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Abstract
Metabolic disorders are increasingly leading to non-alcoholic fatty liver disease,
subsequent steatohepatitis, cirrhosis and hepatocellular carcinoma. Fibroblast
growth factors and their receptors play an important role in maintaining
metabolic homeostasis also in the liver and disorders in signaling have been
identified to contribute to those pathophysiologic conditions leading to hepatic
lipid accumulation and chronic inflammation. While specific and well tolerated
inhibitors of fibroblast growth factor receptor activity are currently developed for
(non-liver) cancer therapy, treatment of non-alcoholic fatty liver disease and non-
alcoholic steatohepatitis is still limited. Fibroblast growth factor-mimicking or
restoring approaches have recently evolved as a novel therapeutic option and the
impact of such interactions with the fibroblast growth factor receptor signaling
network during non-alcoholic fatty liver disease/non-alcoholic steatohepatitis
development is reviewed here.

Key words: Fibroblast growth factor; Fibroblast growth factor receptor; Non-alcoholic
fatty liver disease; Non-alcoholic steatohepatitis; Fibrosis; Cirrhosis; Hepatocellular
carcinoma
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Core tip: Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis show
globally rising incidences and are expected to become the main reason for liver fibrosis,
cirrhosis, liver cancer and end-stage liver disease with need for transplantation. Liver
metabolism is, among other factors, regulated by fibroblast growth factors and their
receptors. This review highlights the role of these signaling pathways in the context of
non-alcoholic fatty liver disease and non-alcoholic steatohepatitis and discusses novel
treatment options for these otherwise difficult to treat diseases.
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INTRODUCTION
Primary liver cancer, hepatocellular carcinoma (HCC) is among the most common
cancer  related  deaths  for  men  and  women.  HCC  commonly  develops  on  the
background of various underlying chronic liver diseases and is often called “a disease
within  a  disease”.  Besides  chronic  viral  infections  and  despite  the  success  of
vaccination campaigns, its incidence is continuously high, and even increasing, also
due to the globally steep increase in metabolic liver diseases leading to non-alcoholic
fatty liver disease (NAFLD) and subsequently non-alcoholic steatohepatitis (NASH),
fibrosis, cirrhosis and cancer formation[1,2]. With a global prevalence of about 25%,
NAFLD and NASH are a major medical burden and linked to an increasing number
of patients with end-stage liver disease and transplantation need. A further increase is
expected due to growing prevalence of obesity and metabolic syndrome[3].

The  pathophysiologic  mechanisms  underlying  these  processes  are  still  not
completely clear. Yet, growth factors like the fibroblast growth factor (FGF) family
and fibroblast growth factor receptors (FGFRs) can contribute and drive several of
these changes and have been clearly shown to possess oncogenic potential in some
circumstances[4,5].  In the liver, esp. FGF19, FGF21 and FGF23 have been shown to
physiologically possess endocrine functions in regulating, e.g., homeostasis of bile
acids and glucose as well as regulating fasting response, lipid metabolism and other
conditions[6-10]. As the dysregulation of these metabolic pathways is considered a key
feature of chronic liver diseases leading to obesity, metabolic syndrome, NAFLD,
NASH, fibrosis and finally HCC, FGFs and FGFRs could be interesting novel targets
for diagnosis, surveillance and treatment of these conditions.

PHYSIOLOGY OF FGFRS AND FGFS IN THE LIVER
All  four  FGFRs are  transmembrane tyrosine  kinase  receptors  with a  single-pass
transmembrane  domain,  an  intracellular  kinase  domain  and  three  extracellular
immunoglobulin-like domains which are subject  to alternative splicing and thus
mediate  ligand  specificity.  Binding  of  FGFs  leads  to  receptor  dimerization  and
activation of the downstream signaling cascade that mediates processes linked to
cellular  survival,  extracellular  matrix  and adhesion molecule  signaling but  also
metabolic processes, e.g.,  via  the PI3K/AKT pathway[11,12].  While the expression of
FGFR1  (predominantly  mesenchymal  tissues)  and  FGFR2  (predominantly
mesenchymal and epithelial) is broad, FGFR3 is mostly found in the central nervous
system, bone,  skin,  and to a  lesser  extend GI tract,  kidney and male and female
reproductive  tissues.  FGFR4  is  found  in  endodermal  tissues  and  the  somatic
myotome,  including  endocrine,  bone  marrow,  pancreas,  lung  and  liver  and
gallbladder tissues[5,13]. In summary, all FGFRs are expressed in the liver with higher
levels of FGFR3 and FGFR4[14].

In humans, 22 FGFs have been described so far. They can be subclustered into four
intracrine (FGF11-14), fifteen paracrine (FGF1-10, 16-18, 20, 22) and three endocrine
(FGF19, 21, 23) subfamilies. They consist of 150-300 amino acids and share about 30%-
60% sequence homology with different N- and C-terminal parts mediating receptor
specificity. Endocrine FGFs need co-receptors of the Klotho family to bind to any of
the four  FGFRs.  Unlike  paracrine FGFs,  they lack the heparan sulphate  binding
capacity and can therefore enter circulation and act as hormones[4,15-17]. The general
metabolic functions of endocrine FGFs are reviewed elsewhere[4,18] and we will here
focus on their role in physiology and pathophysiology of the liver.

FGF1 is expressed in the liver and other tissues, including adipose tissue where it is
upregulated upon high-fat diets[19].  It can bind to all FGFRs and can interact with
integrins  which  are  mediators  of  fibrogenesis,  too [20,21].  FGF1  and  FGF2  are
upregulated in chronic liver disease, fibrogenesis and in HCC where these ligands
enhance angiogenesis and invasiveness[22,23].  In addition, FGF1 and FGF2 mediate
fibrogenesis by activation of hepatic stellate cells which links extracellular matrix

WJG https://www.wjgnet.com January 21, 2020 Volume 26 Issue 3

Ocker M. FGFs in NAFLD, NASH and HCC

280



modulation and carcinogenesis to NAFLD/NASH[22,24]. Paracrine FGF8 and FGF10
have been shown to play important roles during embryonic liver development and
during liver regeneration[25,26]. Esp. FGF10 was shown to regulate hepatoblast function,
which links development and repair  processes[27].  Upon hepatocyte injury,  FGF7
induces progenitor cell proliferation in the liver[28]. The activation of hepatic stellate
cells  as  a  response to injury was linked to FGF9,  which also induces hepatocyte
proliferation in acute liver injury models[29]. Importantly, the activation of hepatic
stellate cells as well as the induction of hepatocyte proliferation and recruitment of
progenitor cells are key features of acute and chronic liver injury leading to fibrosis,
cirrhosis and cancer formation, indicating a central role for FGFs during this process.
In human HCC, upregulation of FGF8 family members (FGF8, FGF17 and FGF18) was
linked to angiogenesis and enhanced cancer cell survival in 59% of the examined
tissue samples. Interestingly, also different FGFRs were upregulated and overall, 82%
of cases showed alterations of at least one FGFR and/or FGF[30].

Endocrine FGFs have been shown to control several metabolic pathways in the
liver  via  β-Klotho  co-signaling.  FGF19  (also  called  FGF15/19  due  to  its  mouse
homologue FGF15 which does not exist in humans) is a key regulator of bile acid
metabolism and links gut-liver signaling. The nuclear bile acid receptor FXR induces
expression of FGF19 in the ileum which in turn reduces expression of CYP7A1, the
rate limiting enzyme for bile acid synthesis in hepatocytes[31]. FGF19 was also shown
to control gallbladder volume[32]. Furthermore, FGF19 stimulates protein and glycogen
synthesis in hepatocytes independent of insulin and is thus also involved in glucose
homeostasis[33].

FGF21 controls a plethora of metabolic pathways in hepatocytes, adipocytes and
skeletal muscle[34]. Nutritional stress (e.g., low carbohydrate, high fat ketogenic diets)
as well as other means of hepatic injury have confirmed FGF21 as a stress response
gene in the liver, e.g.,  by inducing systemic glucocorticoid levels[35].  Interestingly,
FGF21 was also identified to be a key mediator of metabolic effects mediated by gut
microbiota. Several studies recently demonstrated a protective effect of probiotic
microbiota like Lactobacillus species (esp. L. rhamnosus GG) on energy expenditure,
dyslipidemia  or  steatosis  in  different  animal  models,  which  was  shown  to  be
dependent on FGF21 signaling and able to reverse NAFLD[36-39].

Although FGF23 is  linked to calcium and phosphate homeostasis  in bone and
kidney via α-Klotho co-signaling and not considered to play an important role in liver
pathophysiology[40], a recent study showed that serum FGF23 was correlated with
NAFLD in Chinese patients with type 2 diabetes[41]. Although the exact role of FGF23
in NAFLD pathogenesis is unclear, FGF23 mRNA was detected in the liver and is
increased under metabolic stress conditions and chronic liver disease in mice[42]. Yet
the  observed  increase  could  also  be  due  to  the  renal  pathophysiology  of  these
conditions[43].

FGF SIGNALING IN NAFLD AND NASH ASSOCIATED LIVER
INJURY
Deployment of extracellular matrix material, fibrosis, is the general response of the
liver to chronic injury with hepatocyte damage - independent of the causing agent
(viral, toxic, metabolic). Chronic hepatocyte damage and cell death leads to persistent
inflammation and activation of wound healing and tissue remodeling programs to
compensate the loss of functional hepatocytes and to restrict the damaged area by
activation of hepatic stellate cells (Figure 1 and Table 1, for more details on general
fibrosis mechanisms in the liver please see[44-46]).

Various factors have been described to contribute to NAFLD/NASH and fibrosis
progression, like ROS production or inflammatory cytokine release from adipocytes
but also impairment of  metabolic pathways in the gut and liver like lipogenesis,
cholesterol and insulin signaling[47]. Dietary factors can influence these pathways and
esp. high dietary cholesterol,  polyunsaturated fatty acids and fructose have been
demonstrated to trigger  NAFLD/NASH development[48,49].  In  absence of  insulin,
fructose is subjected to liponeogenesis and thus depletes hepatocellular ATP and
contributes to mitochondrial damage, ROS production and lipid accumulation, as
evidenced by patients with high fructose intake (e.g., soft drinks)[50,51].

Lipid metabolism is considered a key pathogenetic driver of NAFLD progression
and fibrosis development. It depends on lipolysis, liponeogenesis and triglyceride
oxidation and the overload of the liver with such metabolites can trigger ER stress and
autophagy responses[52,53].

FGF21 plays a central role here. It is abundantly expressed at low levels in the liver
and  can  be  induced  upon  fasting[54]  and  seems  to  inhibit  lipolysis  under  this
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Table 1  Role of fibroblast growth factors in non-alcoholic fatty liver disease, non-alcoholic steatohepatitis and hepatocellular carcinoma

FGFs NAFLD/NASH HCC

FGF1 Upregulated in adipose tissue under high fat
diet[19]

HSC activation, fibrogenesis, angiogenesis,
invasiveness[20,21]

FGF2 No data HSC activation, fibrogenesis, angiogenesis,
invasiveness[22-24]

FGF8 family No data Proliferation, angiogenesis, matrix modulation[30]

FGF19 Impaired in NAFLD and by insulin resistance,
contributes to lipid and bile acid dysbalance[74-76]

Proliferation, invasion, metastasis, inhibition of
apoptosis[102-104]

FGF21 Induced by ketogenic diet, reduces insulin
sensitivity, mediator of metabolic effects from gut
microbiota[35-39,54-56]

Deficiency promotes HCC under obesity
conditions[21,61]

FGF: Fibroblast growth factor; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; HCC: Hepatocellular carcinoma; HSC:
Hepatic stellate cell.

condition[34]. Its expression in the liver can be induced by ketogenic (high-fat, low-
carbohydrate) diets and it then negatively impacts on insulin sensitivity in adipocytes.
Starvation induced hepatic FGF21 expression increases systemic glucocorticoid levels
and diminishes physical activity, probably via remote effects in the central nervous
system or in adipose tissues[55,56]. Hepatic FGF21 mediates various effects on energy
metabolism  and  insulin  sensitivity  in  the  liver  and  the  skeletal  muscle  via
adiponectin[57,58].  In  FGF21 deficient  mice,  a  role  in  glucagon signaling  was  also
described[59].  Upon  hepatic  injury,  FGF21  serves  as  a  protective  stress-response
regulator and has been shown to ameliorate various hepatotoxic conditions (viral
hepatitis, alcohol)[60].

Although high levels of FGF21 are considered to be protective against metabolic
stress conditions several studies in mice and humans demonstrated also opposite
effects. Deficiencies in FGF21 signaling promote HCC growth in mice on long-term
obese diet and restoration of FGF21 improves hepatic steatosis[61,62]. In obese humans,
increased hepatic FGF21 was described[9] and linked to prevalence and progression of
NAFLD, indicating impaired FGF21 function as was seen in type II diabetes with
insulin resistance[63,64]. Elevated expression of FGF21 was also established as a clinical
predictive biomarker for steatosis in obese children[65] and a panel consisting of FGF21,
BMI,  γ-GT  and  triglycerides  was  proposed  as  a  biomarker  for  identification  of
children with steatosis[66]. In adult patients with HIV, elevated FGF21 was confirmed
as a risk factor for steatosis[67] and, overall, combined biomarker panels that include
FGF21  have  higher  predictivity  for  steatosis  also  in  non-obese  patients[68,69].
Interestingly, no data is available on the expression levels of the main receptors for
FGF21, FGFR1 and β-Klotho, in NAFLD and NASH.

Maintenance of chronic inflammation is required for the progression of NAFLD to
NASH and for fibrosis development. Here, hepatic macrophages, so called Kupffer
cells, play a central role in keeping hepatic stellate cells activated. In FGF5 deficient
mice,  high  fat  diet  lead  to  severe  steatosis  and  fibrosis  via  activation  of  F4/80
macrophages  that  were  positive  for  CD11b  and  CD68  and  produced  TNFαand
FasL[70,71].

FGF19 (and its murine homologue FGF15) regulates hepatocyte proliferation. In
knockout mice, liver regeneration after partial hepatectomy is impaired and toxic
stimuli lead to extensive necrosis and fibrosis, the latter mediated via activation of
CTGF signaling[72,73]. In human NAFLD, hepatic response to FGF19 was significantly
impaired, esp. under conditions of insulin resistance, and may contribute to lipid and
bile acid dysbalance in these patients[74-76]. FGF19 serum levels are reduced in pediatric
and  adult  patients  with  NAFLD[77,78]  while  an  increase  in  taurine  and  glycine
metabolizing bacteria like Escherichia or Bilophila was concomitantly observed[79]. The
decrease in FGF19 was proposed as a biomarker for steatosis development[77]. In mice,
an FGF15-Apo A-I fusion protein (Fibapo) was shown to improve lipid accumulation
and metabolic stress under high fat diet conditions in FGF15 knockouts[80], confirming
the therapeutic  effect  of  FGF restoration.  To overcome potential  protumorigenic
effects of FGF19 (i.e., induction of cell proliferation), recombinant molecules have been
developed and are currently used in human clinical trials. Similar to FGF21, FGF19
was  also  evaluated  as  a  biomarker  for  NAFLD  and  NASH.  FGF19  levels  were
significantly reduced in children with NASH but did not show statistically significant
association to the pediatric NAFLD histological score[81].  In a therapeutic study in
pediatric patients, FGF19 was significantly increased by lifestyle intervention and a
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Figure 1

Figure 1  Role of fibroblast growth factor signaling in non-alcoholic fatty liver disease, non-alcoholic
steatohepatitis and progression to hepatocellular carcinoma. Fibroblast growth factors (FGFs) mediate the key
pathogenetic processes linked to development of non-alcoholic fatty liver disease (NAFLD) (metabolic disturbances),
non-alcoholic steatohepatitis (NASH) (chronic inflammation) and hepatocellular carcinoma (HCC) (chronic
regeneration). FGF21 is mostly involved in mediating metabolic effects during NAFLD and NASH progression, while
paracrine FGFs (FGF7, 9, 10) activate hepatocyte proliferation and regeneration processes. FGF19 can inhibit these
processes at early stages but may have pro-tumorigenic properties during later disease phases. FGF1, FGF2 and the
FGF8 family (FGF8, FGF17, FGF18) mediate HCC formation by supporting angiogenesis, matrix modulation via
hepatic stellate cells activation and increasing tumor cell survival. Pointed arrow heads: Activation; Rounded arrow
heads: Inhibition. FGF: Fibroblast growth factor; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic
steatohepatitis; HCC: Hepatocellular carcinoma; TG: Triglycerides; FA: Fatty acids; ER: Endoplasmic reticulum; HSC:
Hepatic stellate cells.

mix containing docosahexaenoic  acid,  choline,  and vitamin E and was therefore
proposed as a pharmacodynamic biomarker in this setting[82]. Overall, the predictivity
of FGF19 is still under debate[76].

FGF SIGNALING AS A NOVEL DRUG TARGET IN NAFLD
AND NASH
Due to their  described hepatoprotective properties  and effects  on inflammation,
metabolism and fibrosis, restoration of FGF19 and FGF21 signaling is considered an
attractive novel target for drug development against NAFLD and NASH. In the past,
drug development for NAFLD and NASH has been limited by the availability of
suitable  (surrogate)  endpoints  and the  debate  on  non-invasive  measures  is  still
ongoing[83].  While non-invasive measurements of  NASH status and fibrosis  have
evolved as acceptable endpoints in early stage trials, Phase 3 studies may still require
pre-  and  post-treatment  biopsies.  Recently,  advances  in  patient  selection  were
achieved that do allow timely readout of e.g., changes in fibrosis, as overall survival
may not be achievable pre-cirrhotic patients[53,84].

While several agents are currently in Phase 2 and Phase 3 clinical development for
treatment of NASH[53], only few compounds are using FGF signaling as a therapeutic
target.

Pegbelfermin (BMS-986036) is a recombinant PEGylated analog of human FGF21.
In preclinical models, it improved diabetes, NASH and fibrosis, as demonstrated by
increases in adiponectin, improved NAFLD activity score and decreased N-terminal
type III collagen propeptide (Pro-C3)[85]. In a Phase 2 study in patients with obesity
and type 2 diabetes, pegbelfermin achieved a significant increase in adiponectin and
decrease in serum Pro-C3 after 12 wk, comparable to preclinical data. Although effects
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on HbA1c were not different to placebo, the drug was overall well tolerated and it
was concluded that effects on obesity-related diseases like NASH warrant further
investigations[86]. This was further analyzed in a randomized, double-blind, placebo-
controlled Phase 2 study in patients with confirmed NASH, fibrosis and obesity.
Pegbelfermin was administered subcutaneous in a daily (10 mg/d) or a weekly (20
mg/wk)  schedule  for  16  wk  and  primary  endpoints  were  changes  in  magnetic
resonance  imaging  proton  density  fat  fraction  (MRI-PDFF),  serum  Pro-C3,
transaminases,  and liver  stiffness  as  assessed by MR elastography.  A total  of  74
patients  were  enrolled  and  68  were  eligible  after  16  wk  of  treatment.  Here,  a
significant reduction in MRI-PDFF (-6.8% and -5.2%, respectively) and transaminases
(-33.0% and -23.7% for alanine aminotransferase, -30.9% and -26.2% for aspartate
aminotransferase,  respectively)  was  detected  in  both  treatment  schedules.
Furthermore, a significant proportion of patients showed improved serum Pro-C3 and
reduced  MR  elastography  liver  stiffness,  all  paralleled  by  an  approximate  15%
increase in adiponectin versus placebo. Overall, the drug was also well tolerated in
these  patients  and  results  from this  study  suggest  clearly  a  beneficial  effect  on
steatosis, liver injury and fibrosis in NASH patients[87]. Currently, additional studies
are ongoing to evaluate pegbelfermin in patients with NASH associated fibrosis,
cirrhosis or impaired kidney function.

NGM282 is a recombinant non-tumorigenic variant of FGF19. It was modified at
the amino-terminal end to bind to FGFR4/β-Klotho, suppress CYP7A1 expression
(the rate limiting step in bile acid synthesis) but does not activate STAT3 signaling
which is considered a main driver for hepatocarcinogenesis[88]. Preclinically, NGM282
improved inflammation, hepatocyte damage and fibrosis in models of NASH and of
sclerosing cholangitis in mdr2-deficient mice[89,90]. It was well tolerated also in humans
and showed signs of reduced CYP7A1 activity, too[91]. In a randomized and placebo-
controlled Phase 2 study, NGM282 lead to a rapid reduction in hepatic fat content in
more than 70% of the treated patients after 12 wk, paralleled by significant reductions
in transaminase and Pro-C3 levels and ELF fibrosis score and increase in low density
lipoprotein cholesterol. The overall safety profile was acceptable with predominantly
Grade 1 adverse events. As NGM282 is a recombinant peptide, anti-drug antibodies
were  observed  in  a  small  number  of  patients  but  were  considered  not  to  be
neutralizing[92]. After 12 wk, NAFLD activity score was dose-dependently reduced by
2 points in up to 63% of patients without worsening of  fibrosis  and fibrosis  was
reduced by one or  more  stages  in  up to  42% of  patients[93].  Due to  its  effects  on
CYP7A1,  NGM282  increases  low  density  lipoprotein  cholesterol  and  serum
cholesterol. Thus, combination with rosuvastatin was assessed to further improve the
cardiovascular risk profile for NASH patients[94].

While these approaches focus on ligands, also FGFRs could be a promising target
for NAFLD and NASH drug development. Several small molecule kinase inhibitors
targeting FGFRs are currently in clinical development for the treatment of various
solid tumors. Yet, in none of the early clinical trials with these multi-kinase inhibitors
(usually targeting FGFR1-3), metabolic effects related to FGF signaling other than
phosphate increase due to renal FGFR1 inhibition were reported. BLU9931 as well as
H3B-6527, two specific inhibitors of FGFR4, suppressed HCC growth in preclinical
models but also induced expression of CYP7A1, although no adverse effects on lipid
metabolism or steatosis were observed in the investigated rodent models[95,96].

The protective effects of FGF19 via inhibition of endoplasmic reticulum stress,
which is commonly observed in metabolic overload during NAFLD and NASH, have
been shown to be mediated via the FGFR4/β-Klotho pathway[97]. An upregulation of
FGFR4  was  recently  demonstrated  in  murine  NASH  models[98]  and  in  patients
developing HCC on fatty liver disease background[99]. To block FGFR4 signaling, a
soluble FGFR4 extracellular domain fragment was developed that specifically inhibits
FGFR4 activation in vitro and suppressed steatosis and fatty liver development in
mice[100], but clinical data in humans is still lacking.

Mimicking FGFR activation is currently investigated with NGM313, a humanized
monoclonal antibody binding to an epitope in β-Klotho. It was shown that NGM313
activates FGFR1c signaling, similar to the physiologic role of FGF21. A single dose of
NGM313  significantly  reduced  liver  fat  content,  transaminase  levels,  HbA1c,
triglycerides and low density lipoprotein cholesterol in obese patients with insulin
resistance and NAFLD[101].

FGFS AND FGFRS IN HCC
The  above  outlined  pathways  of  chronic  inflammation  and  hepatocyte  stress
conditions commonly involve FGF signaling and various approaches in restoring FGF
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physiologic conditions have been successful  in preventing HCC development in
preclinical  models.  In human HCC, several  studies confirmed overexpression of
different  FGFs  and  FGFRs,  which  confirms  the  attractiveness  of  targeting  FGF
signaling also in established HCC[102,103].  FGF19 was recently proposed as a novel
diagnostic biomarker with better accuracy than AFP for small HCCs[104].  As many
FGFs can have different pro-tumorigenic effects (e.g., by promoting angiogenesis or
chronic  inflammation),  FGFRs  seem  to  be  the  more  attractive  here.  While  esp.
inhibition of FGFR4 was shown to reduce growth of experimental HCC models[105,106]

and is  considered an attractive drug target[107,108],  also FGF1,  FGF2 and the FGF8
subfamily as well as targeting FGFR1-3 have been shown to possess preclinical anti-
HCC  activity[103,109,110].  Designing  specific  inhibitors  for  FGFR4  was  considered
challenging  and  therefore  initial  approaches  used  multi-kinase  or  pan-FGFR
inhibitors. While sorafenib was the first multi-kinase inhibitor to achieve an overall
survival benefit  in HCC[111],  other compounds like brivanib or lenvatinib did not
achieve this endpoint[103,112].  Preclinically, the specific FGFR4 inhibitors BLU-9931,
H3B-6527 or INCB062079 showed promising activities[95,96,113].

Several clinical studies with these and other FGFR4 specific inhibitors are currently
ongoing in HCC patients. Phase 1 data for fisogatinib (BLU-554) indicate good target
engagement and inhibition of FGFR4 as shown by effects on bile acid and cholesterol
synthesis pathways in a dose-dependent manner. With an overall good tolerability,
the compound showed signs of clinical efficacy in FGF19-positive HCC patients[114].
FGF401 showed an increase in transaminases and induction of CYP7A1 in preclinical
toxicology studies and co-administration of  cholestyramine improved the safety
profile here[115]. In humans, increase in transaminases was seen, too, but the overall
safety profile is considered acceptable and no maximum tolerated dose was reached
in a Phase 1/2 study. Patients had to be positive for FGFR4 and β-Klotho expression
to be eligible to participation and the overall response rate in the Phase 1 population
was about 8%[116].

CONCLUSION
The high global  prevalence of  NAFLD and NASH warrants the search for novel
treatment options. FGF signaling mediates central metabolic effects in the liver (and
other  tissues)  that  are  directly  linked to  the  overload  of  hepatocytes  with  toxic
metabolites  and  pathogenesis  of  lipid  accumulation  and  chronic  inflammation
leading.  Several  approaches,  e.g.,  FGF-mimicking  peptides  or  receptor-specific
targeting agents, have shown promising signs in preclinical and early clinical studies
in humans. Yet, due to the plethora of ligands and receptors and a high tissue context
dependency, further studies and esp. also long-term studies are urgently needed to
fully understand how FGF and FGFR signaling pathways can be fully exploited for
the benefit of affected patients.

Specific FGFR4 inhibitors are currently tested in clinical trials in HCC. The positive
preclinical results are reflected in encouraging early clinical data from different Phase
1  studies.  Yet,  the  overall  efficacy  of  these  compounds  needs  to  be  carefully
investigated compared to current multi-kinase inhibitors and the emerging immune
checkpoint inhibitors.
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