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Abstract
Molecular mechanisms associated with inflammation-promoted tumorigenesis
have become an important topic in cancer research. Various abnormal epigenetic
changes, including DNA methylation, histone modification, chromatin
remodeling, and noncoding RNA regulation, occur during the transformation of
chronic inflammation into colorectal cancer (CRC). These changes not only
accelerate transformation but also lead to cancer progression and metastasis by
activating carcinogenic signaling pathways. The NF-κB and STAT3 signaling
pathways play a particularly important role in the transformation of
inflammation into CRC, and both are critical to cellular signal transduction and
constantly activated in cancer by various abnormal changes including
epigenetics. The NF-κB and STAT3 signals contribute to the microenvironment
for tumorigenesis through secretion of a large number of pro-inflammatory
cytokines and their crosstalk in the nucleus makes it even more difficult to treat
CRC. Compared with gene mutation that is irreversible, epigenetic inheritance is
reversible or can be altered by the intervention. Therefore, understanding the role
of epigenetic inheritance in the inflammation-cancer transformation may
elucidate the pathogenesis of CRC and promote the development of innovative
drugs targeting transformation to prevent and treat this malignancy. This review
summarizes the literature on the roles of epigenetic mechanisms in the
occurrence and development of inflammation-induced CRC. Exploring the role of
epigenetics in the transformation of inflammation into CRC may help stimulate
futures studies on the role of molecular therapy in CRC.

Key words: Colorectal cancer; Inflammation; DNA methylation; Histone modification;
LncRNA; MicroRNAs; Epigenetics
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Core tip: Chronic inflammation can promote the occurrence and progression of colorectal
cancer (CRC), drawing more attention to the role of pro-inflammatory cytokines and
immune cells in this cancer. By regulating the expression of various inflammatory
signaling pathways and pro-inflammatory cytokines, epigenetic inheritance not only
participates in the transformation of inflammation into CRC, but also facilitates invasion,
metastasis, and drug resistance of CRC. Compared with gene mutation that is
irreversible, epigenetic inheritance is reversible or can be altered by the intervention.
Therefore, the tumor microenvironment can be regulated by modulating epigenetic
modifications, which may be novel alternatives to prevent and treat CRC.

Citation: Yang ZH, Dang YQ, Ji G. Role of epigenetics in transformation of inflammation into
colorectal cancer. World J Gastroenterol 2019; 25(23): 2863-2877
URL: https://www.wjgnet.com/1007-9327/full/v25/i23/2863.htm
DOI: https://dx.doi.org/10.3748/wjg.v25.i23.2863

INTRODUTION
In recent years, accumulating evidence indicates that chronic inflammation leads to
the occurrence and development of many tumors[1,2]. The relationship between in-
flammation and cancer has long been investigated. Two thousand years ago, the
Greek physician Galen described the similarities between cancer and inflammation
and believed that cancer might evolve from inflammatory lesions[3]. In 1863, Virchow
identified inflammatory cell infiltration in tumor tissues and explained it as a reaction
to the origination of cancer at sites of chronic inflammation, proposing the hypothesis
of the inflammation-cancer transformation[4]. Colorectal cancer (CRC) is the third most
common malignant tumor and the fourth leading cause of cancer-related mortality
worldwide[5]. The pathogenesis of CRC is complex. Previously, most scholars believed
that CRC was a genopathy and a highly heterogeneous tumor resulting from an
accumulation of genetic abnormalities, the failure of cancer defense mechanisms, and
the activation of carcinogenic pathways[6]. However, increasing evidence suggests that
CRC  is  a  typical  inflammation-dependent  cancer.  The  risk  of  developing  CRC
increases in patients with inflammatory bowel disease (IBD), such as ulcerative colitis
or Crohn's disease, which is more likely to be caused by chronic inflammation of the
intestinal mucosa than by any definitive genetic predisposition[7-9]. In addition, chronic
inflammation plays an important role in the occurrence and development of sporadic
CRC, and the expression of interleukin-1 (IL-1), IL-6, IL-17A, and IL-23 is increased in
most sporadic CRC cases[10,11].

Various proinflammatory signaling pathways participate in the transformation of
inflammation into CRC, including the NF-κB, IL-6/STAT3, cyclooxygenase-2 (COX-
2)/PGE2, and IL-23/Th17 pathways, which induce the production of inflammatory
mediators,  upregulate  the  expression of  antiapoptotic  genes,  stimulate  cell  pro-
liferation and angiogenesis, and thereby contribute to tumorigenesis[12]. The NF-κB
signaling pathway includes both classical and non-canonical pathways. The classical
pathway is activated by pro-inflammatory cytokines, pathogen-associated or damage-
associated molecular patterns. The non-canonical pathway is activated by a small
subset of cytokines including lymphotoxin, receptor activator of NF-κB ligand, CD40
ligand,  and B cell  activating factor  of  the  tumor  necrosis  factor  (TNF)  family[13].
Activation of NF-κB not only affects DNA damage and carcinogenic mutations, but
also causes tumorigenesis by promoting the production of reactive oxygen species
(ROS) and reactive nitrogen. It can also cause chromosomal instability, aneuploidy,
and epigenetic changes, leading to tumorigenesis and development[14,15]. NF-κB and
STAT3  are  nuclear  transcription  factors  required  for  the  regulation  of  tumor
proliferation,  survival,  angiogenesis,  and invasion;  their  target genes encode the
critical cancer-promoting inflammatory mediators[13-19]. NF-κB and STAT3 signaling
contributes  to  the  tumorigenic  microenvironment  by mediating the  secretion of
various proinflammatory cytokines, and the crosstalk of these pathways in the nu-
cleus makes CRC even more difficult to treat[18,20,21].

To  date,  abundant  evidence  has  indicated  that  epigenetic  changes  play  an
important role in the transformation of  inflammation into CRC as well  as  in the
occurrence, development, invasion, metastasis, and drug resistance of this cancer.
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These  epigenetic  changes  include  DNA  methylation,  histone  modification,  and
noncoding  RNA  (ncRNA)  alterations.  Molecular  mechanisms  associated  with
inflammation-promoted tumorigenesis are currently an important branch of cancer
research; therefore, understanding the role of epigenetic inheritance in the occurrence
and development of CRC may elucidate the pathogenesis of this cancer and promote
the development of innovative drugs targeting transformation for CRC treatment.

DNA METHYLATION
DNA methylation is an important epigenetic modification related to gene expression
and mediated by DNA methyltransferases (DNMTs), and an imbalance in genomic
methylation leads to tumors. Approximately half of human gene promoters are rich in
C-G sequences, also called CpG loci because of the phosphodiester bond linking the C
and G nucleotides.  If  they are present in DNA sequences,  CpG islands are likely
located in genetic regulatory elements[22,23] and are usually defined as regions with a
length greater than 200 base pairs and a G + C content greater than 50%[24,25]. DNA
methylation starts at one end of the islands and continues to gene promoters and
initiation  sites,  altering  the  three-dimensional  configuration  of  the  DNA  and
inhibiting its  interaction with transcription factors,  ultimately silencing gene ex-
pression. In contrast, hypomethylation promotes gene expression[23,26]. In CRC, the
commonly observed types of methylation include hypermethylation of antioncogene
DNA and hypomethylation of oncogene DNA. More importantly, DNA methylation
can be stably inherited by progeny cells through histone marks at methylation sites,
leading to hereditary effects without changes in DNA sequences[27].

IBD has been demonstrated to increase the risk of CRC incidence. A meta-analysis
of population-based cohort studies indicated that the incidence of CRC within 10, 20,
and > 20 years was 1%, 2%, and 5%, respectively, in patients with IBD[28,29]. In addition,
DNA methylation promotes the tumorigenesis and progression of colitis-associated
CRC (CAC). The expression of DNMT1 is appreciably higher in CAC samples than in
tumor tissues of patients with sporadic CRC, indicating an increased level of DNA
methylation in CAC tissues[30]. However, the frequency of chromosomal instability
and microsatellite instability in CAC is generally the same as that in sporadic CRC. In
approximately 46% of patients with microsatellite instability-high CAC, the hMLH1
gene is hypermethylated[31].  The cell cycle inhibitor gene p16INK4a,  which has been
reported to be negatively associated with the occurrence of sporadic CRC, is often
methylated in tumor samples from CAC patients[32,33]. In addition, the p14ARF gene can
indirectly regulate the expression of the p53 protein, and methylation of p14ARF is a
relatively  common  early  event  in  ulcerative  colitis-associated  colorectal  car-
cinogenesis[34]. Furthermore, the methylation levels of the ITGA4, TFPI2, and VIM
gene promoters are increased in inflamed colon tissues, which may imply a high risk
of CAC development[35]  (Figure 1A).  Recent genome-wide studies have provided
important insights into the characteristics of DNA methylation in tumors[36]. Using
monoalkyl methylation profiles in a colitis-induced mouse colon cancer model, Abu-
Remaileh  et  al[37]  identified  a  novel  epigenetic  modification  characterized  by
hypermethylation of the DNA methylation valley (DMV), which leads to the silencing
of DMV-related genes, thus facilitating inflammation-induced cell transformation.

Studies  have  shown that  the  methylation  of  specific  genes  is  associated  with
inflammatory conditions, dysplasia, and malignant transformation, indicating that
epigenetic modifications are involved in inflammation-induced carcinogenesis[38-40].
Many proinflammatory cytokines secreted as a result of NF-κB and STAT3 signaling
pathway activation are activated and promote the transformation of inflammation
into CRC[20].  For  example,  IL-6 silences the expression of  suppressor of  cytokine
signaling 3 (SOCS 3) by inducing high expression levels of DNMT1. SOCS3 is an
important negative regulator of cytokine-induced STAT3 signaling, and its silencing
ultimately contributes to the occurrence of CRC[41]. TNF molecules depend on the NF-
κB signaling pathway to silence the gene encoding the proapoptotic protein kinase cδ-
binding protein through gene promoter methylation, which facilitates the growth of
cancer cells[42]. IL-6 has been demonstrated to increase the methylation of the promoter
regions of genes related to tumor inhibition, cell adhesion, and apoptosis resistance,
and this increase could be prevented by treatment with the DNMT 1 inhibitor 5-
azadeoxycytidine[30] (Figure 1B). IL-6 produced during intestinal inflammation can
modulate the expression of CYP2E1 and CYP1B1 (cytochrome P450 enzymes) via
transcriptional  and epigenetic  mechanisms,  altering  the  metabolic  capability  of
epithelial  cells.  Indeed,  one study suggested that  IL-6  reduces the expression of
miR27b, which targets CYP1B1, through a DNA methylation mechanism, thereby
increasing  dietary  carcinogen  activation  and  DNA  injury,  which  leads  to  the
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Figure 1

Figure 1  DNA methylation regulates the transformation of inflammation into colorectal cancer. A: DNA hypermethylation levels inhibit expression of
antioncogenes, resulting in the occurrence of colorectal cancer (CRC); B: Inflammatory cytokines regulate STAT3/NF-κB signaling to promote the occurrence of CRC
by DNA methylation. CRC: Colorectal cancer; IL-6: Interleukin-6; DNMT1: DNA methyltransferase 1; SOCS3: Suppressor of cytokine signaling 3.

occurrence of CRC[43].  As an important component of natural humoral immunity,
PTX3 activates and regulates the complement cascade by interacting with C1q and
factor H and plays a role in the regulation of inflammation. PTX3 has been considered
an exogenous antioncogene, and PTX3 deficiency increases sensitivity to epithelial
carcinogenesis[44,45]. An analysis of epigenomic data revealed high methylation levels
in the PTX3 gene promoter in CRC[46,47].  Prostaglandin, a signaling molecule with
important pro- and anti-inflammatory effects, is synthesized from arachidonic acid
through the prostaglandin endoperoxide synthase (PTGS; also called cyclooxygenase
or COX) pathway. PTGS2 (also called COX-2), one of the key enzymes in the pathway,
is overexpressed in CRC, leading to oversecretion of the downstream metabolite
prostaglandin E2 (PGE-2)[48]. Deregulation of the COX-2/PGE2 signaling pathway is
associated with many tumors, including CRC, and the expression levels of COX-2 and
PGE2 are closely related not only to metastasis and poor prognosis in patients with
CRC but also to chemotherapeutic resistance in tumors[49-52]. Indeed, a study showed
that high methylation rates of select gene promoters stimulate the production of PGE2,
block the production of other bioactive prostaglandins, and ultimately promote the
development of CRC[53]. Moreover, the results of this study suggest that the antitumor
effects of nonsteroidal anti-inflammatory drugs (NSAIDs) may be related to the ability
of these drugs to inhibit COX-2. FXR regulates bile acid metabolism and inhibits the
production of the secondary bile acid cholic acid; therefore, FXR performs anticancer
functions. In CRC, the expression of FXR is negatively associated with the degree of
tumor malignancy and with poor clinical outcomes[54,55]. The APC gene is typically
mutationally inactivated in the pathogenesis  of  CRC[56].  Loss of  function of  APC
silences FXR expression through CpG methylation in mouse colonic mucosa and
human  colon  cells,  decreasing  the  expression  of  downstream  bile  acid-binding
proteins and heterodimers and increasing the expression of related genes (COX-2 and
c-MYC) in inflammation and CRC[57]. Recent studies demonstrated that vitamin D
(VD) deficiency is associated with the occurrence of CRC. VD, an anti-inflammatory
agent, regulates adipocytes and their functions via the VD receptor (VDR), resulting in
decreased expression of proinflammatory cytokines[58-61]. Using blood and visceral
adipose tissues collected from CRC patients and healthy controls, Castellano-Castillo
et al[62]  explored the relationship among the levels of serum 25-hydroxyvitamin D
[25(OH)D], expression of the VDR gene in adipose tissue, levels of proinflammatory
markers, expression of the epigenetic factor DNMT3A, and methylation of the VDR
promoter. These results suggest that adipose tissue may be a critical factor in the
occurrence of CRC and that low expression levels of 25(OH)D and high expression
levels  of  VDR  may  partially  mediate  this  relationship  by  modulating  DNA
methylation and promoting inflammation[62]. In addition, inflammatory mediators
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such as ROS and reactive nitrogen species may lead to genomic instability, which
contributes  to  carcinogenesis  via  the  mutation  of  protooncogenes  and  tumor
suppressor genes[63]. Vitamin C (VC) and vitamin E (VE) are antioxidants that can
scavenge free radicals[64,65].  One study suggests that VE antagonizes high glucose-
induced oxidative stress, exhibiting beneficial effects on gene promoter methylation
and gene expression in the CRC cell line Caco-2[66]. In addition, the results of an in
vitro  experiment indicated that VC could enhance antitumor drug-induced DNA
hydroxymethylation and reactivate epigenetically silenced expression of the tumor
suppressor  CDKN1A  in  CRC  cells[67].  Therefore,  supplementation  with  related
vitamins may be an alternative approach to treat CRC. Moreover, black raspberry
(BRB) anthocyanins, which can modulate changes in inflammation and SFRP2 gene
methylation, have been reported as agents for CRC prevention[68]. In summary, DNA
methylation facilitates the transformation of inflammation into CRC in both the local
environment of intestinal inflammation and systemic inflammation.

HISTONE MODIFICATION
Chromatin is  a macromolecular complex composed of DNA, RNA, and proteins.
Histones, which regulate DNA strand compaction and gene expression, are the main
protein component of chromatin[23]. The core histones are composed of four major
families-H2A, H2B, H3, and H4[69]. The nucleosome is a chromatin unit consisting of
150 to 200 base pairs of DNA wrapped closely around a cylindrical histone core.
Posttranslational covalent modification of the histone tail constitutes an epigenetic
mechanism that regulates chromatin structure and gene expression in human cancers.
Histone  tail  modifications  include  phosphorylation,  methylation,  acetylation,
ubiquitination,  glycosylation,  deamination,  and  ribosylation[70,71].  Various  mo-
difications  alter  the  three-dimensional  structure  of  nucleosomes  and  affect  the
transcriptional  control  of  related  genes  by  inducing  either  an  “inactive”  tight
heterochromatin or an “active” open euchromatin conformation. Insight into histone
modification is  not as deep as that into DNA methylation;  the only well-studied
histone  modifications  are  the  acetylation/deacetylation  and  methylation/
demethylation of lysine and arginine residues in the histone tail[72,73]. These bivalent
histone modifications are mediated by polycomb group proteins (transcriptional
repressors), which contribute to silencing a specific set of anti-oncogenes in human
cancers.  Polycomb repressive complexes (PRCs)  include PRC1 and PRC2,  which
silence genes alone or in cooperation[74,75].

Histone  modification  abnormalities  arise  during  the  transformation  of
inflammation into CRC. Profiles for active enhancers using H3K27ac histone mo-
dification identified several cancer markers,  such as the LYZ, S100P, and NPSR1
proteins, which were elevated in CAC[76].  In a mouse model, deletion of the Giα2
protein led to spontaneous colitis and right multifocal CRC, which is similar to human
CRC with defective mismatch repair.  Moreover, MLH1 and PMS2 expression are
reduced in the colonic epithelium of Giα2-/- mice after the onset of hypoxic colitis.
Notably, MLH1 is epigenetically silenced by reduced histone acetylation. These data
connect chronic hypoxic inflammation, histone modulation, and CRC development[77].
The  Wnt/β-catenin  signaling  pathway  exerts  either  pro-  or  anti-inflammatory
functions by activating or inhibiting NF-κB signals, respectively, playing an important
role in the occurrence and development of CRC[78]. DACT3, the negative regulator of
Wnt/beta-catenin signaling,  is  transcriptionally suppressed in CRC in a manner
related to bivalent histone modification. However, DACT3 expression can be restored
after  combined  administration  of  drugs  targeting  histone  methylation  and
deacetylation, resulting in strong inhibition of Wnt/beta-catenin signal transduction
and massive CRC cell apoptosis. Therefore, DACT3 may be an important factor in the
treatment of CRC through epigenetic mechanisms[79].  EZH2, a catalytic subunit of
PRC2, is essential for maintaining the integrity and homeostasis of the epithelial cell
barrier in inflammatory states. EZH2 expression is downregulated in IBD patients,
and EZH2 inactivation in the intestinal epithelium increases the sensitivity of mice to
dextran  sodium  sulfate  (DSS)-  and  2,4,6-trinitrobenzenesulfonic  acid-induced
experimental colitis. One study indicated that EZH2 deficiency could stimulate the
expression of TRAF2/5 and enhance the NF-κB signaling induced by TNF-α, which
led  to  an  uncontrolled  inflammatory  reaction  and ultimately  contributed  to  tu-
morigenesis[80]. Researchers identified a new epigenetic mechanism underlying the
preventive  effects  of  aspirin  in  CAC.  Aspirin  reduced  the  activity  of  histone
deacetylases  and  fully  restored  H3K27ac.  Moreover,  aspirin  depressed  azoxy-
methane/DSS-induced H3K27ac accumulation in the promoters of the inducible nitric
oxide synthase,  TNF-α,  and IL-6 genes and suppressed the production of  proin-
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flammatory  cytokines,  playing  a  role  in  the  prevention  of  cancer[81]  (Figure  2).
Although  few studies  have  investigated  the  role  of  histone  modification  in  the
transformation of inflammation into CRC, notably, histone modification may interact
with DNA methylation to induce epigenetic silencing and promote tumorigenesis.

MICRORNAS
Most of the human genome is transcribed into RNAs, which are classified as RNAs
with coding potential or RNAs without. The latter RNAs are also called ncRNAs.
NcRNAs were historically considered “transcriptional  waste”,  but accumulating
evidence indicates that ncRNAs strongly impact many molecular mechanisms[82].
MicroRNAs are single-stranded ncRNAs with a length of 20 nucleotides that function
primarily to negatively regulate gene expression by binding to target RNAs and
inducing the degradation or inhibiting the translation of those RNAs[83].

The NF-κB and STAT3 signaling pathways play an important role in the trans-
formation  of  inflammation  into  cancer[13],  and  numerous  microRNAs  promote
transformation by participating in these signaling pathways. Slattery et al[84] analyzed
the expression profiles of genes and associated microRNAs in the NF-κB signaling
pathway between CRC and normal mucosa, providing new insight into therapeutic
targets for CRC. TNF-α has been shown to increase the expression of miR-105, which
targets RAP2C, activate NF-κB signal transduction by IKK, and ultimately contribute
to  CRC  progression[85].  Another  study  demonstrated  that  TNF-α  leads  to  high
expression of  miR-19a,  which can also  activate  NF-κB signaling to  facilitate  the
occurrence of colitis and CAC[86]. STAT3 not only is a downstream target of IL-6 but
also  interacts  with miR-21,  miR-181b-1,  PTEN,  and CYLD,  which implicates  the
epigenetic switch that links inflammation to cancer[87]. In addition, by activating miR-
21, NR2F2 inhibits Smad7 expression and promotes TGF-β-dependent epithelial-
mesenchymal transition (EMT) in CRC[88].  In primary CRC samples and cell lines,
increased  STAT3  expression  levels  are  accompanied  by  elevated  miR-572  and
decreased MOAP-1 levels, and miR-572 has been found to reduce the expression of
the proapoptotic protein MOAP-1 and to contribute to CRC progression[89]. Öner et
al[90] demonstrated that combined inactivation of TP53 and miR-34a promotes CRC
metastasis by elevating the levels of IL-6R and PAI1, implying that modifying these
processes might be alternative approaches to treat CRC. Immune cells play a dual role
in the occurrence and development of CRC, and natural killer (NK) cells promote
tumor cell apoptosis by secreting high levels of cytokines, such as IFN-γ and TNF-α[91].
The level of miR-24 was reported to be increased in NK cells from CRC patients, a
characteristic that decreased the levels of cytokines, including IFN-γ and TNF-α, by
suppressing Paxillin expression and inhibiting the cytotoxic effect of NK cells on CRC
cells[92].

MicroRNAs not only promote the transformation of inflammation into CRC but
also lead to chemotherapeutic resistance. For example, in CRC patients treated with
oxaliplatin,  miR-34a  expression  decreased  significantly  but  Smad4  and  TGF-β
expression increased. In addition, the expression levels of Smad4 and miR-34a were
negatively correlated in CRC patients. Further investigation demonstrated that miR-
34a targeted Smad4 through the TGF-β/Smad4 pathway and ultimately inhibited
cellular autophagy[93]. Ren et al found overexpression of miR-196b-5p in recurrent CRC
tissues, which was associated with a poor prognosis. Further investigation showed
that miR-196b-5p activated STAT3 signaling and promoted the chemical resistance of
CRC cells to 5-fluorouracil (5-FU) by targeting the negative regulators SOCS1 and
SOCS3 in the STAT3 signaling pathway[94]. Clarification of the role of microRNAs in
CRC resistance mechanisms can improve the efficacy of chemotherapy by targeting
the  corresponding  microRNAs.  Indeed,  microRNAs  overexpressed  during  the
transformation  of  inflammation  into  CRC  are  often  associated  with  disease
progression. In addition, certain microRNAs are silenced or downregulated during
the occurrence and development of  CRC; these microRNAs generally inhibit  the
transformation of inflammation into cancer. For instance, miR-148a, miR-6869-5p, and
miR-139-5p inhibit transformation by suppressing the NF-κB signaling pathway[95-97];
miR-1299, miR-149, and miR-214 inhibit tumor formation by suppressing the STAT3
signaling pathway[98-100]; and miR-329 inhibits CRC occurrence by targeting TGF-β1[101].
MiR15A and miR16-1,  which might  act  as  tumor suppressors,  were  found to  be
downregulated in CRC[102]. Animal experiments showed that deficiency of miR15A
and miR16-1 led to an accumulation of immunosuppressive IgA+ B cells in intestinal
cancer tissues, thereby inhibiting the proliferation and functions of CD8+ T cells with
antitumor immunity and ultimately promoting tumor progression[103].
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Figure 2

Figure 2  Histone methylation and acetylation modifications increase oncogene expression to promote cancer occurrence. CRC: Colorectal cancer.

Exosomal microRNAs
Exosomes are small  vesicles released by cells  into the extracellular environment.
These vesicles transmit information to adjacent or distant cells by transferring RNAs
and proteins, thus affecting signaling pathways in various physiological and path-
ological conditions[104,105]. Recently, microRNAs enriched in exosomes have been found
to interact with immune cells and proinflammatory cytokines and to participate in the
progression and metastasis of CRC. For example, exosome-mediated miR-200b was
indicated to promote the proliferation of CRC cells upon TGF-β1 exposure[106].  In
addition,  it  was  reported  that  the  level  of  miR-10b  was  significantly  higher  in
exosomes derived from CRC cells  than in  those  derived from normal  colorectal
epithelial cells and that CRC-derived exosomes could promote CRC progression[107].
Tumor-associated macrophages (TAMs), a biomarker of solid tumors, are usually
associated with a poor prognosis. A recent study has shown that CRC cells carrying
mutant p53 genes selectively shed miR-1246-enriched exosomes. These exosomes can
be captured by neighboring TAMs, which then secrete numerous proinflammatory
cytokines, such as IL-10, TGF-β, and MMPs, to promote the immune suppression,
invasion, and metastasis of CRC cells[108] (Figure 3, Table 1).

LNCRNAS
LncRNAs refer to noncoding transcripts of more than 200 nucleotides[109]. LncRNAs
are  important  participants  in  cancer  biology  and  generally  cause  the  abnormal
expression  of  gene  products,  leading  to  the  progression  of  various  human
tumors[110,111].  In addition, lncRNAs are involved in the transformation of chronic
inflammation into CRC. For example, a study indicated that the interaction between
lncRNA PRINS and miR-491-5p  regulated  the  proapoptotic  factor  PMAIP1  and
enhanced the antiapoptotic effect of TFF3 against the proapoptotic effects of IFN-γ
and TNF-α in CRC cells[112]. LncRNA FEZF1-AS1 expression was higher in CRC tissue
than in normal tissue and was associated with a poor prognosis in CRC. FEZF1-AS1
can bind to and increase the stability of the pyruvate kinase 2 (PKM2) protein, which
can increase PKM2 levels in the cytoplasm and nucleus and promote pyruvate kinase
activity and lactic acid production. Upregulation of nuclear PKM2 induced by FEZF1-
AS1 was found to further activate STAT3 signal  transduction and accelerate the
transformation of  inflammation to cancer[113].  In addition,  researchers found that
lncRNA  AB073614  induced  EMT  in  CRC  cells  by  regulating  the  JAK/STAT3
pathway[114].  Recent studies have shown that lncRNAs not only participate in the
transformation of inflammation to tumors but also induce the resistance of CRC to
chemotherapy by regulating inflammatory signaling pathways. Abnormal expression
of HOTAIR is positively correlated with progression, survival, and poor prognosis in
different types of cancers, such as breast cancer, gastric cancer, and CRC[115-117]. Li et
al[118] revealed that HOTAIR silenced the expression of the miR-218 gene by recruiting
EZH2  for  binding  to  the  miR-218  promoter.  Silencing  of  miR-218  resulted  in
chemotherapeutic resistance of CRC to 5-FU by promoting VOPP1 expression and
eventually activating the NF-kB/TS signaling pathway. HOTAIR can thus be used as
a novel prognostic indicator and therapeutic target for CRC. Inhibiting HOTAIR may
be a future approach to improve the sensitivity of 5-FU chemotherapy (Figure 4, Table
2).
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Table 1  MicroRNAs regulate inflammation and occurrence of colorectal cancer

MicroRNAs Target genes Functions in CRC

MiR-105, miR-19a, NF-κB Promoted CRC progression

MiR-21, miR-181b-1, miR-572 STAT3 Promoted CRC progression

MiR-21, miR-200b, miR-1246 TGF-β Promoted proliferation

MiR-34a IL-6R/PAI1 Promoted CRC progression

MiR-24 IFN-γ/TNF-α Inhibited the cytotoxic effect of NK cells

MiR-34a TGF-β/Smad4 Inhibited autophagy

MiR-196b-5p STAT3 Promoted chemical resistance

MiR-148a, miR-6869-5p, miR-139-5p NF-κB Inhibited CRC occurrence

MiR-1299, miR-149, miR-214 STAT3 Inhibited tumor formation

MiR-329 TGF-β1 Inhibited CRC occurrence

CRC: Colorectal cancer; NK: Natural killer.

ANTI-INFLAMMATORY AGENTS AND CRC
Due to the inflammatory basis of CRC, anti-inflammatory agents may be candidates
for treating or preventing the disease. NSAIDs are non-selective inhibitors of COX-
2[119]. COX-2 is highly expressed in many tumor types, including CRC[120]. NSAIDs play
a striking role in the prevention of CRC. A preliminary study on patients with familial
adenomatous polyposis  indicated that  after  1  year of  treatment with the NSAID
sulindac,  patients  tended  to  exhibit  a  decrease  in  polyps[121].  A  large-scale  ob-
servational study in 1991 reported that the use of NSAIDs reduced the risk of fatal
CRC[122]. Retrospective studies have demonstrated that NSAID treatment is associated
with a decreased risk of  recurrence of  colorectal  polyps and tumors.  It  has been
reported  that  patients  who  use  low-dose  aspirin  for  more  than  5  years  show  a
decrease in overall risk of CRC by 40%-50%, and NSAIDs have a positive effect on
advanced CRC[123,124]. NSAID therapy can also inhibit the tumor-promoting pathway
by inhibiting Wnt signaling[125].  However, a meta-analysis of NSAID treatment to
prevent the transformation of IBD into CRC shows that there is a lack of high-quality
evidence that anti-inflammatory drugs can be used to prevent CRC in patients with
IBD[126]. Most scholars believe that the anti-tumor mechanism of NSAIDs is reflected in
two aspects. On the one hand, the cytokines released during inflammation play an
important role in reprogramming adult stem cells into malignant cells, and NSAIDs
can prevent this process[127]. On the other hand, the mechanism is related to activation
of the Wnt pathway by prostaglandins[128]. However, the side effects of NSAIDs must
be taken into consideration. NSAID treatment can increase the risk of gastrointestinal
bleeding, even at low doses[129]. Caution should be exercised to prevent bleeding when
using anti-inflammatory drugs in patients with fragile blood vessels[130]. In addition to
NSAIDs, monoclonal antibodies to cytokines such as IL-6 and TNF inhibitors have
been investigated in a large number of anti-tumor studies, but most of them are still in
the experimental stage[131,132]. The treatment hazard of using anti-cytokines to treat
tumors is the increase in the risk of infection[133,134].

CONCLUSION
In conclusion, chronic inflammation can promote the occurrence and progression of
CRC, a finding that is attracting increased attention to the role of proinflammatory
cytokines and immune cells in cancer. By regulating the expression of various in-
flammatory  signaling  pathways  and  proinflammatory  cytokines,  epigenetic
inheritance not only participates in the transformation of inflammation into CRC but
also facilitates CRC invasion, metastasis, and drug resistance. However, epigenetic
inheritance  accelerates  the  transformation  of  chronic  inflammation  into  tumors
through various modifications influenced by the inflammatory environment. An in-
depth understanding of this process will allow us to clarify the pathogenesis of CRC,
and some epigenetic modifications can be used as markers for CRC diagnosis. Unlike
gene mutations, which are irreversible, epigenetic inheritance is reversible or can be
altered by interventions. For example, DNA demethylation promotes tumor sup-
pressor gene expression to re-establish tumor prevention and reduce expression of
pro-inflammatory  cytokines  by  regulation  of  histone  modifications  or  ncRNAs,
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Figure 3

Figure 3  MicroRNAs regulate colorectal cancer progression by regulating inflammatory cytokines. CRC:
Colorectal cancer; TNF-α: Tumor necrosis factor α; TGF-β: Transforming growth factor β.

ultimately reducing inflammation infiltration of tumor microenvironment. In the
future, this new anti-tumor drug may be used in combination with immunotherapy,
chemotherapy, and targeted cancer therapy for the treatment of CRC. Exploring the
role of epigenetics in the transformation of inflammation into CRC may help stimulate
futures studies on the role of molecular therapy in CRC.
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Table 2  LncRNAs regulate the inflammation-cancer transformation

LncRNA Target genes Functions in CRC

PRINS miR-491-5p/PMAIP1/TFF3 Inhibited apoptosis

FEZF1-AS1 PKM2/STAT3 Accelerated CRC occurrence

AB073614 JAK/STAT3 Induced EMT

HOTAIR MiR-218/EZH2/NF-kB Chemotherapeutic resistance

CRC: Colorectal cancer; EMT: Epithelial-mesenchymal transition.

Figure 4

Figure 4  LncRNAs regulate the occurrence and chemotherapeutic resistance of colorectal cancer by mediating microRNAs/inflammatory signaling
pathways. CRC: Colorectal cancer; EMT: Epithelial-mesenchymal transition; JAK: Janus kinase.
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