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Abstract
Tumours are known to be a heterogeneous group of cells, which is why they are
difficult to eradicate. One possible cause for this is the existence of slow-cycling
cancer stem cells (CSCs) endowed with stem cell-like properties of self-renewal,
which are responsible for resistance to chemotherapy and radiotherapy. In recent
years, the role of lipid metabolism has garnered increasing attention in cancer.
Specifically, the key roles of enzymes such as stearoyl-CoA desaturase-1 and 3-
hydroxy-3-methyl-glutaryl-coenzyme A reductase in CSCs, have gained
particular interest. However, despite accumulating evidence on the role of
proteins in controlling lipid metabolism, very little is known about the specific
role played by lipid products in CSCs. This review highlights recent findings on
the role of lipid metabolism in CSCs, focusing on the specific mechanism by
which bioactive lipids regulate the fate of CSCs and their involvement in signal
transduction pathways.
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Core tip: Cancer stem cells (CSCs) are a minute portion of highly aggressive cells that
survive conventional and targeted therapies and ultimately re-populate the tumour.
Recent studies have elucidated that stearoyl-CoA desaturase-1 and 3-hydroxy-3-methyl-
glutaryl-coenzyme A metabolic pathways involved in lipid metabolism are hyperactive
in CSCs. However, the purpose of this enhanced activity is unclear. Here, we review the
current literature and discuss the possible pathways and mechanisms that link the
enhanced CSC lipid metabolism to bioactivity, specifically, with regard to structural
lipids and active bio-molecules involved in cell signalling.

WJSC https://www.wjgnet.com September 26, 2019 Volume 11 Issue 9693

https://www.wjgnet.com
https://dx.doi.org/10.4252/wjsc.v11.i9.693
http://orcid.org/0000-0003-3521-5530
http://orcid.org/0000-0001-7678-9472
http://orcid.org/0000-0002-9801-7235
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:marco.falasca@curtin.edu.au


P-Reviewer: Wakao H, Kiselev SL,
Liu L
S-Editor: Zhang L
L-Editor: Filipodia
E-Editor: Xing YX

Citation: Begicevic RR, Arfuso F, Falasca M. Bioactive lipids in cancer stem cells. World J
Stem Cells 2019; 11(9): 693-704
URL: https://www.wjgnet.com/1948-0210/full/v11/i9/693.htm
DOI: https://dx.doi.org/10.4252/wjsc.v11.i9.693

INTRODUCTION
Cancer progression is characterised by a continuous changeable state generating a
very  complex  and heterogeneous  multitude  of  cells  with  different  morphology,
genotype, and phenotype. This heterogeneity is explained by two main models: The
clonal evolution model and the cancer stem cell (CSC) model. According to the CSC
model, cancers are a heterogeneous combination of genetically different subclones
that are arranged in an organised hierarchy, with CSCs at the apex[1,2]. According to
the stem cell  theory for  cancer,  only a  subset  of  cancer  cells  are  accountable  for
tumour initiation and propagation[3]. The primary functional characteristics of CSCs
are similar to those of normal stem cells, such as the capacity to self-renew and the
ability to differentiate into different cell types. CSCs present an elevated tumorigenic
potential  and  an  increased  resistance  to  conventional  and  targeted  therapy[3-8].
Functional recognition of CSCs from the mass of the tumour population involves the
demonstration that they are indeed able to self-renew and differentiate[9-13]. These cells
must possess the ability to initiate a novel tumour, often in small numbers. There is
much dispute on the specificity of markers to be used to identify CSCs. However, the
most reliable are functional markers such as ABC transporter activity, namely ABCG2
and ABCB1, which are able to transport  the fluorescent dyes Hoechst 33342 and
rhodamine 123, respectively[14]. Aldehyde dehydrogenase activity and the ability to
cycle slowly are among other characteristics commonly accepted as defining features
of CSCs[5,15-18].  The concept that suggests CSCs rely on oxidative phosphorylation
(OXPHOS) is becoming more accepted as the metabolic signature of CSCs, making
metabolic  targeting a  rewarding opportunity within the CSC field[5,6,19-27].  Recent
studies  have  highlighted  the  link  between  CSCs  and enhanced  activity  in  lipid
metabolism, particularly for monounsaturated fatty acids and cholesterol. Recent
reviews have brilliantly described the role of lipid metabolism alterations in CSCs[28-30].
However, the purpose behind this enhanced activity is not understood. In this review
we  discuss  the  latest  advances  in  CSC  lipid  metabolism  and  describe  how  this
enhanced lipid metabolism in CSCs can lead to the production of active biolipids as
signalling molecules.

CSC metabolism
Similar  to  normal  cells,  CSCs  use  energy  from  mitochondrial  OXPHOS,  which
produces more adenosine triphosphate (ATP) compared to glycolysis and produces
tricarboxylic  acid cycle intermediates utilised for  macromolecule synthesis.  CSC
functions  are  regulated  by  a  number  of  specific  signalling  pathways[31,32].  These
pathways change in response to environmental stresses such as fluctuating oxygen
and nutrient levels, pH, inflammation, and anticancer therapies[33]. While cancers rely
on angiogenesis,  the fast  proliferation of  cancer cells  outstrips the blood supply,
which is often leaky and lacks a normal hierarchical structure. Consequently, hypoxia
and poor perfusion are common in tumours, so that there is a poor supply of nutrients
and clearance of waste products. However, mitochondrial respiration is not impaired
until the oxygen concentration drops below 1.0 μM[34]. Furthermore, it has been shown
that even at oxygen levels of 0.5%, the electron transport chain is still  capable of
normal functioning[35].  It  has also been reported that hypoxia is necessary for the
preservation of embryonic stem cells in an undifferentiated state[36]  and that it  is
accountable for the creation and maintenance of the stem cell niche[37-40,41,42].  These
studies  exemplify  that  hypoxia  is  a  necessary  condition  for  ensuring  a  balance
between stem cell phenotypes and metabolism. In addition, it has been demonstrated
that tumorigenesis is dependent on functioning mitochondria[5,43], since mitochondrial
respiration results in the production of metabolites such as citrate, that can be utilised
by ATP citrate lyase, to produce oxaloacetate and acetyl-CoA. In conditions where
there are high levels of ATP, it has been shown that acetyl-CoA can be utilised for the
regulation of protein acetylation and the synthesis of fatty acids[44]. These findings
suggest a role for signalling molecules in the maintenance of the stem cell niche. A
recent study demonstrated that glycosylation (specifically O-GlcNAc modification) of
pluripotency  markers  sex-determining  region  Y-box  2  and  octamer-binding
transcription factor 4 takes place in undifferentiated mouse embryonic stem cells and
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this  is  absent  following  differentiation[45].  Emerging  evidence  suggests  that  the
metabolic phenotype of CSCs is dependent on their location, oxygen supply, and
metastatic  sites.  There  are  studies  suggesting  that  CSCs  from  lung,  breast,
glioblastoma, osteosarcoma, ovarian, nasopharyngeal, hepatocellular carcinoma, and
colorectal cancers favour glycolysis compared to other differentiated cells in vitro and
in vivo[46-52]. This variation may be due to differential location, availability of nutrients,
oxygen, stage of lineage specification, tumour heterogeneity, and isolation techniques.
It is possible to speculate that metabolic profiles of CSCs change as they migrate from
the original site to the metastatic site and that this change is largely attributed to the
tumour  microenvironment  in  which  they  reside.  While  both  glycolytic  and
mitochondrial metabolism are utilised by cancer cells, due to the heterogeneity among
cancer cells within a tumour, some cells are reliant on glucose[53], while others have a
strong dependence on aerobic glycolysis[54,55] due to an impaired TCA cycle or electron
transport chain. However, due to the plasticity of cancer, some cells can alter their
metabolic profile following therapeutic intervention by undertaking therapy-induced
senescence[56]. Another impediment to cancer eradication is that slow-cycling CSCs
demonstrate dependence on OXPHOS[5,7,57].

Aldehyde dehydrogenase metabolism
It  was  recently  found that  the  prominent  CSC marker  aldehyde dehydrogenase
(ALDH)1A1 modulates energy metabolism in adipocytes from several species[58]. In
this  study,  retinoic  acid deficiency in knock-out ALDH1A1 adipocytes inhibited
adipogenesis  and  increased  thermogenesis.  Functional  CSC  markers  such  as
ALDH1A1 activity are increasingly highlighted as a reliable marker in the literature.
ALDH1A1 activity requires the involvement of metabolic and signalling pathways.
Retinoids play an important role in energy metabolism, and their role in maintaining
normal  embryonic  development  is  well  understood.  In  retinoid  metabolism,
retinaldehyde can be oxidised to retinoic acid by ALDH1a1-3. Retinoic acid is a potent
transcriptional regulator and controls more than 500 genes. The receptors for retinoic
acid (RAR-α,  RAR-β,  and RAR-γ)  are members of  the nuclear  hormone receptor
superfamily,  which  includes  receptors  for  steroid  and thyroid  hormones.  Upon
activation, these receptors initiate cell responses related to proliferation, apoptosis,
and  differentiation.  There  is  also  some evidence  that  retinoic  acid  can  regulate
signalling  pathways  inside  the  cell  and  that  all-trans-retinoic  acid  can  bind
peroxisome proliferator-activated receptor beta-gamma (PPAR β-γ). The enzymes are
involved in several biological functions and their functional role is likely related to
cellular detoxification and maintenance of low reactive oxygen species[15].

Lipid metabolism
Lipid dysfunction has been observed as a trait of more aggressive cancers that have
adverse survival outcomes. Research is highlighting the specific alterations occurring
in pathways involving lipids and cholesterol. An emerging concept is that CSCs are
highly dependent on enzymes associated with lipid metabolism, even though the
precise reason for this reliance is not completely understood. Hyperactive metabolic
routes that produce lipids and cholesterol,  together with the increased uptake of
exogenous lipids, are required by the tumour to enable proliferation. Lipids are not
only  substrates  but  can  either  provide  structural  scaffolds  for  proteins  or  be
incorporated into the protein structure[59], which acts to stabilise signalling proteins to
facilitate  effective  coupling  between  cellular  receptors  and  signals[59,60].  Lipid
metabolism may also be a crucial component in maintaining the cell membrane and
protecting against peroxidation by chemotherapeutic agents or the hypoxic niche. It
has been shown that the lipid bilayer leaflets have a non-symmetric distribution of
lipids[61],  and that this is dependent on several factors such as head group, chain
length, and degree of saturation, all of which can affect the cell membrane’s flexibility
and construction[62,63]. Lipids such as steroid hormones or phosphoinositides can leave
the cell and act as active signalling biomolecules in the tumour microenvironment.
These molecules can act in an autocrine manner to initiate a signalling cascade that
induces proliferation in neighbouring cancer cells[64,65].

De novo lipogenesis
Fatty acid synthesis and oxidation are indispensable components in the maintenance
of the adult stem cell  and CSC populations from various organs (Figure 1).  Both
anabolic and catabolic pathways are closely controlled in CSCs and are essential for
self-renewal activity. Peroxisome proliferator-activated receptor (PPAR-δ) is crucial
for lipid metabolism and is implicated in the control of energy homeostasis. The loss
of PPAR-δ results in defects to haematopoietic stem cells but its agonist restores the
defect.  Similarly,  inhibition  of  mitochondrial  fatty  acid  oxidation  generates  the
disappearance of haematopoietic stem cells[66]. These results suggest that the PPAR
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fatty  acid  oxidation  axis  may  be  essential  for  stem  cell  conservation.  Several
investigations have linked lipogenesis to CSCs. De novo lipogenesis is more active in
glioblastoma multiforme CSCs compared to  the  bulk  tumour  population  and is
needed for stem cell renewal in breast cancer[67,68].  Blockage of fatty acid synthase
(FASN) has been shown to diminish breast CSC growth in vivo and maintain breast
cancer cells through the PPARγpathway by upregulating de novo lipogenesis[69]. FASN
is  overexpressed  in  patient-derived  glioblastoma  stem  cells,  and  its  inhibition
significantly reduces the expression of stemness markers SOX2, NESTIN, CD133, and
FABP7, as well as reducing the CSCs’ invasiveness and sphere forming ability[67].
Pancreatic  CSCs  also  have  higher  de  novo  lipogenesis  activity  where  FASN  is
overexpressed,  and the  CSCs  are  more  sensitive  to  inhibition  by  FASN specific
inhibitors[70]. Breast CSCs have shown elevated levels of lipogenic genes compared to
non-CSCs, such as ATP citrate lyase, acetyl CoA carboxylase 1 (ACC1), and FASN.
Furthermore, ectopic expression of master regulator of lipogenesis sterol-regulatory
binding protein-1 upregulates downstream lipogenic genes (ATP citrate lyase, ACC1,
and  FASN),  resulting  in  enhanced  lipogenesis  and  mammosphere  formation[68].
Inhibition of ACC notably impairs mammosphere forming ability and the number of
ALDH1A1+ cells in culture[71].

Lipid droplets
The co-culture of adipocytes with bone marrow-derived prostate cancer cells has
demonstrated  the  ability  of  cancer  cells  to  use  lipids  from  adipocytes  in  their
microenvironment in order to promote cancer growth[72]. When looking at stem cell
components, both haematopoietic and leukemic-initiating cells depend on fatty acid
oxidation. Elevated levels of lipid droplets have been observed in circulating tumour
cells  and  are  associated  with  more  aggressive  tumour  types  and  poor  survival
outcomes.  Increased  extracellular  lipid  uptake  contributes  to  lipid  droplet
accumulation and the tumour-initiating capacity in CSCs[73]. These lipid droplets can
act as reservoirs inside the cell since they are filled with energy from various fatty
acids,  cholesterols,  and triacylglycerol.  An elevated content of lipid droplets is a
distinctive feature of colorectal CSCs. There was a direct correlation between CD133+

cells and lipid droplet amounts, and cells with an elevated level of lipid droplets have
enhanced clonogenic  potential  in  vitro  and in  vivo[74].  Lipophagy,  a  process  that
involves the fusion of  lipid droplets  with autophagosomes,  confers resistance to
pancreatic cancer cells  through an increase in fatty acid β-oxidation[5].  The latest
progresses in proteomics and metabolomics have highlighted the link between fatty
acid oxidation and CSC fate[70,75,76].  For  example,  the homeobox protein NANOG
stimulates hepatocellular carcinoma stem-like cells by reprogramming the metabolic
state of cells from OXPHOS to fatty acid oxidation[52]. During lipophagy, free fatty
acids are mobilised to the mitochondria, which confer survival to cancer cells when
metabolic restrictions are induced[77,78]. Although lipid oxidation, lipid synthesis, and
glucose  metabolism  are  closely  linked,  the  exact  mechanisms  underlying  these
interactions are not well understood. It is plausible to speculate that the lipid content
of lipid droplets such as fatty acids, cholesterol, and triacylglycerol can be used to
synthesise the cell membrane. These molecules can also be used to synthesise active
signalling biomolecules or be exported out of the cell via exosomes to prepare the pre-
metastatic niche.

Monounsaturated fatty acids/stearoyl-CoA desaturase 1 (SCD1)
Lipid desaturation is important in maintaining stemness, tumour formation, and
metastasis in breast,  colon, and prostate cancers[79,80].  SCD1 is an enzymatic node
central to the conversion of saturated fatty acids to mono-unsaturated fatty acids[81].
Monounsaturated fatty acids are precursors to a number of fundamental plasma
membrane lipids such as triglycerides, cholesterol esters, and diacylglycerols[82]. More
importantly, they can have signalling properties and act as direct effectors of SCD1
activity. In particular, palmitoleic acid has been found to mediate several processes
such as enhanced oxygen consumption, fatty acid oxidation, and ATP content in
adipocytes. As previously mentioned, lipids act as essential components of the cell
wall, which contributes to signal transduction, migration, and metastatic potential[83,84].
Overexpression  of  SCDs  promotes  cancer  cell  proliferation  and  inhibits  cell
death[79,80,85]. Lipid unsaturation has been recognised as a biomarker for ovarian CSCs,
and its blockage decreases tumour-forming abilities in vivo[76,85]. The same has also
been observed in breast CSCs[85]. SCD1 inhibition hindered sphere-forming ability,
along with a reduction in markers ALDH1A1, NANOG, and OCT4, and reverted
chemoresistance in lung CSCs, while more differentiated cells were unaffected[86]. The
presence of carbon-to-carbon single or double bonds can have both physical and
chemical properties that are essential in the constitution of cell membranes and signal
transduction. As previously mentioned, monounsaturated fatty acids are used as
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Figure 1

Figure 1  Cancer cells use glucose-derived metabolites for biosynthesis to support uncontrolled cell proliferation. Intermediates such as glucose-6-
phosphate enter the pentose phosphate pathway and pyruvate is converted to lactate. Cancer stem cells are quiescent by contrast and use glucose-derived pyruvate
for mitochondrial metabolism. The reason behind this metabolic shift is unclear. We propose that it is used for the synthesis of bioactive signalling molecules. TCA:
Tricarboxylic acid cycle.

progenitors  to  a  number  of  molecules,  which  can  act  as  signalling  molecules
themselves or as substrates for other signalling molecules. For example, cholesterol
esters  can  enter  the  mevalonate  pathway  to  synthesise  steroid  hormones.
Phosphoinositides  can  be  converted  into  lysophosphoinositides.  Both  of  these
molecules are powerful bioactive lipids. Similarly, the cell membrane and all of its
components such as lipid rafts, in which signalling receptors are embedded, cannot
function  properly  without  the  proper  distribution  of  triacylglycerides  and
diacylglycerides. Since CSCs are known for their metastatic potential and chemo-
therapy evasion, it is important to note that these lipid by-products can be involved in
signal transduction for both migration and physical protection from peroxidation.
These findings suggest that lipid desaturases may be the optimal targets for tumour
prevention in a variety of cancers. Interestingly, recent data has shown that SCD-
dependent fatty acid desaturation is not the only source of monoun-saturated fatty
acids in cancer cells[87]. Indeed, it has identified a novel desaturation pathway, the
sapienate biosynthesis, as an alternative source of monounsaturated fatty acids.

3-hydroxy-3-methyl-glutaryl-coenzyme A
The mevalonate pathway is the metabolic pathway responsible for the formation of
steroid hormones and cholesterol. This is a highly conserved pathway that involves a
series of reactions including the rate-limiting step, catalysed by 3-hydroxy-3-methyl-
glutaryl-coenzyme  A  (HMG-CoA)  reductase,  which  converts  HMG-CoA  to
mevalonate[88].  Mevalonate  downstream  products  comprise  cholesterol,  gera-
nylgeranyl  pyrophosphate,  farnesyl  diphosphate synthase,  and ubiquinone.  The
mevalonate metabolic route is important in protein prenylation, a post-translational
modification that tethers the Ras and Rho family of GTPases to the membrane, which
is required for the correct functioning of G protein-coupled receptors, and inhibition
of the mevalonate pathway decreased sphere-forming ability in ALDH1A1+ breast
CSCs[89].  There is some controversy whether or not increased blood cholesterol is
correlated  with  tumour  incidence  and  mortality.  The  use  of  blood  cholesterol-
lowering statins is correlated with a reduced cancer incidence[90].  However, some
reports have shown no correlation[91].  While pre-clinical  and mechanistic  studies
generally support the use of statins for anticancer therapy, conflicting reports may be
attributable to compensatory upregulation of HMG-CoA reductase by statins and the
resulting dose-limiting toxicities[92]. Nevertheless, total cholesterol is a poor prognostic
factor in several different cancers[93], and statin use is associated with reduced cancer-
related mortality in cancer patients[94]. Recent studies have found that either blocking
cholesterol synthesis or the HMG-CoA pathway exclusively eliminates stem cells of
glioblastoma multiforme, colorectal, and lung cancers[95,96]. Further, a high-fat diet
enhances in vivo  tumour growth, which is supressed by statin treatment[97].  These
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results strongly suggest that there exists an important and positive role of cholesterol
in the biology of CSC functions. Pathways involved in both cholesterol biosynthesis
and the synthesis of unsaturated fatty acids have been recently identified as the only
selective druggable  target  in  CSCs[98].  Interestingly,  a  recent  study revealed that
cholesterol biosynthesis is a key characteristic of breast CSCs and has a clear impact
on patient outcome[99]. The findings of the latter study clearly identified the cholesterol
biosynthesis pathway as crucial for CSC propagation and a therapeutic target. In
addition, this study provides a mechanistic explanation for the beneficial therapeutic
effect of the use of statins in breast cancer. Similarly, cholesterol biosynthesis has been
found to be a crucial player in the tumorigenicity of human neuroblastoma cell lines
and corresponding sphere-forming cells[100].

Lipid biomolecules in CSCs
The majority of studies on lipid metabolism in CSCs have elucidated the enzymes and
metabolic pathways involved in lipid synthesis. However, the precise functional role
played by the different lipid molecules in CSCs remains unclear. Lipids play a central
role  in  the  cell-cell  signalling  process  by  maintaining  the  integrity  of  the  cell
membrane  and  by  making  lipid  rafts,  which  act  as  platforms  for  signal
receptors[62,63,101,102]. We can speculate that the hyperactive metabolic activity is used to
synthesise lipids, which not only have a structural function by making up the cell
membrane, but also have a more active role as bioactive-lipid signalling molecules.
These active biomolecules can be released into the extracellular space and activate
downstream  pathways  involved  in  proliferation,  migration/invasion,  and
differentiation in an autocrine and/or paracrine manner.  The latest  studies have
shown that the metabolism required to produce ATP is tightly regulated in CSCs, and
this metabolic profile differs in the bulk of the tumour population[27,103].  CSCs are
plastic in nature and change their metabolism as they are migrating from their origin
to the metastatic site. They seem to have a preference for OXPHOS and show reduced
metabolic plasticity when stressed. As soon as ATP levels reach a certain level, ATP-
citrate  lyase  catalyses  the  transformation  of  citrate  and CoA to  acetyl-CoA and
oxaloacetate, respectively. Acetyl-CoA can be converted to malonyl-CoA, which can
enter the fatty acid synthesis route. Malonyl-CoA is utilised by AMP-activated kinase
in order to regulate the synthesis of fatty acids, which in turn are utilised for the
production  of  phosphoinositides,  eicosanoids,  lysophospholipids,  and
sphingolipids[44] (Figure 2).

Lysophospholipids, such as lysophosphatidic acid and sphingosine 1-phosphate,
have  a  key  role  in  stem cell  biology[104]  and tumour  progression[105].  The  plasma
membrane contains lipid rafts enriched with sphingolipids,  which are important
participants in signal transmission[106-114]. A recent study of the pancreas highlighted
the role of sphingosine-1-phosphate in promoting the survival of progenitor cells and
determining  acinar  and  endocrine  cell  specification [ 1 0 7 ] .  The  bioactive
lysophospholipid lysophosphatidylinositol  can be secreted into the extracellular
milieu, initiating a signalling cascade that stimulates the proliferation of surrounding
cancer cells[65]. The conversion of acetyl-CoA into acetoacetyl-CoA allows its entry into
the mevalonate pathway[44], which is integral for the production of cholesterol esters
and steroid hormones that are crucial participants in prostate stem cell maintenance
and lineage specification[107-108]. Haematopoietic cells are reliant on phospholipids and
essential fatty acids during differentiation[109].  Arachidonic acid is involved in the
synthesis  of  leukotriene,  prostacyclin,  and thromboxane from phospholipids[109].
Eicosanoids’ primary physiological activity is related to inflammation and modulation
of cardiovascular function and tone. Leukotrienes and prostaglandins can create a
leaky  vascular  endothelium,  which  is  a  requirement  for  metastatic  spread[110].
Interleukin 1B was found to maintain malignant melanoma initiating cells[111,112]. CSCs
are known for their increased ABC transporter activity, which requires ATP for its
function. We recently proposed that, apart from their role in chemoresistance, ABC
transporter hyperactivity is possibly due to their exportation of signalling molecules,
including  lipids[113].  Several  studies  have  shown that  at  least  one-third  of  all  48
mammalian ABC transporters are involved in lipid transport[59,63]. Transporters such as
ABCA1,  ABCG1,  ABCG4,  ABCG5,  and  ABCG8  have  been  identified  as  sterol
transporters [ 1 1 4 ] .  ABC  transporters  of  the  C  family  transport  bioactive
lysophospholipids  such  as  lysophosphatidylinositol  and  sphingosine  1-
phosphate[64,115,116]. Of particular interest are ABCG2 and ABCB1, the most well studied
members in CSCs.  We hypothesise that  they may play a specific  role in CSCs to
maintain stemness and sustain cell survival; specifically, by exporting bioactive-lipid
signalling molecules such as steroid hormones, cholesterol, and metabolites, which
are the result of enhanced lipid uptake and lipid metabolic pathways observed in
CSCs[63,64,113,117,118]. Another emerging processthrough which CSCs can also signal is
through the release of exosomes. Exosomes are lipid vesicles released from the cell,
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Figure 2

Figure 2  Citrate produced through mitochondrial metabolism can enter the fatty acid synthesis pathway. For example, citrate can enter the mevalonate
pathway to produce steroid hormones and cholesterol esters, or it can go on to produce phosphoinositides and lysophospholipids. Both of these are powerful
examples of signalling molecules. Therefore, the reason behind the enhanced metabolic activity, which was recently observed in cancer stem cells, must be
understood.

which carry important messages including bioactive lipids or enzymes and are able to
release signalling lipids.  Exosomes are thought to be involved in specific  cancer
functions such as creating the pre-metastatic niche in the specific secondary site[119]. It
is likely that enhanced lipid metabolism in CSCs is used to both synthesise exosomes
and their content[120-122]. It would be interesting to analyse the lipidomic profile of CSC-
derived exosomes to enhance our understanding of the specific role that exosomes
play in cancer progression. Exploring these pathways could elucidate a vulnerability
that might be beneficial in targeting these highly aggressive cells. However, first an
understanding is needed of the mechanisms behind these metabolic pathways and
what purpose they fulfil.

CONCLUSION
In conclusion, lipid metabolism is emerging as a viable target in CSCs. In particular,
the enhanced pathways involved in lipid metabolism, such as SCD1 and HMG-CoA
activity. However, some questions still need further investigation, such as the purpose
for this enhanced activity. We propose that lipid signalling molecules are synthesised
as a result of enhanced metabolic activity and that CSCs use those signals for their
survival  advantage.  Lipid metabolism represents  an intriguing target  for  cancer
therapy  and  we  further  suggest  that  to  target  CSCs,  these  pathways  must  be
understood. The identification of the deregulated pathways is a good starting point to
eradicate CSCs. However, increased knowledge of the role played by bioactive lipids
will provide a novel opportunity to eliminate these highly aggressive cells.
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