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Abstract
BACKGROUND
Obesity is a risk factor for colorectal cancer, yet metabolic distinctions between
healthy right and left colon tissue, before cancer is diagnosed, remains largely
unknown. This study compared right-ascending and left-descending colon tissue
metabolomes to identify differences from the stool metabolome in normal weight,
overweight, and obese adults.

AIM
To examine right and left colon tissue metabolites according to body mass index
that may serve as mechanistic targets for interventions and biomarkers for colon
cancer risk.

METHODS
Global, non-targeted metabolomics was applied to assess right-ascending and
left-descending colon tissue collected from healthy adults undergoing screening
colonoscopies to test the hypothesis that BMI differentially impacts colon tissue
metabolite profiles. The colon tissue and stool metabolome of healthy adults (n =
24) was analyzed for metabolite signatures and metabolic pathway networks
implicated in progression of colorectal cancer.
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RESULTS
Ascending and descending colon contained 504 host, food, and microbiota-
derived metabolites from normal weight, overweight and obese adults grouped
according to body mass index. Amino acids, lipids, and nucleotides were among
the chemical types that further differentiated from the stool metabolite profiles.
Normal weight adults had 46 significantly different metabolites between
ascending and descending colon tissue locations, whereas there were 37
metabolite differences in overweight and 28 metabolite differences for obese
adults (P < 0.05). Obese adults had trimethylamine N-oxide, endocannabinoids
and monoacylglycerols with different relative abundances identified between
ascending and descending colon. Primary and secondary bile acids, vitamins, and
fatty acids also showed marked relative abundance differences in colon tissue
from overweight/obese adults.

CONCLUSION
There were metabolite profile differences between right-ascending and left-
descending colon tissue in healthy adults. Colon lipids and other metabolites in
obese and overweight adults were distinguished from normal weight
participants and associated with gut inflammation, nutrient absorption, and
products of microbiota metabolism.

Key words: Colon; Ascending; Descending; Metabolomics; Obesity; Stool
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Core tip: This study identified metabolite profile differences between right-ascending and
left-descending colon from normal, overweight or obese adults. We also show that stool
metabolite composition does not accurately reflect the right-ascending colon. There is
limited knowledge of human colon small molecules and metabolite signatures that may
impact colon cancer risk. Colon cancer of the right-ascending colon has a poorer
prognosis and reduced survival outcome when compared to colon cancer on the left-
descending colon. Diet and lifestyle are additional factors of overweight and obesity that
may influence colon tissue metabolite composition with respect to inflammation. Right
and left colon metabolite profiles may be helpful to evaluate after interventions that seek
to prevent or mitigate cancer risk.

Citation: Baxter BA, Parker KD, Nosler MJ, Rao S, Craig R, Seiler C, Ryan EP. Metabolite
profile comparisons between ascending and descending colon tissue in healthy adults. World
J Gastroenterol 2020; 26(3): 335-352
URL: https://www.wjgnet.com/1007-9327/full/v26/i3/335.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i3.335

INTRODUCTION
Body mass index (BMI) of 30% or greater is an established risk factor for colon cancer
in men and women[1,2].  Obesity is a complex lipid-storage disease with metabolic
aberrations  locally  in  the  gut  and systemically  in  the  host  that  increase  risk  for
multiple chronic diseases[3]. Similar relationships occur for obesity and the incidence
of larger (vs smaller) colon adenomas[3,4]. Weight gain from early to middle adulthood
increases risk[5], whereby middle-aged obese adults had a 60% increase risk of right-
side colon cancer compared to the left-side[6]. We and others have previously shown
that stool reveals changes in microbial communities[7], and modulation by diet[8], yet
this may not accurately reflect metabolic differences between the right and left side
colon tissue[9].

Right-cancer patients have a worse prognosis with a median survival of 76.6 mo
while  left-sided  have  median  survival  of  101  mo[10]  and  right-sided  tumors  are
significantly larger in size with a higher tumor grade when compared to left side
colon cancer[11,12]. African American and non-Hispanic blacks have 24% greater odds of
right-sided colon cancer[13]. Physical inactivity, excess body weight, alcohol, smoking,
and a central deposition of adiposity are consistent risk factors for colorectal cancer.

WJG https://www.wjgnet.com January 21, 2020 Volume 26 Issue 3

Baxter BA et al. Metabolite profile of colon tissue

336

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


High consumption of red meat more than 3 times/wk has been associated with 2-fold
increased risk for colon cancer and these food components merit attention in the
tissue of healthy adults[14].

Metabolomics is a high- throughput screening methodology that is sensitive for
detection  of  exogenous  and endogenous  (microbial,  host  and food)  products  of
metabolism[15] and can aid in identification of disease risk biomarkers[16]. Metabolite
profiling analysis of ascending and descending colon tissue was conducted herein to
assess metabolic differences between colon locations that differ from stool. This study
utilized normal weight,  overweight and obese adults for investigation of colonic
compounds that may impact colon cancer risk[17]. Metataxonomics of colon tissue by
location has varied results[18,19] and provided rationale for using metabolomics. The
major objective of this study was to identify metabolic pathways that distinguished
ascending  and  descending  colon  tissue  and  to  reveal  metabolites  altered  by
overweight  and obesity that  may pose elevated risks  for  developing cancer.  We
hypothesized that lipids (e.g., fatty acids, bile acids, phospholipids, monoacylglycerol,
and endocannabinoids) are distinct in type and abundance between the ascending
and descending colon, and that colon tissue metabolomes will differ according to BMI
when compared to stool in overweight and obese adults.

MATERIALS AND METHODS

Study design- participant recruitment
Ninety-three healthy adults were contacted prior to a scheduled colonoscopy in Fort
Collins CO. Forty adult males and females provided written informed consent to
collect a stool sample and an ascending and descending colon tissue biopsy. Twenty-
four individuals (colon and stool)  were assessed for non-targeted metabolomics.
Eligible  participants  were  provided  a  stool  kit  and  study  instructions.  The
gastroenterology clinical nurses and research staff confirmed study code number
assignments and ensured the completed de-identification at the site of colonoscopy
procedure. Colorado State University study personnel were contacted by clinic staff
for sample retrieval immediately following procedure. Three study groups were BMI
20-24.9 for normal weight (n = 9), BMI 25-29.9 for overweight (n = 9) and BMI 30+ for
obese (n = 6) adults. One normal weight female (BMI 24) had the right and left colon
and stool sample applied for metataxonomic analysis (16S rRNA gene sequencing).
Participant’s inclusion criteria for this study were at least 18 years of age, a scheduled
routine colonoscopy, no prior history of colorectal cancer diagnosis, non-smoker, and
not having taken antibiotics for at  least  one month prior to the standard of care,
routine screening colonoscopy.

The  colon  tissue  collected  for  this  study  was  visually  determined  by  the
gastroenterologist performing the procedure to be normal, healthy tissue without
polyps.  Each  participant  had  an  about  5  mm  biopsy  of  ascending  (right)  and
descending  (left)  colon  tissue  and  a  self-collected  stool  sample  prior  to  bowel
preparation.  Colonoscopy was  completed  by  Centers  for  Gastroenterology-Fort
Collins  and University  of  Colorado-Health  North  Gastroenterology Clinic  (Fort
Collins, CO, United States). Samples were de-identified for personal information and
study  ID  coded  before  storage  and  metabolite  processing  at  Colorado  State
University. The number of polyps removed by the doctor with the respective location
was provided following the procedure. This study received IRB approval, and include
protocol  number;  Colorado State  University  IRB No.  15-6051,  and University  of
Colorado Health IRB No. 0010144. Participants in this study had no history of diseases
related to the liver or biliary tract and they did not have previous procedures such as
cholecystectomy or ileal resections. This study did not collect information regarding
the family history of colorectal cancer and did not perform hereditary genetic or epi-
genetic  screening  history  on  the  patients.  Table  1  shows  the  study  participant
characteristics.

Colon tissue and stool sample collection
Stool  samples  were  self-collected  by  participants  in  a  pre-labeled  study  coded
container and frozen at -80 °C. Approximately 5 mm of normal healthy colon tissue
were stored immediately at -80 °C following collection. Samples were shipped on dry
ice to Metabolon, Inc. (Durham, NC, United States) and a single participant sample
underwent DNA extraction for metataxonomics.

Sample accessioning and preparation
Tissue  and  stool  metabolite  extraction  was  completed  using  80%  methanol  as
previously  described[7],  prior  to  ultrahigh  performance  liquid  chromatography-
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Table 1  Characteristics of the study participants (n = 24)

Characteristics Total (n = 24) Normal (n = 9) Overweight (n = 9) Obese (n = 6)

Sex

Males 5 0 4 1

Females 19 9 5 5

BMI (mean ± SD, kg/m2) 27.6 ± 5.8 22 ± 1 26.7 ± 1.3 35 ± 5

Total number of people with polyps removes 14 6 4 4

Total number polyps removed - 14 13 22

Polyp Location

Cecum - 1 0 3

Ascending - 6 2 10

Transverse 2 1 1

Sigmoid - 2 4 6

Rectum - 0 6 0

Descending - 3 0 2

History of hypertension

Yes 6 2 3 2

No 18 7 6 4

History of type 2 diabetes

Yes 3 0 2 1

No 21 9 7 5

Taking dietary supplements

Yes 14 4 8 2

No 10 5 1 4

Smoking history

Past smoker 9 2 6 1

Never 15 6 4 5

No participants had cancer detected from the screening exam. BMI: Body mass index.

tandem mass spectroscopy (UPLC-MS/MS) as completed by Metabolon, Inc. Positive
and negative ion modes were chosen to provide broad, non-targeted detection of
metabolites.

Samples  were  extracted  using  the  automated  MicroLab  STAR®  system  from
Hamilton Company. A set of recovery standards were added prior to the first step in
the extraction process for quality control purposes. To remove protein, dissociate
small molecules bound to protein or trapped in the precipitated protein matrix, and to
recover chemically diverse metabolites, proteins were precipitated with methanol
under  vigorous  shaking  for  2  min  (Glen  Mills  GenoGrinder  2000)  followed  by
centrifugation. The resulting extract was divided into five fractions: two for analysis
by two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode
electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion
mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and
one sample was reserved for backup. Samples were placed briefly on a TurboVap®

(Zymark) to remove the organic solvent. The sample extracts were stored overnight
under nitrogen before preparation for analysis.

UPLC-MS/MS analysis
The UPLC-MS/MS portion of the platform was based on a Waters ACQUITY ultra-
performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high
resolution/accurate  mass  spectrometer  interfaced  with  a  heated  electrospray
ionization  (HESI-II)  source  and Orbitrap mass  analyzer  operated at  35000  mass
resolution. The protocol has been previously described by our lab[7].

Data extraction and compound identification
Raw data were extracted, peak-identified, and processed using Metabolon’s hardware
and software. Compounds were identified by comparison to library entries of purified
standards or recurrent unknown entities as previously described[7].

Statistical analysis
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Healthy colon tissue or stool metabolite profiles were semi-quantified in terms of
relative abundance and median scaled to 1.  Fold differences were calculated for
normal weight, overweight and obese (colon tissue and stool) and for colon tissue
between  ascending  and  descending  sites.  A  matched-pairs  2-way  ANOVA was
completed using the scaled relative abundance of  each metabolite,  experimental
groups  in  ArrayStudio  on  log  transformed  data,  were  used  for  normal  weight,
overweight  and  obese.  Metabolite  profile  distinctions  between  ascending  and
descending colon tissue were evaluated using P < 0.05 for statistical significance with
matched pair t-test. An estimate of the false discovery rate (Q value) was calculated to
account the multiple comparisons across metabolites that are typical of metabolomics-
based studies with a Q value ≥ 0.01. A linear regression analyses for colon metabolites
were preformed to compare the groups with polyp removal to no polyp removal,
after adjusting for the effect of weight category of the subjects.

Principal  component  analysis  and  hierarchical  clustering  were  applied  to
understand  the  similarities  and  differences  between  samples  and/or  groups  of
samples in a complex dataset. Unsupervised clustering was performed using the ward
D2 method[20]. Random forest (RF) analysis, a supervised classification technique, was
applied  for  identifying  candidate  biomarkers.  To  determine  which  variables
(biochemicals) make the largest contribution to the classification of BMI, a “variable
importance” measure was computed. We used the “Mean Decrease Accuracy” as this
metric prediction accuracy[21].

Metataxonomics: Sample handling and DNA extraction, sequence read processing,
and feature table analyses
DNA  was  extracted  from  colon  tissue  and  stool  with  the  MoBio  PowerSoil  Kit
according to manufacturer protocols. Amplification of the V4 region of the 16S rRNA
gene  and  amplicon  sequencing  followed  the  standards  outlined  by  the  Earth
Microbiome Project. Raw FASTQ-formatted forward reads were imported into the
Quantitative Insights Into Microbial Ecology 2 (QIIME 2) platform[22]. A feature table
comprised of amplicon sequence variants (ASVs) was inferred from reads using the
DADA2 algorithm[23]. Taxonomy was assigned to each representative ASV sequence
using Naïve Bayes classifiers trained against 99% OTU reference collections from
Greengenes 13_8 or SILVA 132. The raw feature table, representative sequences, and
taxonomy tables  were  exported from QIIME 2  for  further  processing using R[24].
Following  import,  a  master  table  comprised  of  ASV  IDs  with  corresponding
representative sequences,  full  and truncated Green-genes and SILVA taxonomic
lineages, and absolute abundances for all ASVs within each sample was constructed.
This  master  table  served  as  the  entry  point  for  all  downstream  processing  and
analysis. Comparisons of microbiota composition proceeded from the compositional
data analysis paradigm with count zero multiplicative replacement prior to applying
the  centred  log-ratio  (clr)  transformation[25].  Taxon  abundance  are  depicted  as
proportions (i.e., relative abundances). Supplemental Methods for additional details
regarding  amplification  conditions,  library  preparation,  sequencing,  and  a
comprehensive account of analytical approaches.

Data availability
Metataxonomics sequence data supporting the conclusions of this manuscript are
available via NCBI SRA BioProject Accession PRJNA594611 and on this project’s
GitHub repository located at github.com/kdprkr/ConjurersBrew, along with each of
the materials needed to reproduce the analysis.

RESULTS

Colon tissue and stool  metabolomes of  normal  weight,  overweight  and obese
adults
The stool metabolome of healthy adults classified according to BMI as normal weight,
overweight or obese had a total of 842 named compounds (Supplemental Table 1).
The 842 stool metabolites consisted of 175 amino acids, 26 peptides, 33 carbohydrates,
11  energy,  345  lipids,  46  nucleotides,  47  cofactors  and  vitamins,  and  159  were
classified as exogenous and referred to as xenobiotics. There were 98 stool metabolites
that  significantly  differ  according  to  BMI  were  22  amino  acids,  1  peptide,  8
nucleotides,  2  cofactors  and  vitamins,  9  xenobiotics  and  56  lipids.  Principal
component analyses (PCA) for the stool metabolome (Supplemental Figure 1A) and
hierarchal clustering (Supplemental Figure 1B) did not clearly separate participants
by  BMI  groups.  The  504  colon  metabolites  with  known  identity  and  44
unnamed/unknown compounds from 24 male and female participants are provided
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in  Supplemental  Table  2.  The  colon  metabolome  contained  93  amino  acids,  13
peptides,  35 carbohydrates,  10 metabolites  were classified under TCA cycle  and
oxidative phosphorylation and there were 20 cofactors and vitamins. The largest
portion of the colon tissue metabolome were lipids (about 50%, 262 lipid metabolites)
that span 40 sub-metabolic pathways. Other notable small molecules from colon were
38 nucleotides and 32 exogenous, xenobiotic metabolites. Fourteen out of twenty-four
healthy participants  had 1-14 polyps removed during screening colonoscopy.  A
regression analysis for colon metabolites adjusting for the effect of weight was done,
revealing 17 colon metabolites that had lower expression correlated with polyps
removed  (Supplemental  Table  3).  Figure  1A,  shows  2-arachidonoylglycerol,  3-
phosphoglycerate,  and  6-phosphogluconate  had  a  lower  relative  abundance  in
ascending and descending tissue from participants with polyps removed. Figure 1B-
C, shows 1-dihomo-linolenylglycerol, aspartate, and glycerophosphorycholine (GPC)
with lower expression in ascending colon tissue, while glutarate (C5-DC), and 2-
hydroxyarachidate had lower expression in descending tissue from participants with
polyps removed (Figures 1B and C).

Random  forest  analysis  of  colon  tissue  comparing  normal  weight  vs
overweight/obese yielded 30 metabolites with a predictive accuracy of 56% for the
overweight/obese  phenotype  (Supplemental  Figure  2A).  BMI  associated  colon
metabolites were bile acids and cofactors/vitamins (e.g., biliverdin, alpha-tocopherol,
and  pyridoxate).  The  predictive  accuracy  for  metabolites  in  ascending  versus
descending colon was 73%, and 24 of the top 30 metabolites were classified as lipids
(Supplemental Figure 2B). Table 2 further shows the 12 metabolites with statistically
significant fold difference identified in right/left colon tissue and in stool by BMI
comparisons. Figure 2 shows lipids that are significantly different between weight
groups for colon tissue and stool (P < 0.05). The phospholipid, trimethylamine N-
oxide (TMAO), was 2.80-fold difference from ascending in obese adults, and 6.23-fold
difference from stool in overweight adults when compared to normal weight adults
(Figure  2A).  Endocannabinoids,  l inoleoylethanolamide  (2.11-fold)  and
oleoylethanolamide (1.60-fold) difference from ascending in normal weight adults
and decrease in stool of obese adults (Figure 2B). Furthermore, the median scaled
relative abundance of primary and secondary bile acids (chenodeoxycholate 2.89-fold
and 0.41-fold, cholate 0.55-fold, and taurodeoxycholate 1.49-fold) had significant
differences  by  colon  location  and  stool  (Figure  2C).  The  primary  bile  acid,
chenodeoxycholate is 2.89-fold difference from ascending in normal weight and 0.41-
fold difference from descending in overweight adults, while 21.80-fold difference in
stool of overweight adults when compared to normal weight. Cholate is 0.55-fold
difference from obese descending colon and 61.06-fold difference from overweight
stool  when  compared  to  normal  weight  (Figure  2C).  The  secondary  bile  acid,
taurodeoxycholate,  had 1.49-fold difference from ascending colon in overweight
adults and 9.32-fold difference in stool of overweight adults compared to normal
weight (Table 2 and Figure 2C).

BMI differentiates ascending and descending colon lipids
We next utilized metabolomics to distinguish ascending and descending colon tissue.
There were 87 metabolites  with statistically  significant  fold differences  between
ascending vs  descending colon by BMI. These included, 46 metabolites in normal
weight,  37  metabolites  in  overweight,  and 28 metabolites  in  obese.  Notably,  the
number of metabolites distinguishing ascending and descending colon decreased as
BMI increased. We found that 62% of the metabolites distinguishing ascending and
descending colon were lipids. Table 3 shows 54 colon tissue lipids with statistically
significant fold difference between ascending and descending colon. In normal weight
adults there were 29 colon lipids, 24 of which were fatty acids and lysophospholipid
(1.48-fold – 2.16-fold difference) from ascending, and 5 that were from descending
colon. Overweight adults had 24 significantly different colon lipids; 11 metabolites
from ascending, (8 derived from monoacylglycerols 1.67-fold – 2.61-fold), and 13
metabolites with higher abundance from descending tissue (Table 3). Obese adults
had  the  fewest  significant  differences  in  colon  lipids  between  ascending  and
descending tissue (15 identified metabolites). Table 3 shows 4 metabolites increased in
ascending tissue and 11 increased in descending tissue that were primarily fatty acids.
Figure 3 shows median scaled relative abundance of right and left colon tissue lipids,
including those that are food derived long chain fatty acids and microbiome-products.
The long chain fatty acids; palmitate 1.35-fold, arachidate 1.35-fold, and stearate 1.39-
fold from ascending tissue in normal weight, and palmitate 0.73-fold, arachidate 0.69-
fold, and stearate 0.68-fold from descending tissue in obese adults (Figure 3A). Figure
3B shows microbiome-influenced metabolites that show significant fold difference in
colon; 15-HETE from ascending tissue is 1.69-fold in normal weight and 1.93-fold in
obese while, 3-hydroxybutyrate is 0.48-fold from descending in normal weight, and 2-
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Figure 1

Figure 1  Comparison of colon tissue metabolites between adults with and without polyps. A: Colon metabolite abundance differences from both ascending and
descending colon; B: Metabolite abundance in ascending colon; C: Metabolite abundance in descending colon. Statistical significance was examined using linear
regression analysis (aP < 0.05).

archidonoylglycerol is 1.68-fold from ascending tissue in overweight adults (Figure
3B). This study suggests as BMI increases lipid diversity decrease in the colon and
primarily in the ascending colon.

Ascending and descending colon tissue and stool microbiota composition
To explore associations of taxonomic groups with ascending colon, descending colon,
and stool in a healthy weight adult female, we constructed a compositional PCA
biplot from centred log-ratio transformed relative abundances. We observed marked
separation across all three sample types at the phylum-, family-, and genus-levels.
(Figure 4, Supplementary Table 4). Differences between ascending and descending
colon were driven by increased abundance for several taxa in the Firmicutes phylum,
including  Anaerostipes,  Blautia,  Dorea,  and  Fusicatenibacter  (all  members  of  the
Lachnospiraceae  family),  as  well  as  Streptococcus  and Romboutsia  (members  of  the
Streptococcaceae and Peptostreptococcaceae families, respectively). Stool samples were
also  differentiated  by  the  genus  Bifidobacterium  (a  member  of  the  phylum
Actinobacteria). Comparisons of the composition between colon samples (ascending
versus  descending)  indicated  enrichments  for  Bacteroides,  Ruminiclostridium  9,
Ruminococcus gnavus,  and Tyzzerella  in the ascending colon, while the descending
colon harbored more Barnesiella, Faecalibacterium, Parabacteroides, Parasutterella, and
Roseburia (Figure 4C and Supplemental Table 4).

DISCUSSION
This study demonstrated colon tissue metabolite profile differences between normal
weight, overweight and obese adults, and metabolic distinctions between ascending
and descending colon within each of the BMI groups. A healthy human colon tissue
metabolome had not previously been established across multiple metabolic pathways
and  revealed  504  known  metabolites  in  both  ascending  and  descending  colon
locations. Metabolomics has been widely employed for understanding changes that
may result  from colon metabolism,  but  the  actual  metabolite  measurements  for
association with gut health have been from plasma[26],  urine[27],  stool[7,9],  and from
cancerous tissue [28] or other digestive disease conditions[29].

Our  findings  support  that  a  healthy  normal  weight  colon  tissue  metabolome
involves complex lipid metabolism and that differences in lipid metabolite abundance
between  the  right  and  left  colon  is  associated  with  regulation  of  body  weight.
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Table 2  Fold-differences of colon and stool metabolites

Sub
path-
way

Bioche-
mical
name

Fold difference colon ascending/descending Fold difference stool BMI comparisons

NW P value OW P value OB P value Ow NW P value OB NW P value OB OW P value

Methio-
ne,
Cysteine,
SAM
and
taurine
metabo-
lism

N-
acetylglut
-amine

1.47 0.027 1.15 0.412 1.13 0.534 1.20 0.711 3.44 0.029 0.35 0.096

Endoca-
nnabino
-id

Oleoyl-
ethanola-
mide

1.6 0.038 1.06 0.790 1.55 0.109 0.23 0.261 1.94 0.174 0.12 0.026

Linoleoyl
ethanola-
mide

2.11 0.005 1.26 0.351 1.52 0.171 0.21 0.172 2.49 0.146 0.08 0.012

Phosph-
olipid
metabo-
lism

Trimethy
-lamine
N-oxide

0.92 0.832 1.02 0.969 2.8 0.049 1.47 0.494 6.23 0.025 0.24 0.149

Phosph-
atidylet-
hanola-
mine

1-
palmitoyl
-2-oleoyl-
GPE
(16:0/18:
1)

0.77 0.145 0.66 0.029 0.7 0.113 2.63 0.044 2.57 0.244 1.02 0.322

Lysoph-
ospholi-
pid

2-
palmitoyl
-GPC
(16:0)1

1.52 0.019 1.18 0.317 0.93 0.709 0.84 0.667 2.81 0.061 0.30 0.039

1-
linoleoyl-
GPG
(18:2)1

1.55 0.030 1.26 0.239 1.05 0.819 1.25 0.335 3.45 0.001 0.36 0.010

Primary
bile acid
metabo-
lism

Cholate 1.12 0.612 0.84 0.447 0.55 0.041 3.13 0.512 61.06 0.019 0.05 0.114

Chenode-
oxychola
-te

2.89 0.049 0.41 0.094 0.9 0.872 0.76 0.697 21.80 0.005 0.03 0.004

Secon-
dary
bile acid
metabo-
lism

Taurodeo
-xycholate 
    

1.13 0.482 1.49 0.027 0.78 0.249 0.43 0.434 9.32 0.080 0.05 0.024

Pyrimid
-ine
metabo-
lism,
cytidine
contain-
ing

Cytidine 1.93 0.036 1.46 0.216 1.12 0.748 1.25 0.469 2.06 0.047 0.61 0.249

1Not officially confirmed, but confident. Values presented are fold-change of the mean relative abundance within ascending verses descending colon tissue
and BMI comparisons from stool. Bold indicates P value < 0.05. NW: Normal weight; OW: overweight; OB: Obese; BMI: Body mass index.

Differences  were  identified  for  right  and  left  colon  metabolites  from  the
endocannabinoid pathway that may signify control over energy metabolism, which
regulates appetite, lipolysis, and energy expenditure. The endocannabinoid pathway
is implicated in both homeostatic and hedonic food intakes that result in increased
hunger [ 3 0 ] .  Specif ic  endocannabinoids,  such  as  the  monounsaturated
oleoylethanolamide,  saturated  palmitoylethanolamide  and  polyunsaturated
linoleoylethanolamide showed higher relative abundance in normal weight adults
from ascending colon compared to descending colon, and relative higher abundance
from stool in overweight adult compared to normal weight. These lipids are also
important  for  regulating  metabolism  in  immune  and  neuronal  cells [ 3 1 ] .
Oleoylethanolamide levels in the mucosal layer of the proximal small intestine was
shown  to  increase  with  nutrient  availability  and  may  be  another  factor  in  the
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Table 3  Colon lipid metabolites with fold-differences by colon location and body mass index

Sub pathway Biochemical name
Fold difference ascending/descending

NW P value OW P value OB P value

Long chain fatty acids Palmitate (16:0) 1.3 0.02 1.0 0.75 0.7 0.04

5 1 4 4 3 4

Margarate (17:0) 1.2 0.13 0.8 0.33 0.7 0.03

1 1 8 1 7

Stearate (18:0) 1.3 0.01 0.9 0.61 0.6 0.01

9 3 4 5 8 6

Oleate/vaccenate (18:1) 1.5 0.04 1.2 0.36 0.9 0.80

8 5 4 0

Nonadecanoate (19:0) 1.1 0.29 0.8 0.26 0.6 0.01

2 8 5 9 1

Arachidate (20:0) 1.3 0.02 0.9 0.56 0.6 0.02

5 5 3 4 9 5

Eicosenoate (20:1) 1.4 0.04 1.1 0.56 1.0 0.88

8 1 1 2 3 3

Erucate (22:1n9) 1.5 0.03 1.0 0.81 1.1 0.47

2 1 4 1 8 2

Polyunsaturated fatty acid Dihomo-linolenate (20:3n3 or n6) 1.5 0.04 1.2 0.28 1.1 0.56

9 1 6 5 6 7

Dihomo-linoleate (20:2n6) 1.6 0.01 1.1 0.41 1.2 0.46

8 7 8 7 3

Fatty acid, dicarboxylate Dodecadienoate (12:2)1 0.9 0.64 0.8 0.26 0.7 0.03

5 5 7 1 1 2

Ketone bodies 3-hydroxybutyrate (BHBA) 0.4 0.00 0.9 0.90 1.0 0.82

8 5 7 4 7 5

Fatty acid, metabolism (Acyl choline) Linoleoylcholine1 1.2 0.34 1.1 0.62 2.0 0.02

6 4 3 6 1

Fatty acid, monohydroxy 2-hydroxystearate 1.3 0.04 0.9 0.67 0.7 0.13

2 5 7 9 5

Eicosanoid 15-HETE 1.6 0.04 1.1 0.51 1.9 0.03

9 5 8 5 3 9

Endocannabinoid Oleoyl ethanolamide 1.6 0.03 2.2 0.79 1.5 0.10

8 3 5 9

Palmitoyl ethanolamide 1.3 0.02 1.0 0.56 1.1 0.42

7 4 8 1 4 1

Linoleoyl ethanolamide 2.1 0.00 1.2 0.35 1.5 0.17

1 5 6 1 2 1

Phosphatidylethanolamine 1-stearoyl-2-oleoyl-GPE (18:0/18:1) 0.8 0.28 0.6 0.01 0.7 0.15

1 4 6 6

1-stearoyl-2-linoleoyl-GPE (18:0/18:2)1 0.9 0.87 0.6 0.04 0.6 0.09

7 5 5 3 5 7

1,2-dioleoyl-GPE (18:1/18:1) 0.6 0.07 0.6 0.03 0.7 0.19

9 5 8 3

1-oleoyl-2-docosahexaenoyl-GPE (18:1/22:6)1 0.6 0.01 0.7 0.08 0.4 0.00

2 3 1 3 1

Lysophospholipid 1-palmitoleoyl-GPC (16:1)1 1.5 0.03 1.3 0.20 1.2 0.33

9 6 1 2 8 3

1-linoleoyl-GPC (18:2) 1.6 0.00 1.5 0.01 1.4 0.08

8 7 1 3 5

1-arachidonoyl-GPC (20:4n6)1 1.74 0.035 1.55 0.092 1.39 0.285

1-linoleoyl-GPS (18:2)1 1.8 0.00 1.4 0.07 1.2 0.31

9 2 1 7 6 4
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1-palmitoyl-GPG (16:0)1 2.1 0.00 1.3 0.18 0.8 0.51

1 5 8 3 3 5

1-stearoyl-GPG (18:0) 2.1 0.00 1.3 0.16 0.8 0.66

6 2 6 9 5

1-oleoyl-GPG (18:1)1 1.6 0.01 1.0 0.66 1.1 0.47

7 8 6 6

1-palmitoyl-GPI (16:0) 1.5 0.04 1.1 0.55 0.7 0.31

8 1 3 4 7 8

1-stearoyl-GPI (18:0) 1.4 0.03 1.0 0.66 0.8 0.50

9 4 8 3 7 7

1-oleoyl-GPI (18:1) 1.6 0.02 1.2 0.24 0.9 0.81

4 7 8 7 4 8

1-linoleoyl-GPI (18:2)1 1.4 0.01 1.1 0.48 1.2 0.22

8 7 1 8 6 5

Plasmalogen 1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-
16:0/18:1)1

0.7 0.08 0.6 0.02 0.6 0.13

1 9 2 2 9 8

1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-
16:0/18:1)1

0.7 0.10 0.6 0.01 0.7 0.16

4 5 3 9 3

1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) 0.7 0.23 0.6 0.03 0.7 0.31

9 4 4 3 8 1

Monoacylglycerol 1-palmitoylglycerol (16:0) 1.3 0.25 2.6 0.00 1.2 0.53

5 3 1 1 2 7

1-palmitoleoylglycerol (16:1)1 1.6 0.09 2.2 0.00 1.1 0.62

2 3 7 8 3

1-oleoylglycerol (18:1) 1.6 0.20 2.2 0.03 0.7 0.50

5 5 6 4 7

1-linolenoylglycerol (18:3) 1.5 0.07 2.0 0.00 1.0 0.82

4 4 7 5 7 3

1-dihomo-linolenylglycerol (20:3) 1.5 0.25 2.2 0.04 0.7 0.57

5 1 6 7 4

1-arachidonylglycerol (20:4) 1.5 0.21 2.3 0.01 1.1 0.78

1 8 4 7 2 3

2-palmitoleoylglycerol (16:1)1 1.3 0.25 1.7 0.03 0.9 0.89

4 7 7 4 6 8

2-arachidonoylglycerol (20:4) 1.3 0.25 1.6 0.03 0.9 0.75

1 3 8 5 1 2

Diacylglycerol Linoleoyl-linolenoyl-glycerol (18:2/18:3) (2)1 1.3 0.51 1.6 0.29 3.3 0.03

4 7 1 6 2 9

Ceramides N-palmitoyl-sphingosine (d18:1/16:0) 0.9 0.73 0.6 0.00 0.7 0.04

6 1 9 8 3 9

N-stearoyl-sphingosine (d18:1/18:0)1 1.0 0.57 0.7 0.03 0.8 0.33

9 8 1 3 9

N-palmitoyl-heptadecasphingosine
(d17:1/16:0)1

0.9 0.95 0.7 0.04 0.8 0.20

9 7 4 2 0

Hexosylceramides (HCER) Glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) 0.7 0.04 0.6 0.00 0.6 0.02

4 8 2 3 7 9

Primary bile acid Glycochenodeoxycholate 0.9 0.75 1.8 0.00 0.8 0.54

8 6 3 7 0

Taurochenodeoxycholate 1.0 0.98 1.6 0.45 0.8 1

4 7 2 6 6

Secondary bile acid Glycolithocholate sulfate 0.9 0.70 1.4 0.01 1 1

5 3 2

Deoxycholate 0.9 0.79 0.6 0.12 0.7 0.00

7 8 3 3 9

1Not officially confirmed, but confident. Values presented are fold-difference of the mean relative abundance between ascending/descending colon, by
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weight class. Bold indicates P value < 0.05. BMI: Body mass index; NW: Normal weight; OW: Overweight; OB: Obese.

regulation of satiety[32].  Palmitoylethanolamide has supportive roles for reducing
inflammation and eliciting neuroprotective effects[33], while linoleoylethanolamide has
reported anti-inflammatory functions[34].

Bile acids are important signaling molecules which contribute to regulation of
whole-body glucose, lipid metabolism, and body weight[35]. Primary and secondary
bile acids were also identified for distinctions in abundance by colon location and
from stool between overweight/obese and normal weight adults. Primary bile acids
produced in the liver and increased bile acids in colon tissue may indicate altered
reabsorption of bile acid by the liver and that results in subsequent alteration to
metabolism  by  intestinal  microbiota [36].  Primary  bile  acids,  cholic  acid  and
chenodeoxycholic  acid,  are  derived  from  cholesterol  by  an  enzymatic  reaction
occurring mainly in the liver[37]. Chenodeoxycholate has shown to increase colonic
transit and improves bowel function[38]. Dietary cholic acid supplementation in rats
caused a significant increase in colon tumors[39]. Interestingly, this study showed that
primary  bile  acids;  glycocholate,  glycochenodeoxycholate,  and  taurocheno-
deoxycholate  had 1.26-fold –  1.86-fold difference in overweight  colon and merit
attention as a mechanism with alongside other lipid classes to increase cancer risk in
people. Concentrations of bile salts was shown to be higher in the proximal colon and
bile-acid profiles were hypothesized to increase the risk of proximal cancer[40].

Population- based studies have shown that individuals who consume high-fat and
high-beef foods display elevated levels of fecal secondary bile acids, as do patients
diagnosed with colonic carcinomas[3,41]. Secondary bile acid, taurodeoxycholate are
generated from primary bile acids and were shown to be increased in obese children
plasma with  insulin  resistance  when compared  with  their  non-insulin  resistant
counterparts, unveiling the influence of the gut microbiota on the host metabolism[42].
Glycochenodeoxycholate a secondary bile acid produced by microbial flora in the
large intestine was associated with colorectal cancer in women[43], and high levels of
deoxycholate in blood, bile feces, and mucosa were increased in colorectal cancer[7,37].
This  study showed elevated  glycochenodeoxycholate  from descending  colon  in
overweight adults, and elevated deoxycholate from descending colon in obese adults.
Impaired bile acid signaling and dysbiosis may contribute to type 2 diabetes and
other metabolic disease associated with obesity and colorectal cancer risk[44].  This
study had limitations in the total sample size for each BMI group and did not control
for different dietary intake patterns. The lack of gender balance in each BMI subgroup
was also a potential source of bias for sex-based differences that may exist in colon
tissue metabolite profiles. Future studies that control these variables merit attention
because the colon tissue metabolite signatures that emerged herein did demonstrate
metabolic relevance to the high risk of overweight and obesity in the progression of
proximal and distal colon cancers.

Colonic TMAO abundance in obesity was a major finding from this study with
respect  to  risk  for  cancer  and  supports  a  role  for  phospholipids  from  choline
metabolism. TMAO was identified herein for increased abundance in ascending colon
of obese adults and in stool of overweight adults. Deng et al[26]  showed increased
plasma levels of TMAO in patients with right sided colon cancer when compared to
left  sided colon cancer patients.  High urine concentration of TMAO also directly
correlated to the consumption of a high meat containing diet[45] and higher total milk
and dairy consumption in plasma[46]. The increased levels in serum and urine were
also shown to be associated with predisposition to impaired glucose homeostasis in
high fat diet-fed mice[47]. Links between colorectal cancer and TMAO was detected in a
genome-wide systems analysis[48] and in the development of colorectal cancer[26]. Our
findings also revealed microbiome-influenced metabolites in the colon tissue that
were not in the stool, such as the ketone body, 3-hydroxybutyrate, an eicosanoid; 15-
Hydroxyeicostetraenoic  acid  (15-HETE),  and  the  monoacylglycerol;  2-
arachidonoylglycerol.  Ketone  bodies  are  strongly  affected  by  obesity-related
metabolic disorders and are utilized in the body as an energy source[49]. In visceral
adipose tissue from obese subjects, 15-HETE was higher than in healthy subjects[50].
These  aforementioned  metabolic  changes  support  the  differences  in  microbiota
between stool and colon and between colon locations (ascending vs  descending).
Right and left colon microbiota analysis for differences in healthy adults has been
limited[19]. We observed an increased abundance of Bacteroides in the ascending colon
and Proteobacteria in the descending colon that were consistent with Flynn et al[19].
Given that stool did not recapitulate the composition of the colonic mucosa-associated
microbiota and metabolites, additional investigations with larger cohorts of each BMI
group is  warranted that  will  assess  impacts  of  intervention strategies  to  reduce
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Figure 2
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Figure 2  Fold-differences of colon and stool metabolites according to body mass index. Metabolites were A: Phospholipid; Trimethylamine N-oxide; B:
Endocannabinoids; linoleoyl ethanolamide, and oleoyl ethanolamide; C: Primary and secondary bile acids; chenodeoxycholate, cholate, and taurodeoxycholate. Left
side panel colon, right side panel stool. Open circles represent ascending colon, closed circles represent descending colon, triangles represent stool (aP < 0.05, bP <
0.01).

disease risk.
Fatty acids were also statistically supported in abundance by right and left location,

and  alongside  BMI.  Food-derived  long  chain  fatty  acids  are  found in  dairy  fat,
coconut oil, palm kernel oil, peanut oil and vegetable oils. Monounsaturated long-
chain fats such as oleic acid, and palmitoleic acid are found in animal fats,  olive,
canola and safflower oil.  Oleic acid enhances insulin action and inhibits  glucose
production[51], but also demonstrates cardiovascular benefits when it replaces heart-
damaging saturated fat[52]. Palmitic acid is the first fatty acid produced during fatty
acid synthesis, and is the precursor to longer fatty acids, while excess carbohydrates
in the body may also be converted to palmitic acid. This analysis revealed major
differences in long chain fatty acids as relevant to normal weight ascending colon and
were also significantly different in the opposite direction of obese adults, namely
increased in descending colon. Polyunsaturated long chain fats include linoleic acid,
alpha-linolenic acid (seeds and nuts), arachidonic acid (meat, eggs, and algae) and
eicosapentaenoic acid (fish oil)[53]. Margarate, also known as heptadecanoic acid is a
biomarker of long-term milk fat intake[54], and was elevated in the obese adults for
descending colon. Stearate fed to mice showed 70% reduction of visceral fat[55], and
reduced metastasis tumor burden in a breast cancer mouse model[56]. Arachidate is
necessary for the function of all cells, especially in the nervous system, skeletal muscle
and immune systems[57].

In conclusion, our study identified important metabolic differences between the
right and left colon tissue of healthy adults and highlighted a wide range of lipids
from normal weight, overweight and obese adults. The magnitude and abundance of
a metabolite difference between ascending and descending colon tissue has not been
previously  evaluated  and  warrants  further  investigation  for  screening  risk  of
proximal versus distal colon cancers.
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Figure 3

Figure 3  Fold-differences of ascending vs descending lipid metabolites in normal weight, overweight and obese adults. A: Long chain fatty acids; palmitate,
arachidate, and stearate; B: Microbiome influenced metabolites; 15-HETE, 3-hydroxybutyrate (BHBA), and 2-arachidonoylglycerol. Open circles represent ascending
colon, closed circles represent descending colon (aP < 0.05, bP < 0.01).
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Figure 4

Figure 4  Composition of microbiota from stool, ascending and descending colon in a healthy, normal weight adult. Left side shows principal components
analysis biplots of centred log-ratio transformed relative abundances at the phylum; A: Family; B: Genus; C: Levels. Lines with arrows represent individual taxa. Right
side shows relative abundance bar charts for the most abundant taxa at the respective taxonomic level across stool and colon location sample types.

ARTICLE HIGHLIGHTS
Research background
Obesity is a risk factor for colorectal cancer, yet metabolic distinctions between healthy right and
left colon tissue, before cancer is diagnosed, remains largely unknown.

Research motivation
Colon cancer of the ascending colon has a poorer prognosis and survival when compared to
colon cancer on the descending colon. Stool metabolite composition does not accurately reflect
proximal/ascending/right sided colon. Development of healthy colon tissue small molecule
signatures for ascending and descending colon will aid in our understanding of how to improve
gut metabolism and may help prevent or mitigate colorectal cancer risk.

Research objectives
This study compared right-ascending and left-descending colon tissue metabolomes and sought
to identify differences from the stool metabolome in normal weight, overweight, and obese
adults.

Research methods
Global, non-targeted metabolomics was applied to assess right-ascending and left-descending
colon tissue  collected from healthy adults  undergoing screening colonoscopies  to  test  the
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hypothesis that body mass index (BMI) differentially impacts colon tissue metabolite profiles.
The colon tissue and stool metabolome of healthy adults was analyzed for metabolite signatures
and metabolic pathway networks implicated in progression and prevention of colorectal cancer.

Research results
This is the first report using metabolomics to compare the right-ascending vs left--descending
colon tissue of healthy adults.  Our findings show that BMI was associated with metabolite
profile  differences between the ascending and descending colon.  Disturbances in multiple
metabolic  pathways  of  the  right  and  left  colon  from  being  overweight/obese  may  have
important implications for increasing colorectal cancer risk.

Research conclusions
There were metabolite profile differences between right-ascending and left-descending colon
tissue in healthy adults receiving routine, screening colonoscopies. BMI impacts the number,
type and magnitude of metabolite differences between the ascending and descending colon.
Colon lipids and other metabolites in obese and overweight adults were distinguished from
normal weight participants and associated with gut inflammation, nutrient absorption, and
products of microbiota metabolism.

Research perspectives
Right and left colon tissue metabolites that differ in relative abundance between normal weight,
overweight, obese adults may be sensitive biomarkers for colon cancer risk. Diet and lifestyle
influence right and left sided colon tissue metabolite composition that shape inflammation and
cancer risk in overweight and obese adults. Development of healthy colon tissue small molecule
signatures for ascending and descending colon will aid in our understanding of how to improve
gut metabolism and may help prevent or mitigate colorectal cancer risk.
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