte apoptosis and oxidation of CaMKII, a
redox-sensitive enzyme, which was rescued by antioxidant or CamKII inhibitors
treatments[14]. Furthermore, it has been shown that the oxidation of CaMKII may lead
to cardiac  dysfunction and apoptosis[15].  In  this  context,  Roe et  al[14]  showed that
CaMKII oxidation mediates ER stress-induced cardiac dysfunction and apoptosis and
could be used as a potential target in cardiac diseases triggered by the ER stress.
GRP78  has  been  found to  increase  in  patients  with  heart  failure  suggesting  the
implication of the UPR activation in heart failure[16]. Patients with heart failure display
a structural and architecture alteration of the ER as well as dys-regulation of the ER
proteins involved in the UPR response[17]. In fact, spliced XBP1s, GRP78, ATF4, and
CHOP were  all  induced in  failing  human heart[16-20].  Using the  transverse  aortic
constriction (TAC) mouse model to induce heart failure, Okada et al[20] showed that the
ER stress was induced in both hypertrophic and failing heart. Remarkably, the ER
stress-CHOP and apoptosis were only seen in failing heart but not in hypertrophic
heart  indicating  the  differential  effect  of  the  ER  stress  pathology-dependent.
Moreover,  the ER stress-CHOP deficient  mice develop less  cardiac hypertrophy,
fibrosis, and cardiac dysfunction compared to wild mice. Our recent study showed
that the inhibition of the ER stress protected the heart against myocardial infarction
induced by ischemia-reperfusion injury[21]. Together these studies suggest that the ER
stress  could  be  involved  in  the  development  of  myocardial  infarction,  cardiac
hypertrophy, and the transition from hypertrophy to heart failure[22,23].

Recently, PERK was shown to protect the heart from pressure overload-induced
heart failure[24]. Cardiomyocyte-specific disruption of PERK did not affect the cardiac
structure or function under normal conditions but exacerbates the development of
heart failure in response to TAC[25].  The hearts of PERK knockout mice showed a
dramatic reduction in Serca2α expression and an increase in apoptosis and UPR genes
expression (GRP78, GRP94, CHOP) in response to TAC. These results suggest the
importance of PERK in the maintenance of intracellular calcium homeostasis, control
of the ER stress level and cell survival[25].

The activation of the UPR has been shown in ischemic heart diseases[26,27]. PERK
activation was also observed in ischemic hearts,  and its overexpression seems to
promote cell survival while its down regulation is detrimental to cells[28,29].

XBP1s and GRP78 were increased in the ischemic heart of patients and animal
models[27,30]. XBP1s seem to be cardio-protective in mice after ischemia-reperfusion
injury[31,32]. Moreover, the ER stress-CHOP, PUMA and Tribbles3 downstream effect-
ors  of  PERK play  a  significant  role  in  cell  death  induced  by  the  ER stress  after
myocardial ischemia-reperfusion injury[33].

ATF6, the third ER stress member that is activated during myocardial I/R injury.
Using genetic  and pharmacological  approaches,  Glembotski’s  group and others
showed that ATF6 protects the heart against myocardial I/R injury probably through
the  induction  of  the  ERAD  machinery  leading  to  the  degradation  of  misfolded
proteins in the ER[34-37]. Recently, it has been found that thrombospondin-4 protects the
heart by promoting the adaptive response of the ER stress through the activation of
the ER stress ATF6[38,39]. The authors showed that ATF6 location and activity could be
determined via  its  interaction with thrombospondin-4.  These results  suggest  the
benefit of enhancing the adaptive response mediated by ATF6 as a potential therapy
to target ischemic heart diseases.

INFLAMMATION AND ER STRESS
In recent years, various studies found links between the ER stress pathways and infla-
mmation[40]. Ischemic heart disease, a significant cause of death is recognized as an
inflammatory disease involving infiltration of monocytes and macrophages. Recently,
cardiac-specific expression of monocyte chemoattractant protein-1 (MCP-1) in mice
causes heart failure, which was correlated with the activation of a cluster of the ER
stress-related genes[41]. It has been shown that the production of the pro-inflammatory
cytokine such IFNγ, TNF-α, MCP-1, and IL-8 required the activation of the IRE1 and
XBP1[42,43]. IRE1 has also been linked to inflammation mediated by NFκB cascade via its
binding to TRAF2[44,45]. Moreover, ATF 6 can also trigger NFκB mediated inflammation
through AKT phosphorylation[46].

ER STRESS AND APOPTOSIS
When the UPR fails to reestablish the ER homeostasis,  the detrimental apoptotic
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signaling  pathway is  activated.  Up to  date,  it  is  still  a  mystery  how cells  chose
between the adaptive/survival pathway vs  the detrimental /death once the UPR
machinery is triggered. Under sustained ER stress induction, IRE1α triggers apoptosis
via the activation of JNK and p38 through TRAF2 and ASK1 mechanism[47,48].

Cardiac  myocyte  lacking  ASK1  were  resistant  to  apoptosis  induced  by  the
hydrogen peroxide[49]. Cardiac overexpression of ASK1 showed an increase in cardiac
apoptosis in a mice model of TAC while ASK1 deficient mice were protected from
heart failure[50]. In a rat model of I/R injury, the inhibition of ASK1 was able to reduce
apoptosis and myocardial infarct size[51]. The p38 activates the ER stress CHOP and
both p38 and JNK can activate Bax to initiate apoptosis. IRE1 is also known to activate
caspase12 leading to apoptosis[52,53]. Moreover, the RNase activity of IRE1 known as
RIDD may promote cell death via  the degradation of mRNAs involved in protein
survival[54].  It is worth noting that IRE1 exerts two opposing functions: death and
survival depending on the conformational of the protein and the intensity of the stress
mild vs high. Under mild conditions of the ER stress, IRE1 helps to relieve the stress
by splicing XBP-1. Under high-prolonged ER stress, IRE1 triggers apoptosis via the
interaction with TRAF2 and ASK1[54]. Erhardt’s group recently described that the ER
stress requires the proapoptotic Bcl-2 family protein (Puma) to promote apoptosis in
cardiac  myocytes[55].  Puma  is  critical  for  cell  death  related  to  I/R[56].  Thus,  the
overexpression of PUMA in cardiac myocytes contributes to apoptosis induced by the
ER stress while deletion protects the heart from I/R injury[57]. These results suggest
inhibition of Puma activity may be used to treat cardiac infarcts or prevent heart
failure by blocking ER stress-induced apoptosis[56,58]. Additionally, evidence suggests
that the ER stress-CHOP plays a pivotal role in mitochondria-dependent apoptosis in
the  heart  with  pressure  overload[22].  It  is  clear  that  the  ER  stress  induction  is  a
mechanism that leads to apoptosis and therefore tissue damage.

ER STRESS AND AUTOPHAGY
Autophagy or “self-eating” is a highly conserved cell-recycling program for the clea-
rance of damaged proteins and organelles. Autophagy has been reported in many
cells  type of the cardiovascular system and been classified into microautophagy,
macroautophagy, and chaperone-mediated autophagy. Autophagy is necessary for
the preservation of normal cardiac function. However, deficient or excessive cardiac
autophagy is considered as a maladaptive response. Moreover, autophagy is regarded
as “double edge sword” for its different role in the cardiovascular system.

Recently, the ER stress emerges as an important inducer of autophagy and a link
between the ER stress,  autophagy and cardiac function have been proposed[59,60].
Although, abundant data showed that cross talks exist between the ER stress and
autophagy, the molecular mechanism is yet to be determined[61]. Zhang et al[62] recently
showed that mitochondrial aldehyde dehydrogenase (ALDH2) was able to alleviate
ER stress-induced cardiomyopathy via autophagy reduction. Reticulon, a membrane-
associated protein localized at the ER has been shown to be involved in the induction
of  autophagy leading to  the  ER stress  induction demonstrating the  relationship
between autophagy, reticulum and the ER stress[63]. Furthermore, the activation of the
IRE1 induces autophagy via  its interaction with TRAF2 and the activation of JNK
leading  to  the  regulation  of  Beclin-1  expression.  Moreover,  advance  glycation
products (AGEs) were able to trigger autophagy in cardiac myocytes probably via the
ER stress signaling. In fact, crosstalk between advanced AGEs and ER stress signaling
could mediate the induction of autophagy by AGES[64,65]. In a mouse model of sepsis,
Cardiac-specific overexpression of the antioxidant metallothionein (MT) was able to
rescue cardiac contractility dysfunction probably via ER stress and oxidative stress
modulation[66]. In a swine model of hypertension, the progression of LVH has been
shown to involve an early activation of  the ER stress followed by an increase in
autophagy  leading  to  apoptosis [67].  SIRT1,  a  member  of  the  sirtuins  family,
histone/protein deacetylases known to be crucially involved in signaling related to
cell death/survival and has been found to be activated in the heart to promote cell
adaptation and survival under stress[68]. Recently Lemaire’s group reported that in
cardiac cells, Sirt1 was able to modulate the induction of autophagy in response to the
ER stress induction suggesting the possibility of tuning the adaptive autophagy in
cardiac pathologies related to ER stress[69].

In summary, the ER stress and autophagy play an important role in the patho-
genesis of cardiac complications. Although, ample studies established the interplay
and the  interaction  between  the  ER stress  and autophagy,  and their  role  in  the
progression of heart diseases, the molecular mechanism remained unknown. Who are
the players, how can we better tune the ER stress and autophagy? It is evident now
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that  the  ER stress  and autophagy are  influencing  each  other.  Therefore,  a  good
understanding of the interconnection between these two important physiological
processes, especially under pathological conditions will be of great importance and
may shed light on developing new therapeutic strategies to rescue the cardiovascular
system.

ER STRESS AND MICRORNAS
MicroRNAs (miRNAs or  miRs)  are  a  class  of  conserved small,  20-23  nucleotide,
single-stranded,  non-coding  RNAs  that  post-transcriptionally  regulate  gene
expression[70]. They were first described in the 1993 and had been linked to various
cellular stress such oxidative stress, inflammation, and the ER stress in the setting of
cardiovascular complications[71]. The miRNAs are increasingly recognized as a master
regulator  of  the  ER stress  and an important  player  in  the  UPR response,  which
manage the  UPR balance  between survival  and cell  death during the  ER stress-
induction. In fact, several miRNAs have been demonstrated to be regulated by the ER
stress and to regulate the ER stress by optimizing the levels of key proteins involved
in the UPR. For instance PERK pathway induces the expression of miR-30c-2*, which
represses XBP1s synthesis at the translational level[72].  Although miR-30c-2* level
increases after the ER stress induction along with the XBP1s level, miR-30c-2* was still
capable of affecting the XBP1 level in the course of the UPR[72]. In cardiac myocytes
and using a Tamoxifen-inducible ATF6 in the heart of transgenic mice, activated ATF6
regulates the expression of 13 miRNAs[73]. The miRNA-455, one of the miRNAs down
regulated by ATF6, negatively regulates calreticulin (a calcium chaperone protein)
involved in the folding of nascent polypeptides[73].  Therefore, the ER stress ATF6
down regulates miRNA-455, which up-regulates calreticulin, a cardio-protective gene.
While the ER stress ATF6 regulates the expression of miRNAs, it was also a target of
miR-702[74].  Together,  the two studies showed the existence of interplay between
miRNAs and the pro-adaptive activity of  the UPR in the heart.  Another class  of
miRNAs linked to the ER stress includes member of miRNA-30 family. The miRNA30
is one of the most abundant miRNAs expressed in the myocardium and has been
shown to  be  down-regulated in  heart  failure  and hypertension in  both vascular
smooth muscle cells and cardiac neonate cells. Under ER stress conditions, miRNA-30
was down-regulated while GRP78 was up-regulated. Moreover, GRP78 up-regulation
seems to modulate miRNA-30 expression through the inhibition of the C/EBP trans-
activity by CHOP in the myocardium[75]. Interestingly, Knockdown of miRNA-30 in
cardiac  cells  triggered  ER  stress  and  identified  the  ER  stress  ATF6/CHOP  and
caspase-12 as indirect targets of this miRNAs. While the transfection of miR-30 was
able to abolish the ER stress suggesting that miRNA30 plays a role in the regulation of
cell  death  and  miRNA30  replacement  could  be  considered  as  an  approach  for
targeting  the  ER  stress  and  the  related  pathological  diseases[76].  Recent  studies
indicated that miRNA214 is a negative regulator of angiogenesis in the retina and
heart[19,77]. XBP1 was found to be a direct target of miR214 in endothelial cells. The
blockade of the endogenous miRNA214 expression regulated cardiac function and
cardiac angiogenesis. Interestingly, cardiac overexpression of miRNA-214 in mice had
no morphological changes suggesting that miRNA214 regulates cardiac and vascular
angiogenesis only when XBP-1 is dys-regulated[78]. This study highlighted another
scenario  of  ‘’cross  talk’’  between miRNAs and the  ER stress  components  in  the
cardiovascular system. Independently of XBP-1, a recent study proposed a new role of
the ER stress sensor IRE1α in the modulation of miRNA-200 and miRNA-466 and the
improvement  of  bone  marrow derived  progenitor  cells  (BMPC)  function  via  its
endonuclease activity in diabetes[79]. This study outlined the importance of the ER
stress IRE1α as a crucial modulator of the fate/function of BMPCs during angio-
genesis and tissue repair via the modulation of miRNA expression levels and may be
therefore involved in another ischemic setting such ischemic heart diseases and heart
failure. Further studies are needed to determine the mechanism that inhibits IRE1α
activity in diabetic BMPCs and the potential of expanding these findings to other
cardiovascular  complications,  such as the heart  failure[80].  The ER stress  ATF4,  a
downstream effector of the ER stress PERK, has been linked to miR-663 in endothelial
cells[81]. The inhibition of miRNA663 during the ER stress induction leads to a decrease
in the ER stress ATF4 expression as well  as its target gene, the VEGF. Moreover,
miRNA708 was the first ER stress-induced miRNA discovered[82].

MicroRNAs and the ER stress interaction is a very young research area. More work
is required to unravel the array of microRNA targets and determine their function in
the ER stress-induced death/survival. Moreover, it is essential to recognize that the
results obtained so far showing the interaction/link/correlation/regulation of the ER
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stress by miRNAs or vice versa represent a promising avenue for cardiovascular
diseases.  As mentioned above,  one of  the significant  challenges of  the ER stress
response in pathological situations is the fact that it is difficult to distinguish between
the protective pathways and the detrimental pathways once the UPR response is
triggered.  Differentiating  between  the  detrimental  pathways  and  the  adaptive
pathways  of  the  ER stress  players  via  its  miRNAs target  will  advance  the  field
tremendously and opens new opportunities for novel therapeutic strategies targeting
ER stress via miRNAs in cardiovascular diseases.

ER STRESS AS A TARGET THERAPY
ER stress has been involved in numerous cardiovascular diseases such as diabetes,
hypertension, myocardial infarction and heart failure. Therefore, targeting the ER
stress in cardiovascular disease via the activation of the adaptive pathway of the UPR
or the inhibition of the detrimental pro-apoptotic pathways of the UPR will  be a
beneficial therapy for cardiovascular diseases.

Chemical  chaperones,  small  molecules  that  work similarly to  the endogenous
molecular chaperone machinery to stabilize misfolded proteins, facilitate their proper
folding and reduce the ER stress. Among the chemical chaperones that have been
extensively used in various diseases related to the ER stress, Tauroursodeoxycholic
(TUDCA) and 4-phenylbutyric acid (PBA).

TUDCA is a non-toxic hydrophilic bile acid that functions as a chemical chaperone
and has been extensively used in colitis, pulmonary fibrosis, biliary cirrhosis, and
recently in patients with obesity and insulin resistant[83-85]. In animal models, TUDCA
has been shown to protect the heart against myocardial dysfunction in obesity, and
reduce  apoptosis  in  a  mouse  model  of  myocardial  infarction[86].  Under  pressure
overload,  TUDCA  was  shown  to  attenuate  cardiac  remodeling  through  down-
regulation  of  the  GRP78  and  GRP94  and  the  regulation  of  the  ER  stress  PERK
phosphorylation and eIF2α[87]. Moreover, in a mouse model of heart failure induced
by calreticulin overexpression, the inhibition of the UPR using TUDCA decreased
cardiac fibrosis, which was mediated through the inhibition of the ER stress IRE1
activation and XBP1 splicing[88]. Together, these results highlight the cardioprotective
effect of TUDCA treatment and the therapeutic potential of using TUDCA in the
management of cardiac complications[66].

PBA, a low-molecular-weight aromatic fatty acid, has a chaperone-like activity and
has  been  shown  to  attenuate  cardiac  hypertrophy,  fibrosis,  and  apoptosis  in  a
pressure overload animal model[89]. In isolated rat hearts subjected to I/R injury, 4-
PBA was revealed to be a potent cardioprotective agent via: (1) The reduction in the
I/R injury-induced myocardial dysfunction and cell apoptosis; (2) The delay of the
onset of the ER stress via the regulation of Grp78 expression, PERK phosphorylation;
and (3) The inhibition of oxidative stress[90].  In a cell and a clinically relevant dog
model  for  atrial  fibrillation,  the  blockade  of  the  ER  stress  by  PBA  inhibits  the
induction of the autophagy and suppresses cardiomyocytes remodeling suggesting
the potential of using PBA to protect the heart against clinical atrial fibrillation[91].
Furthermore, PBA and TUDCA were also able to reduce the cardio-toxicity effect of
doxorubicin (a chemotherapeutic agent commonly used in cancer). Moreover, PBA
and TUDCA reduced cardiomyocyte apoptosis and alleviated cardiac dysfunction in a
mouse  model  of  cardiomyopathy  induced  by  doxorubicin[92].  Considering  that
TUDCA and PBA are FDA-approved chemical chaperones and already used clinically
for the treatment of some diseases, it will be exciting and safer to test TUDCA and
PBA in patients with cardiovascular complications related to the ER disturbance.
Future basic and clinical studies are critically needed to determine: (1) The right doses
required to obtain the cardioprotective effect; and (2) To delineate the mechanism of
how chemical chaperones promote the protein folding.

Statin  therapy  has  been  shown  to  be  beneficial  for  heart  failure  treatment[93].
Interestingly, a recent study showed that in a mouse model of pressure overload and
this effect was associated with a reduction in the ER stress[94-97]. The results suggest
that the reduction in the ER stress might be a novel mechanism for the beneficial effect
of statin for heart failure[98]. Moreover, in a rat model of heart failure, the modulation
of the ER stress markers such as Caspase12, the ER stress-CHOP, and GRP78 was
proposed as a mechanism by which Atorvastatin (another statin drug) protects the
heart  against  heart  failure[99].  Interestingly,  the  administration  of  Atorvastatin
improved left ventricular ejection fraction and attenuated left ventricular remodeling
in patients with heart failure[100].  These results could be clinically relevant for the
treatment and the prevention of heart failure.

Apelin recently discovered as an endogenous ligand for the G protein-coupled
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receptor APJ and has been shown to be a beneficial therapy for patients with heart
failure[101-103].  Apelin  seems to  have  a  positive  effect  on peripheral  and coronary
vasodila-tation, cardiac output, and cardiac function[104,105]. The cardioprotective effect
of  apelin  could  be  mediated  through  the  inhibition  of  the  ER  stress  dependent
apoptosis[106].  Furthermore, in a mouse model of obesity-induced cardiac compli-
cations,  exogenous  administration  of  apelin  attenuates  myocardial  contractile
dysfunctions and cardiac hypertrophy through the inhibition of the ER stress and the
restoration of autophagy[107]. On the other hand, apelin 13 (the main subtype of apelin
in the human heart) induced cardiomyocytes hypertrophy through autophagy and
the ER stress mechanisms[108]. From these studies, the benefits vs the detrimental role
of apelin in cardiac complication seem to depend on the conditions basic vs stress and
could be explained by the UPR status of the ER stress adaptive vs detrimental UPR
response.

Adenosine monophosphate-activated kinase (AMPK) recognized as an intracellular
energy and stress sensor that function to maintain intracellular homeostasis during
stress conditions. Dysregulation of AMPK has been reported in humans and animal
models of metabolic syndrome[109-111].  The 5-aminoimidazole-4-carboxamide-1-β-d-
ribofuranoside (AICAR) and metformin, antidiabetic drugs activate AMPK, reduce
the ER stress  and slow the progression of  heart  failure[112].  Additionally,  AICAR
activates  nuclear  factor-E2-related  factor  (Nrf2)  through  AMPK  independent
pathways,  which  helps  combat  oxidative  damage.  Increased expression of  Nrf2
reduces cardiac hypertrophy, myocardial infarct, and the progression of heart failure.
However, AMPK and Nrf2 pathways show convergence as well[113]. Therapies that
activate AMPK and Nrf2, as well as the UPR and apoptotic pathways, hold promise in
the treatment cardiac complications. Moreover, therapeutic efforts aimed at oxidative
stress also reduce the ER stress. Thus, the ER stress appears to be, a key player in
cardiovascular complications and a large number of drugs seemed to protect the heart
against failure involved the ER stress modulation. Targeting the ER stress pathways
hold a great feature for patients with cardiac complications. As the prevalence of heart
diseases  raises  yearly  worldwide,  it  becomes  significant  to  understand  the
relationship between heart failure and the ER stress. There is still much to understand
about the contribution of the ER stress in heart complications (Figure 1).

CONCLUSION
Significant attention was given to the ER stress in the recent years from “bench to
bed” due to its involvement in numerous cardiovascular diseases such as diabetes,
hypertension, myocardial infarction, and heart failure. Although many studies have
characterized  signaling  pathways  of  the  ER  stress  and  the  UPR  in  general  and
particularly in the cardiac field, many questions remained to be addressed. How can
we tame the ER stress and what is the best way to control it? How can we balance
“too much or too little” of the ER stress to promote survival and inhibit apoptosis in
cardiac pathology? How can we integrate conventional therapies (AMP kinase drugs,
ACE  inhibitors,  autophagy  (activators/inhibitors)  with  the  UPR  target  against
cardiovascular diseases? How can we use MicroRNAs and gene therapy to regulate
the ER stress toward a better and safe future therapy? Can the chemical chaperone be
“the ER stress therapy” by excellence against cardiac complications? Only the future
will tell us.
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Figure 1

Figure 1  Schema recapitulating the involvement of the endoplasmic reticulum stress in heart diseases. ER: Endoplasmic reticulum.
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