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Abstract
Mesenchymal stem cells (MSCs) are adult stem cells harboring self-renewal and
multilineage differentiation potential that are capable of differentiating into
osteoblasts, adipocytes, or chondrocytes in vitro, and regulating the bone marrow
microenvironment and adipose tissue remodeling in vivo. The process of fate
determination is initiated by signaling molecules that drive MSCs into a specific
lineage. Impairment of MSC fate determination leads to different bone and
adipose tissue-related diseases, including aging, osteoporosis, and insulin
resistance. Much progress has been made in recent years in discovering small
molecules and their underlying mechanisms control the cell fate of MSCs both in
vitro and in vivo. In this review, we summarize recent findings in applying small
molecules to the trilineage commitment of MSCs, for instance, genistein,
medicarpin, and icariin for the osteogenic cell fate commitment; isorhamnetin,
risedronate, and arctigenin for pro-adipogenesis; and atractylenolides and
dihydroartemisinin for chondrogenic fate determination. We highlight the
underlying mechanisms, including direct regulation, epigenetic modification, and
post-translational modification of signaling molecules in the AMPK, MAPK,
Notch, PI3K/AKT, Hedgehog signaling pathways etc. and discuss the small
molecules that are currently being studied in clinical trials. The target-based
manipulation of lineage-specific commitment by small molecules offers
substantial insights into bone marrow microenvironment regulation, adipose
tissue homeostasis, and therapeutic strategies for MSC-related diseases.

Key words: Mesenchymal stem cell; Mesenchymal stromal cell; Cell fate determination;
Small molecules; Natural compounds; Signaling pathways
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Core tip: Mesenchymal stem cells (MSCs), also called MSCs, are adult stem cells with
multilineage differentiation potential. They serve crucial physiological roles, regulating

WJSC https://www.wjgnet.com December 26, 2019 Volume 11 Issue 121084

https://www.wjgnet.com
https://dx.doi.org/10.4252/wjsc.v11.i12.1084
http://orcid.org/0000-0002-7472-8518
http://orcid.org/0000-0002-3645-0324
http://orcid.org/0000-0003-4190-0913
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:bianqin213@126.com
mailto:bianqin213@126.com


S-Editor: Tang JZ
L-Editor: A
E-Editor: Ma YJ

the bone marrow microenvironment and adipose tissue remodeling in vivo. A complex
regulatory network and signaling pathways are involved in governing MSC fate
commitment. Much progress has been made in recent years in discovering small
molecules and their underlying mechanisms that control the cell fate of MSCs. In this
review, we summarize recent findings in applying small molecules to the trilineage cell
fate commitment of MSCs, highlighting the underlying mechanisms and the current
clinical trials. The small molecules for MSC fate determination offer substantial insights
into bone marrow and adipose tissue homeostasis and therapeutic strategies for MSC-
related diseases.

Citation: Cheng YH, Dong JC, Bian Q. Small molecules for mesenchymal stem cell fate
determination. World J Stem Cells 2019; 11(12): 1084-1103
URL: https://www.wjgnet.com/1948-0210/full/v11/i12/1084.htm
DOI: https://dx.doi.org/10.4252/wjsc.v11.i12.1084

INTRODUCTION
Mesenchymal stem cells (MSCs) are a rare cell population originally identified in the
bone marrow stroma[1]. In addition to bone marrow, MSCs have been isolated from a
multitude  of  adult  tissues,  such  as  adipose  tissue[2],  synovial  membrane[3],  and
umbilical cord blood[4]. MSCs exhibit distinctive stem cell properties of self-renewal
and multipotency defined by the International Society for Cellular Therapy as the
competence of differentiation into three mesodermal lineage cells,  which are the
osteocytes,  the  adipocytes  and the chondrocytes  in  vitro[5-7].  Beyond well-known
trilineage differentiation potential, MSCs have also been reported to be capable of
differentiating into other cell types[8], including endothelial cells[9,10], hepatocytes[11-13]

and neurons [14,15].
The physiological role of MSCs has been widely investigated in both bone marrow

and adipose  tissue.  The  bone  marrow MSCs  (BM-MSCs)  lie  in  the  perivascular
region[16,17], and replenish osteoblasts and adipocytes that govern early hematopoiesis
with opposing effects[18,19]. An imbalanced ratio of adipocytes and osteoblasts in the
bone  marrow  is  found  in  several  pathological  conditions,  such  as  aging  and
osteoporosis, which is the most common bone disorder and presents an increased
ratio of marrow fat content[20]. The physiological role of adipose tissue-derived MSCs
(AD-MSCs), which are isolated from the stromal vascular fraction of adipose tissue,
has also been widely explored[21]. AD-MSCs are the cardinal regulators that govern
adipogenesis in adipose tissue and play a critical role in metabolic homeostasis[22].
Impairment of AD-MSCs affects adipose tissue remodeling and expansion, which
leads to obesity-associated insulin resistance and increases the risk of cardiovascular
diseases[23,24].  Understanding the mechanisms and conceiving a better regimen to
control MSC fate in vitro and in vivo will not only advance the translation of stem-cell-
based treatment approaches into clinical treatment but also facilitate the development
of  novel  therapeutic  strategies  for  shaping the bone marrow microenvironment,
adipose tissue remodeling and managing MSC-related bone and metabolic diseases.

The fate determination of MSCs is controlled by several intrinsic factors, such as
regulation  of  signaling  pathways[20],  activation  of  lineage-specific  transcription
factors[25-27]  and  epigenetic  modification[28-30],  which  can  be  governed  by  diverse
extrinsic factors. The extrinsic factors, including mechanical induction[31,32], growth
factors, and small molecules, deliver signal cues and activate downstream signaling
pathways to guide the fate commitment of MSCs. Small molecules are one of the
earliest  approaches  that  researchers  used  to  modulate  cell  fate  and  function  of
MSCs[33].  Small  molecules not only have distinct manipulative features -  fast and
reversible,  providing  precise  control  in  compared  with  genetic  or  epigenetic
strategies[34] but also have discrete functional groups that are modifiable for future
large-scale screening and biopharmaceutical application.

Investigations into the effect of small molecules on the fate determination of MSCs
will undoubtedly offer insights into bone marrow microenvironment regulation and
therapeutic strategies for pathological conditions such as obesity, osteoporosis, and
aging. Recent studies based on traditional treatment strategies or large-scale screening
allow the identification of many candidates that regulate the cell fate of MSCs. In this
article, we review the small molecules that modulate the fate determination of MSCs
through the PubMed literature searches (last search conducted on March 23, 2019),
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and summarize their underlying mechanisms (Table 1).

SMALL MOLECULES REGULATE MSCS OSTEOGENIC CELL
FATE
Osteogenic  differentiation of  MSCs is  commonly induced by the small  molecule
supplements of ascorbic acid, β-glycerophosphate, and dexamethasone, resulting in
an  increase  in  alkaline  phosphatase  (ALP)  activity  and  calcium  deposition[7,35].
Ascorbic acid and β-glycerophosphate increase type I collagen secretion and stimulate
the formation of hydroxyapatite-rich mineralized matrix[7]. Dexamethasone induces
the expression of osteogenic-associated genes, including runt-related transcription
factor 2 (Runx2), Osterix, and bone matrix proteins. Runx2 is the master regulator of
osteoblastic commitment.  The Runx2 expression is  controlled by many signaling
pathways; among them, the BMP, Wnt, and Notch signaling pathways are the major
cascades that promote both Runx2 expression and osteogenesis[36]. In this section, we
will review the small molecules that affect the osteogenic commitment of MSCs based
on their mechanisms (Figure 1).

BMP signaling pathway
BMPs are growth factors belonging to the transforming growth factor beta (TGF-β)
superfamily. Upon ligand binding, the BMP receptors form an activated quaternary
complex,  which  subsequently  phosphorylates  and  activates  intracellular  Smad
proteins  and downstream cascades.  The detailed mechanisms of  BMP-mediated
osteogenesis are not well-characterized; however,  BMP triggers MSCs to express
downstream osteogenic genes, such as ALP and type I collagen (Col I)[37]. Many small
molecules have been identified to exert their osteogenic effect on MSCs by interfering
with  the  BMP  signaling  pathway.  Some  examples  include  genistein,  Solanum
muricatum extract[38], Herba epimedii extract[39], malvidin[40], T63 and osthole[41-43].

Genistein is a phytoestrogen enriched in soybean products. Dai et al[44] showed that
genistein promoted osteogenic differentiation of human BM-MSCs through BMP-
dependent SMAD signaling. A concentration ranging from 0.1 to 10 μmol/L Genistein
was tested, and the osteogenic stimulations were statistically significant at 0.1 and 1
μmol/L with the highest  ALP activity at  1  μmol/L.  The gene expression profile
showed that osteogenic genes, such as Runx2 and osteocalcin, were highly expressed
in  genistein-treated  cells  compared  with  untreated  cells.  In  addition,  the  BMP
signaling  pathway  related  mediators  were  upregulated,  while  BMP  signaling
pathway inhibitors such as SMAD6 and 7 were downregulated[44]. Soybean products
have been reported to prevent bone loss in ovariectomy-induced (OVX) osteoporotic
mice  in  the  1990s,  the  Dai  et  al[45]  study provided a  possible  explanation for  the
underlying mechanism. A clinical trial was carried out to assess the effect of genistein
on osteopenic postmenopausal women. The results demonstrated an increase in bone
mineral density at both the anteroposterior lumbar spine and the femoral neck[46].
However, the study didn’t calculate the fracture rate, so more concrete evidence is
needed to evaluate the osteoprotective effect of genistein.

Zhao  et  al[47]  identified  a  small  molecule,  named  as  T63,  by  high-throughput
screening with the Runx2-responsive 3T3 luciferase cell line. Through ALP activity
validation, treatment of T63 showed the most significant increase compared with
other screening molecules. The addition of T63 to the osteogenic induction media
during C3H10T1/2 cell differentiation showed an upregulation of osteogenic genes,
including Runx2, Bglap, and Spp1. When T63 was added to the adipogenic induction
medium,  the  adipogenic  markers,  including  Pparγ2,  Srebf1,  and  Fabp4,  were
significantly suppressed. Treatment with T63 upregulated the expression levels of the
Bmp2,  Bmp4 and Bmp7 genes  in  the  BMP signaling pathway and increased the
phosphorylation of the BMP downstream mediators Smad1/5/8 in a dose-dependent
manner. Meanwhile, the phosphorylation of GSK-3β, an upstream regulator of β-
catenin in the Wnt signaling pathway, also increased, indicating that T63 was also
involved in the regulation of the Wnt signaling pathway. The addition of the BMP
signaling pathway inhibitor Noggin or the Wnt signaling pathway inhibitor DKK-1
reduced the osteogenic effect of T63, confirming that T63 exerted an osteoinductive
effect via the BMP and Wnt pathways. In the OVX mouse model, after three mo of a
dose of 5 mg/kg or 20 mg/kg T63 increased both the bone mineral density and the
bone mineral content in femurs and lumbar vertebrae, suggesting that T63 promoted
bone formation in vivo.

Wnt signaling pathway
The Wnt signaling pathway has been shown to play a critical role in bone formation
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Table 1  Selected Small molecules in controlling mesenchymal stem cells fate

Small molecules Origin/Natural
source Effect Pathway/Targets Experimental

model and dose Comments Ref.

5-azacytidine Synthetic Anti-adipogenic Inhibit DNA
methyltransferase

ST2 cells (0.5
μmol/L)

Reduce expression
level of PPARγ, aP2,
FAS and C/EBPα

[13,8]

8-HUDE Synthetic Anti-adipogenic Activate HO-1
pathway

Human BM-MSCs (1
μmol/L)

Reduce expression
level of Fas, Pparγ,
and Cebpα

[132]

Albiflorin Paeonia lactiflora Beige-
Adipoinductive

Activate AMPK,
PI3K/AKT/mTOR
pathways

Human AD-MSCs
(5, 10, 20 μmol/L)/
HFD mice (5 mg/kg
per day, in an
unknown solvent,
orally)

Cell viability
decrease when AF
exceeds 20 μmol/L.
Induce expression of
thermogenic marker
Ucp1.

[126]

Arctigenin Arctii fructus,
Forsythia fruit

Anti-adipogenic Activate AMPK
pathway

Human AD-MSCs
(10, 50, 100
μmol/L)/HFD mice
(50 mg/kg per day,
in 10% DMSO,
orally)

Cell viability was
not affected by ARC.

[125]

Atractylenolides Atractylodis
macrocephalae

Chondroinductive Activate Shh
pathway

Rat BM-MSCs (10,
100, 500 μg/mL)

Induce Sox9 collagen
type II and aggrecan
expression

[149]

AUDA Synthetic Anti-adipogenic Activate HO-1
pathway

Human BM-MSCs (1
μmol/L)

Reduce expression
level of Fas, Pparγ,
and Cebpα

[132]

Baicalin Scutellaria
baicalensis

Osteoinductive Activate Wnt
pathway

Rat BM-MSCs (0.1,
0.5, 1, 5, 10, 50
μmol/L)/ Radix
Scutellariae extract
(2 and 50 mg/kg per
day, orally)

Enhance ALP
activity

[54,55]

Cordycepin Cordyceps militaris Osteoinductive Activate Wnt
pathway

Human BM-MSCs
with H2O2 treatment
(1, 5, 10, 20, 40, 80
μg/mL)/ Human
BM-MSCs with
ethanol treatment/
rat alcohol-induced
osteonecrosis of the
femoral head model
(10 mg/kg per day
in saline
intraperitoneal)

Induce osteogenic
markers osteopontin
and collagen type I
expression

[59,61]

Cyanidin-3-O-
glucoside

Black rice Anti-adipogenic Activate Wnt
pathway

C3H10T1/2 cells
(black rice extract 10,
20, 40, and 80 μg/
mL)/ HFD mice
(black rice extract
10% corn oil and
90% water, 100
mg/kg per day,
orally)

Induce Wnt-specific
target genes such as
Axin2, Wisp2, and
Cyclin d1

[114]

Dihydroartemisinin Artemisia apiacea Anti-chondrogenic Activate Notch
pathway

C3H10T1/2 cells (1,
10, 50, 200, 300
μmol/L)

Suppress Sox9,
COMP and Col2a1
expression

[151]

Er-Xian Decoction
extracts

Er-Xian Decoction Osteoinductive Activate
MAPK/ERK
pathway

OVX mice (30g/kg
per day, orally)/
Mice BM-MSCs
(isolated from OVX
and treated mice)

Elevate ALP activity.
[94]

Ethanol Alcohol Anti-osteogenic Inhibit TGFβ
pathway

MSCs (25 mmol/L)/
Tibial fracture mice
(20% in saline,
intraperitoneal)

Inhibit Col I and
Sox9 expression

[62]

Genistein Soybean Osteoinductive Activate BMP
pathway

Human BM-MSCs
(10 -0.01 μmol/L,
MAX at 1 μmol/L)

Induce Runx2 and
osteocalcin
expression, inhibit
BMP pathway
inhibitor SMAD6, 7

[44]
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Ginkgo biloba
extract

Ginkgo biloba Adipoinductive
Osteoinductive

Activate BMP and
Wnt pathways

Mouse BM-MSCs
(50, 100, 150, 200,
400 μg/mL)/
human BM-MSCs
(25, 50, 70, 100)

Induce Runx2, Col
1a1 and BMP-2
experssion

[64,65]

Ginkgolic acid Ginkgo biloba Adipoinductive Inhibit sumoylation Mouse BM-MSCs (50
μmol/L)

Promote adipogenic
commitment and
inhibit adipocyte
terminal maturation.

[136]

Icariin Herba epimedii Osteoinductive Activate MAPK,
BMP, WNT and
PI3K/AKT pathway

MC3T3-E1 cells, rat
BM-MSCs (0.0001,
0.001, 0.01, 0.1, 1, 10
μmol/L; 5, 10, 20, 40
μmol/L)/ OVX rats
(150 mg/kg in
saline, orally)

Induce Runx2,
BMP4, and Col I
expression

[88,89,90,92]

Isorhamnetin Sea buckthorn Anti-adipogenic Activate Wnt
pathway

Human AD-MSCs
(1, 25 μmol/L)

Downregulate Wnt
antagonist Sfrp1 and
Dkk1

[113]

Medicarpin Medicago truncatula Beige-
Adipoinductive

Activate AMPK
pathway

C3H10T1/2 cells
(10μmol/L)

Induce expression of
thermogenic marker
Ucp1.

[121]

Osteoinductive Activate Wnt and
Notch pathways

OVX mice (1 mg or
10 mg/kg per day,
orally)/ OVX + Drill
hole mice (0.5, 1
mg/kg per day,
orally)

Induce Runx2,
Osteocalcin and
TGF-β expression

[57,58]

Naringin Rhizoma Drynariae Osteoinductive Activate AMPK and
AKT pathway

Human BM-MSCs
(1, 10, 100 μg/mL)/
OVX mice (0, 0.5, 1,
5 and 10 mg/kg per
day, orally)

Induce osteocalcin,
collagen type I,
osteopontin and
ALP expression.

[81,82]

N-methyl
pyrrolidone

Synthetic Anti-adipogenic Inhibit Brd4 Human BM-MSCs
(5, 10 mM)/ OVX
mice (10.5 mM/100
g/wk,
intraperitoneal
injection)

Reduce PPARγ
expression level

[140]

Oleanolic acid Glossy privet Osteoinductive Activate Notch
pathway

Rat BM-MSCs (1, 10,
100 μmol/L) / OVX
mice (2 wks, 3 mo,
dissolve in normal
saline, 20 mg/kg per
day, orally)

KEGG analysis on
differential gene
patterns

[69]

Peonidin-3-O-
glucoside

Black rice Anti-adipogenic Activate Wnt
pathway

C3H10T1/2 cells
(black rice extract 10,
20, 40, and 80 μg/
mL)/ HFD mice
(black rice extract in
10% corn oil and
90% water, 100
mg/kg per day,
orally)

Induce Wnt-specific
target genes such as
Axin2, Wisp2, and
Cyclin d1

[114]

Plastrum testudinis
extracts

Plastrum testudinis Osteoinductive Activate PI3K/AKT
pathway

Rat BM-MSCs (0.03,
0.3, 3, 30, 300
μg/mL)/
Dexamethasone
induced
osteoporosis rat (30
mg/kg per day,
subcutaneous
injection)

Induce β-catenin,
Runx2 and
osteocalcin
expression

[76,77]

Platycodin D Platycodi radix Anti-adipogenic
Beige-
Adipoinductive

Activate AMPK
pathway

Human AD-MSCs
(0.5-5 μmol/L)/
db/db mice (2, 5
mg/kg per day)

Suppress adipogenic
genes, such as
Pparγ, Cebpα,
Fabp4, Adipoq, and
Resistin

[127]

Psoralen Psoralea corylifolia Anti-adipogenic
Osteoinductive

Activate Notch
pathway

Rat BM-MSCs (?
μmol/L) / OVX
mice (2 wks, 3 mo,
dissolve in normal
saline, 20 mg/kg per
day, orally)

KEGG analysis on
differential gene
patterns

[68]
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Psoralidin Psoralea corylifolia Anti-adipogenic
Osteoinductive

Activate PI3K/AKT
pathway

OVX rat (in sesame
oil, 10 mg/kg per
day, orally)

Promote osteogenic
differentiation of
BM-MSCs isolated
from the treated
OVX mice

[78]

Resveratrol Wine, grape Osteoinductive Activate
MAPK/ERK
pathway

Human BM-MSCs
(0.01, 0.1, 1, 10, 100
μmol/L)

Induce Runx2,
osterix and
osteocalcin
expression

[96]

Risedronic acid Synthetic Anti-adipogenic Inhibit
PI3K/AKT/mTOR
pathway

Human BM-MSCs
(1, 5, 10, 25 μmol/L)

Inhibit mTOR1
downstream effector
S6 phosphorylation

[118]

Salvianolic acid B Salvia miltiorrhiza Osteoinductive Activate
MAPK/ERK
pathway

Rat BM-MSCs (50,
100, 500, 1000
nmol/L)/ Steroid
induced
osteoporotic rat (40,
80 mg/kg per day)

Enhance ALP
activity and
osteocalcin
expression

[101,102]

SKL2001 Synthetic Osteoinductive Activate Wnt
pathway

ST2 cells (5, 10, 30
μmol/L)

Stabilize β-catenin
without affecting
expression level

[63]

T63 Synthetic Anti-adipogenic
Osteoinductive

Activate BMP and
Wnt pathway

C3H10T1/2 (1-40
μmol/L)/ OVX mice
(5 mg/kg and 20
mg/kg, orally)

Induce Runx2, Bglap
and, Spp1
expression.

[47]

Tithonia
diversifolia extracts

Tithonia diversifolia Anti-adipogenic Activate HO-1
pathway

Human AD-MSCs
(175 μg/mL)

Oil red staining
quantitatively
decrease in a
dosage-dependent
manner

[130]

Tricin Rice bran Osteoinductive Activate Wnt
pathway

Human AD-MSCs
(5, 10, 15, 20, 25
μmol/L)

Induce bone
sialoprotein,
osteocalcin, ALP,
Runx2, Col I, osterix,
osteopontin

[53]

8-HUDE: 12-(3-hexylureido) dodec-8(Z)-enoic acid; ALP: Alkaline phosphatase; AUDA: 12-(3-adamantan-1-yl-ureido)-dodecanoic acid; AD-MSCs:
Adipose-derived mesenchymal stem cell; BM-MSCs: Bone marrow mesenchymal stem cell; HFD: High-fat diet; OVX: Ovariectomy; Runx2: Runt-related
transcription factor 2; TGF-β: Transforming growth factor beta; Col I: Type I collagen; KEGG: Kyoto encyclopedia of genes and genomes; AMPK: AMP-
activated protein kinase.

and osteogenic differentiation of MSCs. Upon Wnt proteins binding to the frizzled
(Fzd) receptors, the canonical Wnt signaling pathway is activated, and cytoplasmic β-
catenin is stabilized via glycogen synthase kinase-3 (GSK3) inhibition[48,49]. β-catenin
accumulates in the cytosol and subsequently translocates to the nucleus, where it
promotes  the  transcription  of  target  genes[50].  Activation  of  the  canonical  Wnt
signaling pathway upregulates  the gene expression of  the osteogenic  regulators
Runx2, Dlx5, and Osterix[51] and suppresses the expression of the adipogenic inducers
Pparγ and Cebpα[52]. The small molecules that affect the osteogenic cell fate of MSCs
via the Wnt signaling pathway include medicarpin, cordycepin, SKL2001, tricin[53],
baicalin[54,55], Ginkgo biloba extracts (GBE), and Fructus ligustri extracts[56].

Medicarpin  (Med),  a  pterocarpan compound,  is  present  in  many leguminous
species, such as chickpea and Butea monosperma. Tyagi et al[57]  demonstrated the
osteoprotective effect of Med on OVX osteoporotic rats. Med was given at a dosage of
1mg or 10 mg/kg per day. MicroCT revealed that the osteoporotic phenotype was
significantly improved under the Med treatment, giving a higher total trabecular
volume and number. With Med administration, BM-MSCs isolated from the treated
OVX  rats  presented  a  superior  mineralization  level  under  osteogenic  medium
induction compared with the BM-MSCs from the untreated rat[57]. Another study used
the OVX drill-hole injury animal model to assess the regenerative effect of Med in
vivo.  The OVX rats underwent the dill-hole procedure at  the sites of  femur mid-
diaphysis and received treatment of 0.5, 1 or 5 mg/kg of Med. The results showed
that  Med  administration  not  only  increased  the  bone  mineral  density  but  also
upregulated several osteogenic markers, including Runx2 and osteocalcin. The gene
expression profile comparison demonstrated the effect to be mediated by both the
canonical  Wnt  and  the  Notch  signaling  pathways,  evidenced  by  the  increased
expression level of Wnt signaling pathway mediators β-catenin, Dishevelled and Fzd,
and the Notch signaling pathway mediators  Notch-1  and Jagged-1  at  the  defect
region[58].
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Figure 1

Figure 1  Small molecules guiding mesenchymal stem cell osteogenic cell fate determination. Wnt, BMP, and Notch signaling cascades are the three major
pathways governing the expression of the master regulator runt-related transcription factor 2 during mesenchymal stem cell (MSC) osteogenic commitment. The
activation of Wnt, Notch and BMP signaling pathways by small molecules promotes the osteogenesis of MSCs. The MAPK and PI3K/AKT signaling pathways interfere
with GSK3 phosphorylation and β-catenin degradation and therefore exert an effect on osteogenesis. The AMP-activated protein kinase pathway has also recently
been shown to be involved in osteogenic regulation. AMPK: AMP-activated protein kinase.

Cordycepin is one of the major compounds of Cordyceps militaris. Wang et al[59]

showed that cordycepin prevented oxidative stress-induced inhibition of osteogenesis
through activation of the Wnt signaling pathway. The H2O2-induced inhibition of
human BM-MSC osteogenesis was used as the baseline, and treatment with 10 μg/mL
cordycepin reversed the osteogenic dysfunction with the increase in ALP staining and
mineralization. The osteogenic genes osteopontin and Col I were upregulated under
cordycepin  treatment,  while  the  osteoclast  promoting  agent  RANKL  was
downregulated.  The  H2O2  negatively  regulated the  Wnt  signaling  pathway,  but
cordycepin treatment  recovered the downregulation[60].  The addition of  the Wnt
signaling pathway inhibitor DKK1 reduced the osteoinductive effects of cordycepin
on ALP activity, calcium quantification, and Runx2 expression, confirming that Wnt
signaling was involved in exerting the osteoprotective effect of cordycepin[59].

The osteoprotective effect of cordycepin has also been examined in alcohol-induced
osteonecrosis by using both in vitro and in vivo models. Chen et al[61]demonstrated the
osteoinductive effect of cordycepin on human BM-MSCs under ethanol treatment.
Previous  studies  have  shown  that  ethanol  treatment  impaired  the  osteogenic
differentiation of BM-MSC[62]. The cordycepin treatment at a dose of 1 or 10 μg/mL
attenuated the osteogenic  inhibitory effect  of  ethanol.  The rat  model  of  alcohol-
induced osteonecrosis of the femoral head (ONFH) was established to assess the effect
of cordycepin in vivo. Intraperitoneal injection of Cordycepin at a dose of 10 mg/kg
per  day  decreased  the  development  rate  of  ONFH  from  70%  to  20%,  and  both
trabecular  volume  and  thickness  were  significantly  increased  by  cordycepin
treatment[61].

Gwak et al[63]  performed a cell-based chemical screening assay with a library of
270000 small molecules on HEK293 reporter cells and identified a compound named
as SKL2001 that strongly stimulated the Wnt signaling pathway. When SKL2001 was
added, the ST2 BM-MSC cell line expressed higher levels of type I collagen and Runx2
under osteogenic induction. The ALP activity also increased in a dosage-dependent
manner. Assessment of Wnt signaling pathway mediators revealed that SKL2001
enhanced the protein expression level of both cytoplasmic and nuclear β-catenin
without affecting the RNA expression level, suggesting SKL2001 was involved in the
protein degradation of β-catenin. The subsequent findings that SKL2001 inhibited the
phosphorylation  of  β-catenin  and hindered the  interaction  of  β-catenin  with  its
degradation  mediator  β-TrCP  confirmed  that  SKL2001  affected  the  osteogenic
commitment of MSCs by stabilizing β-catenin.

GBE was shown by Wu et al[64] to enhance osteogenic differentiation and inhibit
adipogenic differentiation in murine BM-MSCs. The addition of 150 μg/mL GBE into
osteogenic differentiation medium prominently enhanced both calcium deposits and
ALP activity. The expression levels of the osteogenic markers Runx2, Col 1, and BMP-
2 were upregulated, whereas GBE treatment decreased lipid accumulation in the
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differentiated adipocytes and suppressed the expression levels of the adipogenic
genes Pparγ and Fabp4. The osteoprotective effect was also examined in human BM-
MSCs, whose results were similar to murine BM-MSCs, showing an increase in ALP
activity and upregulation in the expression of the osteogenic genes osteopontin and
Col I.  A loss-of-function assay was performed to identify the signaling pathway
involved in the GBE treatment. When the Wnt or the BMP signaling pathway was
inhibited, the ALP activity under GBE treatment decreased significantly, confirming
that  GBE  exerted  its  effect  through  regulation  of  both  Wnt  and  BMP  signaling
pathways[65].

Notch signaling pathway
Notch  signaling  is  a  highly  conserved  signaling  pathway  related  to  cell-fate
determination, self-renewal potential, and apoptosis[66]. Induction of Notch signaling
enhances the osteogenic differentiation of human BM-MSCs and inhibits adipogenic
commitment[67]. The small molecules that are involved in osteogenic differentiation of
MSCs by regulating the Notch signaling pathway are psoralen (PSO) and oleanolic
acid (OA).

PSO is the active ingredient of Psoralea corylifolia, which is commonly prescribed for
treating fractures, bone diseases and joint diseases in traditional Chinese medicine. To
elucidate the osteoprotective mechanism of PSO, we investigated the effects of PSO on
adipogenic and osteogenic differentiation of rat BM-MSCs. In the OVX osteoporotic
rats, PSO significantly increased trabecular number and thickness. The in vitro assays
demonstrated that PSO inhibited adipogenic differentiation and promoted osteogenic
differentiation.  Using  the  Kyoto  Encyclopedia  of  Genes  and  Genomes  (KEGG)
pathway analysis on the microarray data, the differentially expressed genes were
highly  enriched in  the  Notch signaling pathway,  suggesting that  PSO exerts  its
osteogenic effect via the Notch signaling pathway[68].

OA isolated from glossy privet was reported to prevent bone loss by inhibiting
osteoclast formation. We discovered that OA not only affected osteoclastogenesis but
also stimulated the osteoblastic  differentiation of  BM-MSCs in  vitro.  In  the OVX
osteoporotic rats, administration of OA at a dosage of 20 mg/kg per day significantly
increased  the  trabecular  number  and  thickness.  The  expression  levels  of  both
osteocalcin  and  Runx2,  which  are  markers  for  bone  formation  and  osteogenic
differentiation,  also  increased  compared  with  untreated  mice.  KEGG  pathway
analysis  of  the  differentially  expressed genes  revealed that  the  Notch  signaling
pathway is involved in the osteogenic effect of OA[69].

PI3K/AKT signaling pathway
Insulin-like growth factor  1  (IGF-1)  is  an important  osteogenic  regulator  during
skeletal  development.  IGF-1  receptor  autophosphorylation  occurs  under  IGF-1
stimulation and subsequently activates downstream PI3K/AKT and MAPK signaling
pathways[70,71]. Previous studies have shown that loss of IGF-1 receptors could lead to
retardation of skeletal development and defects in trabecular bone[72,73]. Evidence has
shown that the PI3K/AKT pathway is among the most critical signaling pathways for
osteogenic differentiation and bone growth[74,75]. The small molecules that regulate
MSC osteogenesis  through that  PI3K/AKT signaling  pathway include  Plastrum
testudinis extracts (PTE) and psoralidin.

Plastrum testudinis is an herbal medication commonly used in traditional Chinese
medicine for treating bone diseases. Liang et al[76]demonstrated that injecting PTE into
the steroid-induced osteoporosis rat at a dosage of 30 mg/kg per day improved not
only the histological features, promoting a more orderly trabecular structure, but also
the  biomechanical  properties,  promoting  bone  strength  and  energy  absorption
capacity compared with untreated rats. The underlying osteoprotective mechanism of
PTE was further investigated by Shen et al[77], who demonstrated that PTE promoted
BM-MSC proliferation and osteogenic differentiation. Five different concentrations,
0.03,  0.3,  3,  30  and  300  μg/mL,  were  tested  in  the  study.  The  ALP activity  and
mineralization of differentiated cells increased in a dosage-dependent manner. The
osteogenic genes, including β-catenin, Runx2, and osteocalcin, were all upregulated.
The study also revealed that PTE promoted p-PI3K, p-AKT, and p-GSK3β protein
expression  during  osteogenesis,  indicating  that  the  effect  of  PTE on  osteogenic
differentiation was dependent on the PI3K/AKT signaling pathway.

Psoralidin is a compound enriched in the seeds of Psoralea corylifolia. Zhai et al[78]

found that administration of 10 mg/kg per day of psoralidin could prevent bone loss
in  the  OVX-induced  osteoporosis  model,  improving  both  bone  density  and
biomechanical  properties.  The  BM-MSCs  were  isolated  from  both  treated  and
untreated rats. Under osteogenic induction, BM-MSCs from the psoralidin-treated rats
were prone to undergo osteogenic differentiation, while adipogenic differentiation
was suppressed. Psoralidin treatment increased the levels of p-PI3K and p-AKT and
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p-GSK3β,  which led to an accumulation of  β-catenin,  confirming that  psoralidin
promoted MSC osteogenesis through the PI3K/AKT pathway.

AMP-activated protein kinase signaling pathway
The AMP-activated protein kinase (AMPK) signaling pathway has recently been
shown to regulate MSC osteogenesis. During osteogenic differentiation, both AMPK
expression  and  phosphorylation  increases[79].  Inhibition  of  the  AMPK signaling
pathway leads to a reduction in mineral deposition and suppresses the expression of
osteogenic genes,  including Runx2,  ALP, and osteocalcin,  indicating that  AMPK
activation favors MSC osteogenic differentiation[79].

Naringin  is  a  major  compound  of  Rhizoma  Drynariae  that  enhances  BMP
expression  level  in  osteoblast[80].  Zhang  et  al[81]  showed  that  the  treatment  with
naringin promoted proliferation and osteogenic differentiation of human BM-MSCs.
Naringin dose-dependently increased the expression of osteoblast-related markers
osteocalcin, Col I,  osteopontin, and ALP. The mechanism of naringin was further
studied by the Wang group. In the OVX mice, feeding 5 mg/kg per day naringin
showed the most significant enhancement in the expression of the osteogenic genes,
and improved the total bone density at the distal femur, proximal tibia, and lumbar
spine. The addition of AMPK and AKT inhibitor reversed the osteoprotective effect
given by naringin, suggesting that the AMPK and AKT signaling pathways could be a
possible mechanism for the osteogenic induction of naringin[82].

MAPK signaling pathway
MAPKs are a family of kinases that transmitted extracellular stimuli into intracellular
signaling cascade and regulate crucial cell  behaviors, including proliferation and
differentiation[83]. Conventional MAPK members are the extracellular signal-regulated
kinases 1/2 and ERK5, c-Jun amino (N)-terminal kinases 1/2/3, and the p38 isoforms.
Activation  of  the  MAPK  signaling  pathway  promotes  human  MSC  osteogenic
commitment[84].  The small molecules that regulate MSC osteogenic differentiation
through the  MAPK signaling  pathway include  icariin,  Er-Xian  decoction  (EXD)
extracts, resveratrol, and salvianolic acid B.

Icariin (ICA) is the main active component of Herba epimedii, which is a well-known
traditional Chinese medicine for treating osteoporosis[85]. Previous studies have shown
that ICA promoted osteogenic differentiation in vitro[86,87]. Wu et al[88] recently found
that  the  effect  of  ICA was  mainly  mediated by MAPK pathway activation,  as  it
increased the phosphorylation of MAPK signaling molecules, including ERK and
JNK, upon ICA treatment. Subsequently, the gene expression of osteogenic markers,
including Col I,  osteocalcin and osteopontin and the ALP activity increased in a
dosage-dependent manner. The osteogenic effect of ICA was suppressed by either
ERK or  JNK inhibitors,  suggesting that  the  MAPK pathway is  necessary for  the
induction of osteogenesis of BM-MSCs by ICA. In addition to the MAPK pathway,
ICA is  involved in  regulating  osteogenesis  through other  osteogenic-associated
signaling pathways, including BMP[89], WNT[90], and PI3K/AKT signaling pathways[91].
Cao et al[92] showed that the daily intragastric administration of ICA to the fractured
OVX rat at a dosage of 150 mg/kg significantly increased bone mineral density and
accelerated fracture healing within 5 mo. These findings demonstrated that, following
bone fracture in OVX rats, the administration of ICA accelerated bone mineralization
and improved fracture healing. A double-blind randomized controlled trial showed
that the administration of  a daily dose of  60 mg ICA, 15 mg daidzein,  and 3 mg
genistein for 12 mo or 24 mo significantly reduced bone loss in late-postmenopausal
women in comparison with the placebo group, demonstrating a positive effect of
epimedium-extract small molecules on preventing bone loss[93].

EXD, which is a common Chinese medicine mixing of six different herbs clinicians
prescribed to treat menopausal symptoms. We studied the extracts from EXD and
demonstrated their stimulatory effect on the osteoblastic differentiation of murine
BM-MSCs[94]. The BM-MSCs isolated from the EXD extract-treated mice showed an
increased ALP activity under osteogenic induction compared with those from OVX
mice,  suggesting  the  osteoprotective  role  of  EXD extracts.  The  gene  expression
profiles showed that the common genes that were upregulated during EXD extract
treatment were related to the MAPK signaling pathway, indicating that EXD exerted
its effect by regulating the MAPK signaling pathway. A clinical trial showed that EXD
improved bone mineral density at both the lumbar spine and the femoral head in
postmenopausal women, demonstrating an osteoprotective effect[95].  However, no
study has demonstrated its effect on the incidence rate of fracture. Future studies of
longer duration with calculation of fracture rates are needed to confirm the clinical
benefit of EXD.

Resveratrol  (RSVL)  is  a  phenolic  compound enriched  in  wine  and grape  and
famous for its antioxidant effect. Dai et al[96] tested the osteogenic regulatory effect of
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RSVL by treating BM-MSCs with RSVL at different doses from 0.01 to 100 μmol/L
and measured the ALP activity.  The results  showed that  under  1  μmol/L RSVL
treatment,  the  differentiated  BM-MSCs  presented  the  maximal  increase  in  ALP
activity. The osteogenic genes Runx2, osterix, and osteocalcin were all upregulated
during the treatment with RSVL. The addition of the ERK inhibitor PD98059 reversed
the expression level of osteogenic markers and ALP activity, confirming that RSVL
affects the MSC osteogenesis through the MAPK signaling pathway. In addition to the
MAPK signaling pathway, other studies have also shown that RSVL activated SIRT1,
a  nicotinamide  adenine  dinucleotide  (NAD+)-dependent  deacetylase,  and
subsequently  upregulated FOXO3A protein expression,  which promoted SIRT1-
FOXFO3A complex formation and upregulated Runx2 expression[97,98]. A clinical trial
was performed to assess the osteoprotective effect of RSVL on osteoporotic obese
patients. The results showed that RSVL increased lumbar spine bone mineral density
in a dose-dependent manner, with a maximal increase of 2.6% in the high-dose RSVL
group[99].

Salvianolic acid B (SalB) is the active compound of Salvia miltiorrhiza,  which is
commonly used in treating cardiovascular diseases in Chinese medicine[100]. Cui et
al[101] demonstrated the association between SalB and osteogenesis by showing that
administration  of  SalB  at  a  dosage  of  40  mg/kg per  day  to  the  steroid  induced
osteoporotic rats reversed the osteoporotic phenotype. The rats presented elevated
bone mineral density, increased cancellous bone mass, and thicker trabeculae after the
treatment. This effect was consistent with the finding that SalB promoted osteogenic
differentiation of rat BM-MSCs in vitro at the dosages ranging between 100 and 500
nmol/L. The differentiated cells showed a significantly higher ALP activity along
with an increase in osteocalcin expression[101]. The underlying mechanism of SalB was
studied by the same group in human BM-MSCs. The addition of the ERK inhibitor
U0126  diminished the  effect  of  Sal  B  on  osteogenesis,  suggesting  that  the  Sal  B
regulated  the  osteogenesis  of  BM-MSCs  through  the  MAPK/ERK  signaling
pathway[102].

SMALL MOLECULES REGULATE MSCS ADIPOGENIC CELL
FATE
The induction of adipogenic differentiation in MSCs in vitro is traditionally achieved
by the activation of the adipogenic master regulator Cebpα and Pparγ through a small
molecule  cocktail  of  3-isobutyl-1-methylxanthine  (IBMX),  indomethacin,
dexamethasone, and insulin[7]. IBMX is a phosphodiesterase inhibitor that increases
the intracellular cyclic AMP (cAMP) and activates the downstream PKA signaling
pathway to induce Cebpα and Pparγ expression[103-105]. Dexamethasone, on the other
hand, binds to the intracellular glucocorticoid receptor and subsequently enhances the
expression of the adipogenic transcription factor C/EBPβ[106]. Indomethacin is a well-
known COX1/2 inhibitor; however, its adipogenic activity is not due to the inhibition
of  COX but  through activation of  PPARγ.  Insulin  promotes  glucose  uptake and
stimulates triglyceride synthesis in adipocytes. In the past decade, more signaling
pathways have been identified to be involved in regulating the adipogenesis of MSCs.
Some  of  the  pathways  are  the  Wnt,  AKT  and  AMPK  signaling  pathways[103].
Activating the AKT signaling pathway promotes the differentiation of adipose stem
cells,  whereas  activating  the  Wnt[107,108]  or  AMPK[79]  signaling  pathways  inhibits
adipogenesis. Aside from regulating gene expression through a signaling pathway
cascade, the post-translational modification also affects adipogenic fate determination
through  post-translational  modification,  such  as  sumoylation  and  epigenetic
modification.  In this  section,  we will  review the small  molecules that  have been
reported to affect the adipogenic commitment of MSCs based on their mechanisms
(Figure 2).

Wnt signaling pathway
The canonical and noncanonical signaling pathways present different effects on MSC
adipogenesis.  The  canonical  signaling  pathway mediates  signaling  through the
stabilization of β-catenin, and activation of the Wnt canonical signaling pathway was
shown to block the induction of PPARγ and C/EBPα and to inhibit adipogenesis[109].
Wnt also activates noncanonical signaling pathways. Genetic evidence indicates that
noncanonical  signaling  through  Wnt5a  antagonizes  the  canonical  signaling
pathway[110]. Wnt antagonists exert a crucial role during the adipogenic commitment
of MSCs[111,112]. Some of the small molecules that have been shown to exert adipogenic
regulatory effects via the Wnt signaling pathway include isorhamnetin, cyanidin-3-O-
glucoside, and peonidin-3-O-glucoside.
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Figure 2

Figure 2  Small molecules guiding mesenchymal stem cell adipogenic cell fate determination. Many pathways are involved in regulating the adipogenesis of
mesenchymal stem cells, including the Wnt, AKT and AMP-activated protein kinase (AMPK) pathways. Activating the AKT pathway promotes the differentiation of
adipose stem cells, whereas activating the heme oxygenase-1, Wnt or AMPK pathway inhibits adipogenesis. FAS: Fatty acid synthase; 8-HUDE: 12-(3-hexylureido)
dodec-8(Z)-enoic acid; AUDA: 12-(3-adamantan-1-yl-ureido)-dodecanoic acid; HO-1: Heme oxygenase-1; AMPK: AMP-activated protein kinase.

Isorhamnetin  (IsR)  is  a  flavonoid  extracted from sea  buckthorn.  IsR was  first
identified by Lee et al to inhibit adipogenic differentiation of MSCs. The triglyceride
level was significantly lower under treatment of 25 μmol/L IsR. The Wnt signaling
pathway antagonists  Sfrp1 and Dkk1 were  downregulated under  IsR treatment,
thereby stabilizing and increasing the protein level of β-catenin without affecting the
mRNA expression level. The finding indicated that IsR affected adipogenesis through
activation of the Wnt signaling pathway[113].

Cyanidin-3-O-glucoside  (C3G)  and  peonidin-3-O-glucoside  (P3G)  are  two
anthocyanin components of black rice extract (BRE). Both compounds were shown by
Jang et al[114] to inhibit adipogenic differentiation of the murine MSC line C3H10T1/2.
Under treatment with C3G or P3G, lipid accumulation in the differentiated cells
decreased  in  a  dose-dependent  manner,  and  the  adipogenic  gene  Pparγ  was
significantly  suppressed.  Although  the  mechanism  of  C3G  and  P3G  were  not
investigated,  the  original  BRE  has  been  shown  to  activate  Wnt  signaling  and
downstream targets, exerting both anti-adipogenic and osteoinductive effects.

PI3K/AKT signaling pathway
The PI3K/AKT signaling pathway can be activated by a range of extracellular factors
through the  receptor  tyrosine  kinases  (RTKs).  Upon RTK activation,  the  IRS1/2
phosphorylates and activates PI3K. PI3K subsequently activates AKT, which regulates
many  functional  mediators,  including  GSK3,  FoxO,  mTOR,  which  in  turn  form
complex  regulatory  circuits  that  govern  the  manifold  response.  Among  them,
activation of mTOR leads to upregulation in Pparγ and promotes adipogenesis[115-117].

Risedronate  is  a  bisphosphonate  medication that  is  used to  treat  osteoporosis
clinically by inhibiting osteoclastic  differentiation.  Jin et  al[118]  demonstrated that
risedronate, in addition to affecting osteoclast development, also inhibited human
BM-MSC  adipogenesis  through  the  PI3K/AKT  signaling  pathway.  The  ratio  of
adipocyte formation under the adipogenic induction decreased in a dose-dependent
manner  while  increasing  the  concentration  of  risedronate  from 1  μmol/L to  25
μmol/L.  Further  exploration of  the mechanism showed that  phosphorylation of
mTOR downstream effectors was inhibited under risedronate, suggesting that its
effect  on adipogenesis  of  BM-MSCs was mediated by mTOR signaling pathway
regulation[118].

AMPK signaling pathway
AMPK is highly involved in cellular energy homeostasis, and the AMPK signaling
pathway has  been  shown to  regulate  the  adipogenic  differentiation  of  MSC,  as
inhibition  of  AMPK  signaling  pathway  promotes  lipid  droplet  formation  and
adipogenesis[79]. Aside from typical white adipogenesis, the other important cell fate
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modulation associated with the AMPK signaling pathway is brown adipogenesis.
Unlike white adipocytes, brown adipocytes exert a significant thermogenic effect,
which has a promising effect for obesity control. Activation of the AMPK signaling
pathway enhances the gene expression of PGC-1α[119]  and subsequently mediates
MSCs to differentiate into brown adipocytes[120]. Compounds that have been shown to
affect  adipogenic  fate  commitment  via  the  AMPK  signaling  pathway  include
arctigenin (ARC), albiflorin (AF), medicarpin[121], platycodin D (PD), metformin[122] and
resveratrol[123,124].

ARC is a major lignan component of Arctii fructus and Forsythia fruit. Han et al[125]

discovered that ARC inhibited adipogenesis in human AD-MSCs. The viability of
MSCs did not change between the concentration of 10 and 100 μmol/L. Under ARC
treatment, AMPK phosphorylation was significantly increased, suggesting that the
adipogenic  regulatory  effect  of  ARC was  mediated  via  activation  of  the  AMPK
signaling pathway. The in vivo experiments showed that the administration of ARC at
a dose of 50 mg/kg per day reversed the body weight gain in high-fat diet (HFD)
induced obesity mice, which is consistent with the in vitro findings.

AF is a major monoterpene glycoside compound of Paeonia lactiflora. Jeong et al[126]

demonstrated that AF enhanced brown adipocyte differentiation via the AMPK and
the PI3K/AKT/mTOR signaling pathways. In the presence of AF, lipid accumulation
increased and beige-specific markers, including UCP1, PGC-1α, and CIDEA, were
upregulated. After a 6-week administration of AF, body weight gain in HFD mice was
significantly reduced, while the worsening of liver function, as measured by total
cholesterol, LDL, ALT, and AST, reversed[126].

PD  is  an  active  compound  of  Platycodi  radix.  Kim  et  al[127]  PD  showed  that
administration of PD at a dosage of 5 mg/kg per day reduced the weight gain of
db/db mice. However, the anti-obeisty effect of PD was not observed at the lower
dosage of  2 mg/kg per day.  In vitro,  PD treatment suppressed the expression of
adipogenic genes, such as Pparγ, Cebpα, Fabp4, Adipoq, and resistin, during the
adipogenic differentiation of human AD-MSCs, suggesting the anti-adipogenic role of
PD. Meanwhile, PD increased the expression of thermogenic factors UCP1 and PGC1
in both db/db mice and in vitro, which indicated the beige-adipoinductive role of PD.
The  phosphorylation  of  AMPK  was  significantly  elevated  under  PD  treatment,
suggesting that PD is involved in regulating the AMPK signaling pathway.

Heme oxygenase-1 signaling pathway
Heme oxygenase (HO) is the enzyme that digests heme proteins and generates carbon
monoxide,  biliverdin,  and  iron.  HO-1  induction  results  in  increased  levels  of
phosphorylated AMPK and AKT. The upregulation of HO-1 expression inhibits MSC
adipogenic  differentiation and favors  osteogenic  differentiation[128,129].  The small
molecules that regulate MSC adipogenic cell fate via HO-1 activation include Tithonia
diversifolia extracts and epoxyeicosatrienoic acid agonists.

Tithonia diversifolia extracts (TDE) are frequently used in traditional medicine for
treating diabetes and wound healing. Giacomo et al[130] showed that TDE inhibited
adipogenesis by inducing the AMPK signaling pathway via HO-1 activation. Upon
TDE treatment,  phosphorylated AMPK and HO-1 protein expression levels were
significantly increased. A functional assay showed a dose-dependent effect of TDE on
decreasing lipid accumulation in differentiated adipocytes.

Epoxyeicosatrienoic acids (EETs) are the derivative of arachidonic acid and act as
an inducer of  HO-1 activity[131].  The formed EETs can be metabolized by soluble
epoxide hydrolase (sEH) into dihydroxyeicosatrienoic acids (DHETs). Kim et al[132]

showed that adding the sEH inhibitor, 12-(3-hexylureido) dodec-8(Z)-enoic acid (8-
HUDE) and 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) activated HO-1
and inhibited human BM-MSC adipogenesis. The inhibitory effects of 8-HUDE and
AUDA were reduced by inhibition of HO activity, which demonstrated the role of
AUDA and 8-HUDE in regulating adipogenesis  of  MSCs via  the HO-1 signaling
pathway.

Sumoylation
Sumoylation  is  a  post-translational  modification  process  that  is  important  in
regulating the functional features of many proteins. Some of the transcription factors
closely related to adipogenesis, such as PPARγ, C/EBPα, and C/EBPβ, are targets of
sumoylation. The transcriptional activity of these master regulators can be negatively
regulated  by  sumoylation  and  affect  the  commitment  of  adipogenic  cell  fate  of
MSCs[133,134].

Ginkgolic acid (GA), a compound that is enriched in the leaves of Ginkgo biloba,
impairs SUMOylation by blocking the formation of the E1-SUMO thioester complex
and functioning as a sumoylation inhibitor[135]. Liu et al[136] investigated the effect of GA
on adipogenesis  and demonstrated that  the addition of  GA in the early stage of
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adipogenesis  promoted  the  commitment  of  mouse  BM-MSCs  into  adipocytes,
whereas addition at a later stage inhibited adipocyte differentiation.

Epigenetic landscape
DNA and histone methylation are the key components in the epigenetic machinery,
regulating gene expression profiles. Some small molecules inhibit acetlyltransferase or
methyltransferase and change the epigenetic landscape[137], which is recognized by
other proteins that subsequently affect the expression of adipogenic genes. For MSC
adipogenesis, these small molecules include 5-azacytidine and N-methyl pyrrolidone.

5-Azacytidine (5-aza) is a DNA methyltransferase inhibitor. Chen et al[138] showed
that the methylation levels of Wnt10a chromatin regions were significantly reduced
under the treatment with 5-aza and subsequently activated the expression of Wnt10a.
Wnt10a then downregulated the expression level of adipogenic markers PPARγ, aP2,
FAS, and C/EBPα and inhibited MSC commitment to adipogenic lineage.

Brd4 is a member of the bromodomain and extraterminal domain (BET) family that
binds to active enhancers through recognition of acetyl-lysine residues of histones and
controls PPARγ downstream adipogenic genes[139].  Gjoksi et al[140]  showed that N-
methyl pyrrolidone, a Brd4 inhibitor, reduced transcriptional activation of PPARγ and
inhibited adipogenesis of human BM-MSCs. Furthermore, in the OVX rat model,
administration of N-methyl pyrrolidone reduced fat accumulation and adipogenesis
in the bone marrow tissue further validating the anti-adipogenic effect of Brd4.

SMALL MOLECULES REGULATE MSCS CHONDROGENIC
CELL FATE
The chondrogenic differentiation of MSCs is induced with a high cell-density pellet
supplemented with transforming growth factor (TGF)-β in a serum-free medium,
leading to an elevated production of cartilage-specific proteins, such as proteoglycans
and type II collagen (Col 2). In addition to the TGF-β signaling pathway, there are also
other  signaling  pathways  involved  in  regulating  the  chondrogenesis  of  MSCs,
including includes BMP[141], Wnt[142,143], fibroblast growth factor[144], hedgehog (HH),
and Notch signaling pathways.

HH signaling pathway
The HH signaling pathway is known to be important for cartilage development in
vivo[145]. Implantation of fibroblasts expressing sonic hedgehog protein (Shh) protein or
indian hedgehog protein in the nude mice forms cartilage at the donor site[146]. The
other important role of HH signaling is the proliferative impact on the chondrocytes.
Activation of the HH signaling pathway induces GLI, a transcriptional factor that
promotes cell proliferation. Therefore, continuous activation of the HH signaling
pathway causes  uncontrolled cell  proliferation and leads to  the  development  of
enchondromatosis[147,148].

Atractylenolides  are  enriched  in  Atractylodis  macrocephalae,  a  kind  of  herbal
medicine that is commonly prescribed to treat arthritis. Li et al[149] demonstrated that
the  addition  of  atractylenolides  induced  the  Gli  promoter  and  promoted
chondrogenic differentiation in rat BM-MSCs. The chondrogenic markers Sox9, Col 2
and aggrecan were upregulated compared with the untreated group.  When Shh
signaling was inhibited by the signaling pathway inhibitor cyclopamine, the effect of
atractylenolides on promoting chondrogenic differentiation was reduced, confirming
that the chondrogenic effect of Atractylenolides was dependent on the Shh signaling
pathway.

Notch signaling pathway
The  Notch  intracellular  domain  is  the  main  mediator  for  regulating  the
chondrogenesis  of  the  MSCs  in  the  Notch  signaling  pathway.  Upon  ligand
stimulation, the NOTCH protein undergoes proteolytic cleavage and releases the
intracellular domain. The intracellular domain subsequently translocates into the
nucleus and induces the expression of the HES gene family. The HES gene family,
including HES-1 and HEY-1, acts on the Sox9 binding site at the Col2a1 enhancer and
consequently  prevents  Sox9-mediated  transcriptional  activation  of  Col2a1,
suppressing the chondrogenesis of MSC[150].

Dihydroartemisinin (DHA) is a major compound derived from Artemisia apiacea.
Cao  et  al[151]  showed  that  DHA  inhibited  chondrogenic  differentiation  of  the
C3H10T1/2 cell line in vitro.  After treatment with DHA containing chondrogenic
medium for 14 d, the chondrogenic-specific markers Sox9, COMP and Col2a1 were
significantly  suppressed  compared  with  the  untreated  cells.  The  key  factors  in
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different signaling pathways were subsequently assessed, revealing upregulation of
Hey1 expression, indicating that the Notch signaling pathway is involved in the DHA
inhibition of chondrogenesis of the MSCs.

CONCLUSION
The regulation of MSC differentiation is multifaceted, governed by multiple signaling
pathways, epigenetic regulation, and post-translational modification. Beyond the
above small molecules illustrated, there were many others that have recently been
identified to affect the lineage commitment of MSCs, but the underlying mechanisms
are still elusive. For instance, the Cornus walteri extracts, the Oryza sativa extracts, and
piceatannol (enriched in Aiphanes horrida)  were shown to inhibit  adipogenesis of
MSC[152-154]. Ajuga decumbens extracts were shown to stimulate osteogenesis of MSCs[155].
Honokiol  improved  the  chondrogenesis  of  MSCs[156].  However,  the  underlying
mechanisms of all the above compounds have not yet been explored. Understanding
the mechanism by which different small molecules affect MSC cell determination will
benefit the application utility of small molecules as precisive modulators, offering
researchers a useful probe in guiding MSC differentiation.

Some of the small molecules identified have been investigated in clinical trials for
the  treatment  of  MSC-related  diseases,  while  many  others  identified  recently
remained unexplored.  Even though the in  vitro  cell  culture experiments  and the
animal studies offered promising results, there are several aspects that can hinder
investigators from translating these small molecules into clinical use. One of the major
obstacles to success is that the cells and animal models cannot fully reflect the effect of
small molecules in humans for many reasons, such as differences in physiological
background, length of administration and subjective endpoints. The other obstacle is
that, for those small molecules identified from a complex compound, one kind of
small molecule may not be sufficient to have the maximal effect, but require other
small molecules from the original compound to synergize with it.

Overall, the ongoing discovery of new small molecules facilitating MSC cell fate
commitment  will  continue  to  play  critical  roles  in  basic  science  research  and
potentially become novel therapeutic agents in treating various MSC-related diseases.
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