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Abstract
The immune system is able to recognize tumor anti-
gens and this has been the basis for the development 
of cancer immunotherapies. The immune system can 
be instructed to recognize and attack tumor cells by 
means of vaccination strategies. One such strategy 
involves the delivery of tumor antigen as genetic ma-
terial. Herewith we describe the use of RNA encoding 
tumor antigens for vaccination purposes in tumor set-
tings. RNA has features that are interesting for vaccina-
tion. Upon transfection, the RNA has no possibility of 
integration into the genome, and the tumor translated 
proteins enter the intrinsic antigen processing pathway 
thus enabling presentation by MHC-I molecules. This 
can specifically activate cytotoxic CD8 T cells that can 
attack and kill tumor cells. RNA can be delivered as 
a naked molecule for vaccination purposes or can be 
used to transfect dendritic cells. The combination of 
RNA technology with dendritic cell vaccination provides 
a powerful tool for cancer immunotherapies.
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Core tip: In this review we discuss the use of RNA en-
coding tumor antigens for anti-tumor vaccination. RNA 
has several features that makes it relevant for vaccina-
tion purposes. Importantly, the RNA has no possibility 
of integration into the genome, and the tumor translat-
ed proteins enter the intrinsic antigen processing path-
way thus enabling presentation by MHC-I molecules 
thus specifically activating cytotoxic CD8 T. Further, 
RNA can be delivered as a naked molecule f or can be 
used to transfect dendritic cells. This combination of 
RNA technology with dendritic cell vaccination provides 
a powerful tool for cancer immunotherapies.
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TUMOR IMMUNOLOGY
Cancer is one of  the leading causes of  mortality in hu-
mans and most of  the successes obtained battling this 
disease rely on early prevention even though a gamut of  
treatments such as chemotherapy, radiotherapy and sur-
gery are available to patients. In view of  this situation it 
becomes necessary to generate innovative approaches for 
the treatment of  this disease. One such strategy entails 
educating the immune system to recognize and destroy 
tumor cells. To this end, several immunotherapeutic strat-
egies have been designed and tested in preclinical studies 
and clinical trials. 

Tumors are composed not only by cancer cells, but 
also by other cellular types such as fibroblasts, endothelial 
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cells and infiltrating leukocytes that together with extra-
cellular matrix components constitute the microenviron-
ment of  the tumor[1]. In recent years the relevance of  
the tumor microenvironment as a key player in cancer 
progression has been highlighted and the role of  its cel-
lular populations and extracellular matrix components ex-
amined. In this context, immune cells play a double edge 
sword role[2]. 

On one hand, the protective role of  the immune sys-
tem against tumors has been widely described and indeed 
the presence of  tumor-infiltrating lymphocytes (TILs) 
has been reported in numerous studies involving mela-
noma[3], colorectal[4-7], breast[8,9], ovarian[10-16], prostate[17], 
renal[18], and esophageal carcinoma[19]. These TILs are 
able to recognize tumors as demonstrated by their capa-
bility to get activated by tumor antigens and kill cancer 
cells ex vivo[10,20-22]. Notably, several reports showed that 
the prevalence of  certain T cell populations is associated 
with a better outcome in different types of  cancers. Par-
ticularly, studies involving ovarian, non-small cell lung, 
mesothelioma, colon, and urothelial cancers showed that 
a high CD8/regulatory T cell ratio among TILs is usually 
associated with a better prognostic or a better response 
to antitumor treatment[14,23-28].

On the other hand, the presence of  a robust number 
of  regulatory T cells within the TILs, or a CD4/CD8 
ratio that favors CD4 T cells, has been associated with a 
worse outcome or tumor growth in various studies[29-33]. 
These studies highlight the ability of  the immune system 
to recognize tumors and provide a rationale for pursuing 
immunotherapeutic approaches, but also underscore the 
hurdles for its success. Similarly, other tumor-associated 
leukocytes such as myeloid-derived suppressor cells 
(MDSCs) can promote tumor growth by modulating the 
immune response[34]. Indeed, we have previously demon-
strated the relevance of  the tumor microenvironment in 
attracting MDSCs by a complement-mediated process[35]. 
Further, the presence of  a subset of  splenic dendritic 
cells (DCs) with the ability to suppress antitumor T cells 
responses via indoleamine 2,3-dioxigenase expression 
highlights the immunosuppressive role of  antigen pre-
senting cells (APCs) in some tumor settings[36]. Notably, 
leukocyte infiltration can precede the development of  a 
neoplasm, being chronic inflammation a risk factor for 
the development of  cancer[37-39]. Further, inflammatory 
conditions such as caused by certain types of  infections 
can be involved in the pathogenesis of  many human ma-
lignancies. For example, gastric carcinomas can arise in a 
Helicobacter pylori-induced gastritis environment[38] or hepa-
titis B virus/hepatitis C virus can induce hepatocellular 
carcinomas[39]. Also, chronic but non-infective inflamma-
tory conditions as in the case of  smoking-related bron-
chial cancer can induce carcinogenesis[40]. In the same 
way, chronic pancreatitis is considered a risk factor for 
the development of  pancreatic cancer, and many of  the 
growth factors involved in tissue remodeling and regen-
eration in chronic pancreatitis are present in pancreatic 
cancer[41]. In addition, there is strong evidence that tumor-

associated leukocytes can also promote tumor angiogen-
esis. In particular, infiltrating inflammatory cells secrete 
a diverse repertoire of  growth factors and proteases that 
potentiate tumor growth by stimulating angiogenesis. We 
and others have described the capability of  APCs such as 
DCs or macrophages, to collaborate with neoangiogene-
sis in human cancers and in different mouse tumor mod-
els[42-47]. Thus, tumors exhibit an arsenal of  mechanisms 
in order to inhibit an effective immune response. 

Collectively, these data indicate that in some settings 
immunoablative procedures must precede immunothera-
peutic treatments. To this end, some studies have sug-
gested that depletion of  regulatory T cell populations or 
tumor-associated leukocytes can enhance the effective-
ness of  a subsequent immunotherapy[3,48].  

TUMOR IMMUNOTHERAPY
The ability of  the immune system to recognize and attack 
tumors relies on the presence of  tumor-specific antigens 
(TSAs) and tumor-associated antigens (TAAs). As re-
cently reviewed by Aly[49], TSAs are expressed only by tu-
mor cells due to mutations in normal cellular genes, or to 
the expression of  viral antigens or normally suppressed 
oncogenes in cancer cells. On the other hand, TAAs are 
molecules expressed both in normal and cancer cells but 
expressed at higher levels by tumors, or expressed by nor-
mal cells only during the embryonic state differentiation. 
For the purposes of  the present review, tumor antigens 
will be named generically as TAAs.

Pioneering studies performed by Rosenberg et al[50] in 
melanoma aimed to activate lymphocytes in vivo by treat-
ing cancer patients with IL-2. The rationale being that the 
patients’ T cells have the ability to recognize and attack 
tumors. Indeed, this is the basis for immunotherapies 
using TILs. To carry out these T cell adoptive therapies, 
upon purification from tumor tissues, TILs are expanded 
and activated ex vivo using TAAs and are subsequently 
re-infused into patients[51]. Recent advances in this area 
involve the generation of  TAA-specific T cells by means 
of  genetic recombination. As previously described in 
detail, chimeric antigen receptor (CAR) T cells are engi-
neered to express the portion of  an antibody that rec-
ognizes an antigen fused to the T cell receptor signaling 
region[52]. Thus, they recognize TAA on tumor cells with 
the specificity of  an antibody and they kill them using the 
cytotoxic machinery of  T cells[52]. This circumvents the 
problem of  isolating TILs, which might not be present 
in all patients or present at very low numbers in tumor 
samples. Recently, by using CAR T cells, Kalos et al[53] 
were able to completely eradicate cancer cells in patients 
with advanced leukemia.

Additional immunotherapeutic strategies have been 
proposed and investigated based on the ability of  the 
immune system to recognize TAAs. One such strategy 
involves inducing immune responses against TAA by 
means of  vaccination. To this end, TAAs are used as tu-
mor lysates, proteins purified from these lysates, or pep-
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tides (derived from tumor protein digests or synthesized 
in vitro). Furthermore, as described below, tumor vaccina-
tion strategies also involve the use of  apoptotic or ne-
crotic tumor cells as way of  delivering the TAAs. These 
molecules will be recognized in vivo by resident APCs, 
which are key components of  the innate immune system. 
The innate immunity is the first line of  defense against 
pathogens. Cells of  the innate immune response include 
macrophages, granulocytes, DCs, and natural killer cells. 
Macrophages, B lymphocytes and DCs are generally de-
scribed as APCs. After ingesting a pathogen, APCs are 
able to eliminate it through various mechanisms involving 
enzymatic degradation and the use of  reactive oxygen or 
nitrogen species. APCs detect pathogens through the ex-
pression of  pattern recognition receptors (PRRs) which 
are able to recognize conserved pathogen associated 
molecular patterns (PAMPs). Some of  the main PRRs 
include membrane associated toll-like receptors (TLRs) 
and cytoplasmic NOD-like receptors[54,55]. DCs are highly 
effective APCs distributed throughout the body, particu-
larly in immunological organs such as thymus, spleen, 
lymph nodes and Peyer’s patches[56-58]. 

DC ACTIVATION PROCESS
Immature (non-activated) DCs present in peripheral tis-
sues can detect PAMP-bearing microorganisms through 
their high expression of  cell surface, vesicular and cyto-
plasmic PRRs[59]. This process leads to the activation of  
the DCs, which can degrade pathogenic proteins (both 
recovered from the extracellular space, or from the cyto-
plasmic pool) and process them into peptides[58]. Antigen-
ic peptide fragments derived from the processed patho-
gen molecules are the exposed on the surface of  the DCs 
in the context of  MHC Ⅰ or Ⅱ molecules. During this 
process, an immature DC will undergo “maturation” due 
to presence of  inflammatory cytokines generated by the 
DC itself, or by other surrounding cells in response to the 
pathogen or tissular damage. This maturation process en-
tails upregulation of  MHC class Ⅱ molecules, costimula-
tory molecules such as CD40, CD80, CD86; OX40L and 
the chemokine receptor CCR7. This receptor recognizes 
the chemokines CCL19 and CCL21 which are constitu-
tively expressed at high levels by lymph nodes[60]. Thus, 
mature DCs migrate from the sites of  antigen capture to 
the T-cell regions of  draining lymph nodes, where they 
contact naïve or memory T cells. Through interaction 
with specific cell receptors for antigen on the surface of  
T lymphocytes, DCs select and activate specific T cell 
clones with the capability to recognize the presented an-
tigen[58,61,62]. In this way, DCs tie the innate and adaptive 
immunity, being keystones for the development of  anti-
gen specific immune responses.

APCs have different ways of  processing and present-
ing antigens. Typically, antigens that are captured by the 
phagocytosis or endocytosis are degraded in the lyso-
somal compartment and peptides are presented by MHC-
Ⅱ molecules on the surface of  the cells thus interacting 
and activating CD4 T cells. On the other hand, antigens 

generated within the cells for example as a result of  a 
viral infection, can be degraded by the proteosome and 
the peptides presented on the surface of  the cell in the 
context of  MHC Ⅰ molecules[55,61,63]. This strategy selects 
and activates antigen specific CD8 T cells[55, 61,63]. Notably, 
DCs have the capability to cross-present antigens[64]. This 
means that DCs can acquire extracellular antigens, like 
for example apoptotic or necrotic tumor cells, or tumor 
lysates and also present them to CD8 T cells in the con-
text of  MHC Ⅰ molecules. 

DCS AND ANTI-TUMOR THERAPY
A multitude of  preclinical studies and clinical trials have 
been designed in order to determine the anti-tumor ef-
ficacy and safety of  DC-based vaccines[65]. The devel-
opment of  a successful DC-based tumor vaccination 
depends heavily on generating robust and long lasting 
specific CD4 and CD8 T cell responses[66]. To accomplish 
this, DCs have been generated from bone marrow pre-
cursors in the mouse and mostly from monocytes in hu-
mans as we previously reviewed[1]. Different steps in the 
antigen presentation process have been evaluated such as 
antigen loading, DC maturation, and delivery route and 
dose scheme as we have recently reviewed[1]. One strategy 
for loading DCs with TAAs in the mouse model involves 
pulsing the cells with peptides derived from tumor anti-
gens[67]. In addition, since TAAs are not well characterized 
for the majority of  tumors, vaccines can be prepared with 
whole tumor antigens[68,69]. To this end, DCs have been 
loaded with whole tumor lysates[70], apoptotic or necrotic 
cells[71] alone or conjugated with TLR ligands[72], antigens 
coated with antibodies to target them to Fcγ receptors[73] 
or peptides encapsulated in biodegradable polymers[74]. 
We have showed that inducing the expression of  danger 
signals in tumor cells by means of  replication-deficient or 
replication-restricted virus appears also to be an efficient 
method to pulse DCs for vaccination purposes, probably 
by upregulating danger signals in the tumor cells[71]. Fi-
nally, other strategies such as fusing DCs with tumor cells 
have also been successfully pursued[75]. These fused cells 
express tumor antigen but had the machinery of  the DCs 
to present these antigens to T cells.

This information regarding DC-based antitumor vac-
cines pulsing has been translated to the human, where 
clinical trials have involved, among others, DCs pulsed 
with peptides[76], whole tumor lysates[77], or fused with 
tumor cells[78-80]. Other strategies involved pulsing human 
DCs with apoptotic or necrotic cells[81-90]. As we have pre-
viously reviewed[91] controversy exists regarding whether 
necrotic or apoptotic cells are better for  pulsing DCs for 
tumor vaccination purposes[90,92-94]. Nevertheless, inducing 
tumor cell death by exposure to ultraviolet-B radiation 
seems to provide a mixture of  apoptotic and necrotic 
cells suitable for vaccination purposes DCs[95,96]. 

TAA AS GENETIC MATERIAL
Another vaccination strategy entails delivering TAAs as 
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RNA has been complexed with histidine-rich cationic 
polymers and histidylated cationic lipids. In this case, sys-
temic injections of  specific synthetic messenger(m) RNA 
encoding the human melanoma MART-1 TAA com-
plexed with polyethylene glycol ylated histidine-rich poly-
lysine and histidylated liposomes (termed lipopolyplexes) 
were able to delay the growth of  B16F10 melanoma in 
the mouse model[109]. Notably, intravenous injection of  
mannosylated liposomes containing mRNA encoding for 
the EGFP protein proved to be taken up by spleen DCs. 
Further, when mRNA for MART-1 was complexed into 
these mannosylated liposomes, a decrease in the growth 
of  B6F10 murine melanoma tumors was observed[110]. 

Another strategy is to deliver naked RNA that could 
simultaneously activate the immune response by way of  
TLR signaling. These kind of  vaccines are called “two 
component” since they deliver TAAs while simultaneous-
ly activating the immune response. It has been reported 
that two component OVA-encoding RNA vaccines con-
taining free and protamine-complexed mRNA induced 
specific immune responses activating both humoral and 
cellular immune responses against OVA-expressing tu-
mors[111]. In addition, naked RNA can be injected system-
ically, or can be administered directly to sites harboring 
high concentration of  immune cells by means of  intra-
nodal injection[112,113]. This strategy aims to directly target 
APCs in the site where they interact with T cells.

An innovative approach to RNA vaccine immuno-
therapy has been the developing of  self-replicating RNA 
vectors (replicons). These vectors encode for a RNA-
dependent RNA polymerase derived from alphaviruses 
which has the capability to amplify a plasmid-encoded 
TAA RNA[114]. This increases the availability of  TAA 
RNA and consequently, TAA protein availability. In ad-
dition, this counteracts the high degradation that naked 
RNA is subjected to upon injection. Immunization with 
RNA replicons encoding for HPV antigens was able to 
decrease the growth of  aggressive TC1 tumors, which 
carry HPV E6 and E7 antigens[115]. 

Human studies
Naked RNA vaccinations have been assayed in clinical 
settings. In particular, naked RNA encoding for several 
TAAs has been delivered intradermally inducing expres-
sion of  cytotoxic T cells in cancer patients, together with 
an improve on the clinical response in some individu-
als[116,117]. In order to enhance the effectiveness of  the 
transfection process while protecting the RNA from deg-
radation, naked RNA has also been delivered complexed 
with liposomes in human clinical studies[118]. Further, 
both in mouse and human studies, adjuvants that target 
APCs such as FLT3 and GM-CSF have been co-delivered 
in their protein state or as RNA together with the naked 
RNA vaccines in order to further activate these cells lo-
cally[118]. This strategy aims to induce a robust activation 
of  the transfected DCs in vivo, thus potentiating their mi-
gratory potential and their ability to induce the activation 
of  T cells capable of  recognizing TAAs of  interest. 

the genetic material that encodes their synthesis. Thus, 
either DNA or RNA carrying the information to synthe-
size TAAs can be administered to laboratory animals in 
preclinical studies or to patients under clinical trials with 
the aim to induce local synthesis of  TAAs. In contrast to 
delivery of  TAAs as protein/peptide formulations, the 
recombinant antigens synthesized in the cytosol of  the 
cells may enter the degradation process of  intracellular 
molecules, yielding peptides that can be directly presented 
by MHC Ⅰ molecules hence inducing a robust CD8 (cy-
totoxic) T cell immune response. To this end, numerous 
studies have been performed in order to determine the 
effectiveness of  DNA vaccination in tumor settings[49,97,98]. 
The genetic material can be administered in vivo by using 
different techniques such gene gun, ultrasound, elec-
troporation, cationic liposomes, and nanoparticles[99]. 
Alternatively, viral vectors can deliver DNA encoding for 
TAAs directly to the DCs. Viral vectors used to transduce 
human DCs[100] include recombinant adenoviruses[101-103], 
poxviruses[104], and retrovirus[100]. Lentiviruses have also 
been used to induce stable transduction of  human he-
matopoietic stem cells or DCs[105,106]. These vectors have 
the advantage of  infecting non-dividing cells, therefore 
being excellent tools to express different molecules in 
terminally differentiated DCs which have lost the capabil-
ity to duplicate. Moreover, hematopoietic stem cells have 
been transduced with lentiviruses and then differentiated 
into antigen-expressing DCs[107]. The full scope of  DNA 
vaccination has been extensively reviewed in the literature 
and will not be discussed here.

RNA VACCINES
An alternative approach for delivering TAAs as genetic 
material is the use of  RNA for vaccinations. The advan-
tage of  RNA vaccination in comparison to DNA vac-
cination is that there is no danger of  genome integration 
with the latent possibility of  oncogene activation, and 
that there is no need to engineer expression vectors for 
delivery. On the contrary the expression of  the antigens 
in the context of  RNA delivery is transient, and then 
RNA is very labile as compared to DNA. Both DNA and 
RNA vaccines in addition to carrying TAAs have the po-
tential to non-specifically stimulate the immune response 
upon recognition of  CPG sequences by TLR9 (DNA) or 
by activation of  TLR3 (RNA). RNA vaccination strate-
gies involve naked RNA delivery or the pulsing of  DCs 
with RNA molecules. Further, both whole tumor RNA 
or TAA specific RNA have been used as inducers of  an-
titumor immunity.

VACCINES WITH NAKED RNA
Murine studies
Several murine studies describe the use of  naked RNA 
for vaccination purposes. The naked RNA can be admin-
istered by injection or delivered intradermally through 
electroporation[108]. In order to decrease degradation, the 
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USE OF RNA-PULSED DCS FOR 
ANTITUMOR THERAPIES 
Mouse studies
Foundational studies evaluating the effectiveness of  
DC-based RNA vaccination in the mouse model and in 
humans were performed by Dr Eli Gilboa. In 1996 his 
group was able to demonstrate that murine DCs pulsed 
with whole tumor RNA were able to induce a robust 
antitumor immune response in a mouse model of  mela-
noma[119]. Shortly after, they were able to demonstrate 
the feasibility of  this approach in a preclinical setting, 
inducing specific T cell responses in vitro by pulsing hu-
man monocyte-derived DCs with the carcinoembryonic 
antigen (CEA) antigen[120]. Since then, a multitude of  
studies have built on these successes in order to generate 
efficient DC-based RNA vaccines. 

In animal experimental models, the efficacy of  RNA-
pulsed DC vaccination has been extensively tested. Col-
lectively, vaccinated animals showed a decrease in tumor 
growth together with the activation of  tumor specific 
cell-mediated immunity. In particular, murine DCs have 
been pulsed with whole tumor RNA as a source of  
TAAs[121-125]. Interestingly, we have previously reported 
that DCs pulsed with whole tumor RNA are more ef-
fective in inducing antitumor immune responses than 
DCs loaded with equivalent amounts of  apoptotic tumor 
cells[126]. In order to enhance antigen presentation by DCs 
and the consequent efficacy of  the vaccination procedure, 
DCs have also been pulsed with specific TAA mRNA 
replicons[127]. As described above, these constructs aim to 
increase the amount of  TAA RNA present in the APCs 
with the consequent increase in the levels of  expression 
of  the antigen. 

Other strategies designed to increase the effectiveness 
of  DC-based RNA vaccination entailed pulsing DCs with 
TAA mRNA together with mRNA of  cytokines such as 
GM-CSF and particularly IL-12[128-131], the rationale being 
that these cytokines will potentiate the degree of  activa-
tion of  the pulsed DCs. 

Alternative strategies focused on enhancing the pro-
cessing of  the nascent TAA in the transfected DCs. To 
this end, studies pulsing DCs with RNA encoding for 
TAAs fused with molecules that augment the delivery of  
the synthesized proteins to the endoplasmic reticulum, 
TAAs RNA linked with ubiquitin RNA to target the 
ubiquitin-proteosome pathway, MHC Ⅰ and Ⅱ pathways 
by fusion with LAMP1 or DC. LAMP sequences, or 
with immunogenic helper proteins such as EGFP have 
been used[97,132-134]. In this way, cytoplasmic TAAs will 
be more efficiently processed by the ER, increasing the 
levels of  TAAs peptides presented in the context of  
MHC Ⅰ molecules on the surface of  the DCs.

Finally, others strategies to potentiate the efficacy of  
DC-based RNA vaccines entail the use of  different matu-
ration cocktails or immunostimulatory factors to activate 
the RNA-pulsed cells. For example, soluble CD40 has 
been shown to act as an adjuvant for cytokine treatment 

of  RNA-pulsed DCs increasing the generation of  cyto-
toxic T cells in a an experimental model of  melanoma[135]. 

Human preclinical
In order to optimize the likelihood of  effective transla-
tion into the clinic, human DCs have been prepared from 
monocytes recovered from apheresis products or by dif-
ferentiation of  CD34+ hematopoietic precursors[136,137]. 
As above, whole tumor RNA or mRNA can be used to 
transfect these cells by electroporation or lipofection[137,138]. 
In addition, RNA recovered from tumor cells lines can 
be used to pulse human DCs. For example, whole RNA 
from KL562 leukemia cells was delivered to monocyte-
derived DCs by electroporation and lipofection being 
the transfected RNA degraded within 24 h. Notably, 
the translated TAA proved to be processed through the 
MHC-I presentation pathway rather than the endosomal-
phagocytic pathway indicating that these DCs could be 
able to activate CD8 cytotoxic T cells[139]. Interestingly, 
not only monocyte or hematopoietic CD34+ derived DCs 
have been tested in RNA vaccination studies. Indeed, 
DCs directly recovered from hepatocellular carcinoma 
patients could be efficiently pulsed with whole RNA re-
covered from hepatic cancer cell lines[140]. 

It has been determined that better expression of  
TAAs after transfection with whole tumor RNA is 
achieved when antisense RNAs are eliminated from the 
whole tumor RNA preparation[141]. This highlights the 
need to prepare high quality RNA for transfection stud-
ies. Further, although most of  DC protocols (both in 
mouse and human) propose to induce maturation of  
these cells after RNA transfection, a study suggests that 
RNA transfection of  DCs can also be performed after 
maturation of  these cells[142]. Taking into account studies 
indicating the viability of  cryopreserved mature human 
DCs[143], this opens the possibility of  transfecting DCs 
right before administration to patients.

Human DCs transfected with tumor RNA have been 
shown to elicit specific T cell responses in vitro. This 
was demonstrated by their ability to generate TAA spe-
cific T cell lines, or by activating ex vivo TILs recovered 
from cancer tissues. For example, DCs transfected with 
survivin or TERT RNA were used to generate CD8 cy-
totoxic cell lines with the capability to eliminate tumor 
cell lines and primary tumors in vitro[144,145]. Further, RNA 
recovered from prostate tumor samples by laser capture 
microdissection was amplified and used to transfect DCs 
generated from blood precursors. It was shown that these 
DCs were able to induce cytotoxic T cells in vitro[146]. 

As described above, mouse studies determined that 
RNA encoding for TAAs can be engineered to enhance 
the capability of  the DCs to process the nascent anti-
gens. To translate these results into the human setting, 
DCs generated from human monocytes were transfected 
with mRNA encoding for the TERT antigen fused with 
LAMP in order to augment the processing of  the TAA 
upon translation. This strategy induced a robust activa-
tion of  CD4 T cells specific for TERT as determined in 
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in vitro studies[147]. 

Human clinical studies
Several clinical trials have been conducted in order to 
evaluate the efficacy of  DC-based RNA vaccines in 
cancer patients. In these clinical trials, the vaccines were 
generated by pulsing monocyte-derived DCs either with 
whole tumor RNA or specific TAA RNA. Altogether, 
human clinical studies highlight that the administration 
of  DC-based RNA vaccines is safe and does not induce 
adverse reactions. For example, in a phase Ⅰ clinical trial 
involving acute myeloid patients aiming to generate clinical 
grade DC vaccines, monocyte-derived DCs were pulsed 
with in vitro transcribed RNA encoding the Wilm’s tumor. 
Then, these cells were injected repeatedly into patients 
by the intramuscular route[148]. The results of  this study 
indicated that the vaccination scheme was well tolerated 
by the patients[148]. This was also observed in a clinical 
trial involving stage Ⅳ malignant melanoma patient[149]. 
In this case, DCs were pulsed with whole tumor RNA 
expanded in vitro but no positive effect of  the vaccina-
tion was observed. This is no surprising taking into ac-
count the advanced stage of  the illness, but nevertheless 
the study highlights the safety of  using this procedure 
for antitumor therapies. Other studies showed that DC-
based RNA vaccination is able to induce specific T cell 
responses in cancer patients. In particular, in a clinical 
trial involving relapsed metastatic ovarian cancer patients, 
DCs pulsed with mRNA specific for folate receptor α 
were able to induce a large population of  effector mem-
ory CD8 cytolytic T cells reactive to the antigen upon 
repeated injections[150]. Similarly, specific T cell responses 
were observed in colorectal cancer patients receiving 
several injections of  DCs harboring CEA mRNA[151]. In 
addition, it has been shown that patients vaccinated with 
DCs transfected with mRNA recovered from autologous 
melanoma tumor cells were capable of  initiating T cell 
responses specific to antigens encoded by the pulsed 
APCs[152]. Finally, in order to ensure a robust activation of  
T cells, strategies designed to deliver the transfected DCs 
directly to the lymph nodes have been tested. In a phase
Ⅰ/Ⅱ clinical trial with melanoma patients it has been 
shown that upon intranodal administration, DCs electro-
porated with mRNA encoding for gp100 or tyrosinase 
migrate towards T cells areas of  the lymph node [153].  

CONCLUSION
In closing, in the last 15 years, a growing body of  lit-
erature has argued for the use of  RNA for vaccination 
purposes. Importantly, RNA is safer than DNA vaccine 
approaches taking into account that no possibility of  ge-
nomic integration exists. Furthermore, the combination 
of  RNA technology with DC-based vaccines has made 
available a powerful strategy for antitumor therapies. 
Advances in RNA technology (i.e., strategies to increase 
stability, use of  replicons), together with the develop-
ment of  more effective protocols for generating activated 

DCs (i.e., use of  better inflammatory cocktails) and an 
increase in our knowledge of  tumor immunology (i.e., the 
use of  immunoablative therapies to eliminate suppressor 
populations) will guide further pursuit of  tumor immu-
notherapies using DC-based RNA vaccines. This offers 
the potential to advance the outcome of  cancer immuno-
therapies for the benefit of  patients.
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