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Abstract
BACKGROUND
Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver
failure; however, graft shortage impedes its applicability. Therefore, studies
investigating alternative therapies are plenty. Nevertheless, no study has
comprehensively analyzed these therapies from different perspectives.

AIM
To summarize the current status of alternative transplantation therapies for OLT
and to support future research.

METHODS
A systematic literature search was performed using PubMed, Cochrane Library
and EMBASE for articles published between January 2010 and 2018, using the
following MeSH terms: [(liver transplantation) AND cell] OR [(liver
transplantation) AND differentiation] OR [(liver transplantation) AND organoid]
OR [(liver transplantation) AND xenotransplantation]. Various types of studies
describing therapies to replace OLT were retrieved for full-text evaluation.
Among them, we selected articles including in vivo transplantation.

RESULTS
A total of 89 studies were selected. There are three principle forms of treatment
for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and
cell transplantation. Xeno-organ transplantation was covered in 14 articles,
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scaffold-based transplantation was discussed in 22 articles, and cell
transplantation was discussed in 53 articles. Various types of alternative therapies
were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal
hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles;
embryonic stem cells, one article; and induced pluripotent stem cells, three
articles and other sources. Clinical applications were discussed in 12 studies: Cell
transplantation using hepatocytes in four studies, five studies using umbilical
cord-derived MSCs, three studies using bone marrow-derived MSCs, and two
studies using hematopoietic stem cells.

CONCLUSION
The clinical applications are present only for cell transplantation. Scaffold-based
transplantation is a comprehensive treatment combining organ and cell
transplantations, which warrants future research to find relevant clinical
applications.

Key words: Cell transplantation; Liver transplantation; Organ transplantation;
Xenotransplantation; Tissue engineering; Scaffold

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This systematic review analyzes the current status of transplantation treatments
in place of liver organ transplantation from multiple viewpoints. We classified reports
into three types: Xeno-organ transplantation, scaffold-based transplantation, and cell
transplantation. Clinical application occurred for cell transplantation with hepatocytes
and mesenchymal stem cells; however, the effect was limited. On the other hand,
scaffold-based transplantation is a comprehensive treatment that combines organ
transplantation and cell transplantation. Future research for clinical application is
expected. The present article provides researchers with a summary and updated
information on recent trends in alternatives to liver transplantation and support for future
research.

Citation: Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for
orthotopic liver transplantation in liver failure: A systematic review. World J Transplant
2020; 10(3): 64-78
URL: https://www.wjgnet.com/2220-3230/full/v10/i3/64.htm
DOI: https://dx.doi.org/10.5500/wjt.v10.i3.64

INTRODUCTION
Liver diseases lead the causes of mortality worldwide, accounting for approximately
1-2  million  deaths  per  annum  according  to  the  World  Health  Organization[1].
Orthotopic liver transplantation (OLT) remains as the only curative therapy for end-
stage liver diseases. However, the shortage of donor organs limits its application.

Alternatives to OLT such as liver support systems, including bioartificial livers, and
hepatocyte transplantation have been extensively explored; however, none could be
adopted in clinical practice[2]. Thus, to overcome the organ shortage, many researchers
attempted to find alternatives to the traditional solid-organ transplantation method[3].

Various alternative treatments are available, including organ transplantations from
other human beings, transplanting cells from other species, or transplanting processed
cells from humans or transplanting processed cells from other species.

Alternative therapies investigated in the past include xenotransplantation, scaffold-
based transplantation, and cell transplantation therapies. In particular, the use of
animal livers for human patients, i.e.,  xenotransplantation, has been deemed as a
solution for donor shortage. If the organ of other species could be transplanted, there
are many advantages about the supply of organ[4]. Although this approach has still
several  problems,  such  as  immune  rejection  and  coagulopathy,  α-1,3-
galactosyltransferase gene-knockout (GT-KO) pigs that do not express the α1,3Gal
(Gal) antigens have improved the potential of this therapy[5,6]. In fact, it underwent
many advancements through genome editing technologies[7].

Scaffold-based transplantation is a novel method, which aims to generate tissues
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and organs ex vivo  or in vivo  with biological materials that can be used to repair,
regenerate, or even replace malfunctioning tissues and organs. Essentially, to create
scaffolds, all the cells from animal organs are removed while retaining the structural,
mechanical, and chemical attributes of the native tissue[8]. Then, the human-derived
cells  are  embedded in  the  scaffold  that  serves  as  an  ideal  container  to  generate
humanized organs.

In parallel, cell transplantation research has undergone vast advancements with the
establishment of induced pluripotent stem cells (iPSCs). Clinical human-to-human
hepatocyte transplantation following host conditioning has been reported[9]. However,
hepatocytes have limitations with respect to proliferation, function, and immunity.
Recently,  pluripotent or somatic stem cells were used as new sources in place of
hepatocytes[10]. Further, researchers tried to direct pluripotent or somatic stem cells
toward differentiation into hepatocytes in various studies[11].

Thus, alternative therapies manifest various combinations depending on different
resources. Still, no study has comprehensively analyzed these different viewpoints
yet, although such studies are instrumental while considering novel alternatives for
the future regarding the utility of these kinds of treatments.

Therefore, we aimed to discuss the current status of alternative transplantation
therapies to replace liver organ transplantation and to support their research and
development.

MATERIALS AND METHODS
The methodological approach included the development of selection criteria, defining
the search strategies, assessing the study quality, and abstracting the relevant data.
The PRISMA statements checklist for reporting a systematic review was followed[12].

Identification and selection of the studies
This  systematic  literature  review  was  performed  to  select  articles  discussing
alternatives  to  liver  organ transplantation.  The PubMed,  Cochrane Library,  and
EMBASE were electronically searched for articles published between January 2010
and December 2018, using the following MeSH terms: [(liver transplantation) AND
cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND
organoid] OR [(liver transplantation) AND xenotransplantation].

Inclusion and exclusion criteria
The study selection criteria were defined before initiating data collection to identify
eligible studies for the analysis. Only studies written in English were selected. We
retrieved  all  studies  in  which  the  primary  objective  was  to  evaluate  new
transplantation therapies in place of OLT for our analysis.

Exclusion criteria were as follows: (1) Studies not including in vivo transplantation;
(2)  Studies lacking sufficient  details;  (3)  Review articles;  (4)  Expert  opinions;  (5)
Letters; and (6) Conference summaries.

Study selection and quality assessment
The titles  and abstracts  of  the retrieved studies were independently and blindly
screened for relevance by two reviewers (Furuta T and Furuya K), who assessed the
study quality and extracted data. To enhance sensitivity, records were removed only
in case both reviewers judged them to be inappropriate.  All  disagreements were
resolved by discussion and consensus. The study design, quality, level of evidence,
and the relevance of the studies were analyzed according to the objective of this
study.

Analysis
We classified the reports into three types: Xeno-organ transplantation, scaffold-based
transplantation, and cell transplantation. Further, we categorized the source of donor
or donor species, recipients, and the clinical applications.

RESULTS

Literature search and selection
The combined search identified 2821 articles.  Of these,  2630 were removed after
evaluating the title and abstract. By checking the full text, 89 articles were considered
eligible for the systematic review and were analyzed qualitatively and quantitatively.
The entire study selection process is summarized in Figure 1.
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Figure 1

Figure 1  Flowchart of the study selection.

Treatment modalities and clinical application
From our qualitative  analysis  on the selected articles,  there  were 14  xeno-organ
transplantation  studies,  22  scaffold-based  transplantation  studies,  and  53  cell
transplantation studies. The study selection is displayed in Tables 1-3[2,5,13-99]. There
were various sources of alternative therapy, including organ liver (25 studies), adult
hepatocytes (31 studies), fetal hepatocytes (three studies), mesenchymal stem cells
(MSCs; 25 studies), embryonic stem cells (ESCs; one study), and iPSCs (three studies)
and others (Table 4)[2,5,13-45,48-70,72-99]. Clinical application was discussed in 12 studies. In
particular, hepatocyte transplantation was discussed in four studies, umbilical cord
derived MSCs (UC-MSCs) transplantation was described in five studies, bone marrow
derived MSCs (BM- MSCs) was described three studies and hematopoietic stem cells
was described two studies.

DISCUSSION
Among various alternative OLT therapies, only cell transplantation has been adopted
in clinical practice. However, its long-term improvement effects are yet to be proven.
In particular, few studies report that it can become a bridge for OLT. Considering the
viewpoint of cell transplantation, cell processing strategies such as proliferation or
hepatic differentiation might assume paramount significance. On the other hand,
although scaffold-based transplantation is  far  from being applied clinically,  it  is
deemed as attractive and promising. This approach has been devised as a treatment
method that combines the efficiency of solid organ transplantation with the control of
rejection.  It  is  also  a  comprehensive  treatment  incorporating  cell  processing
technologies.

Although many patients die from liver failure, there is no other curative treatment
other than OLT. However,  organ shortage remains as the major shortcoming for
transplantation globally. Because of graft shortages, alternative treatments for OLT
have received significant research attention.

The concept of scaffold-based transplantation was developed to substitute for the
damaged human liver  requiring immediate  transplantation.  In  particular,  many
studies discussed xeno-organ transplantation using decellularized liver scaffolds from
other species embedded with human derived hepatic cells.

Our search revealed articles on xeno-organ transplantation (n = 14), scaffold-based
transplantation (n = 22), and cell transplantation (n = 53), with the majority being
related to “cell therapy”.

Cell transplantation
Cell transplantation is an attractive alternative to conventional organ transplantation.
Hepatocyte transplantation has also been applied clinically, however, with limited
effect. To obtain better transplantation efficiency, studies were conducted to evaluate
the differentiation quality and administration methods.

In  this  study,  regarding  transplantation  cell  sources,  we  found  that  adult
hepatocytes,  fetal  hepatocytes,  stem  cells  such  as  iPSCs,  ESCs,  MSCs,  and
differentiated hepatocytes-like cells (HLCs) have been used and most report used
hepatocytes  as  the  cell  source.  In  addition,  our  article  showed  that  only  cell
transplantation was clinically applied.

Lee et al[13] reported the application of neonatal hepatocytes encapsulated in alginate
microbeads transplanted in three patients with acute liver failure from error of sulfite
metabolism.  Hansel  et  al[100]  reported  hepatocyte  transplantation  applied  in  100
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Table 1  Cell transplantation

Donor
Recipients (disease,
strain etc.) Outcomes Year

Cells Species
Treatments [co-
culture (Co),
organoid generated]

Hepatocytes Human - Human (ALF) Hepatic function 2018[13]

- Human (ACLF) Hepatic function 2014[22]

- Human (metabolic
disease)

Engraftment, hepatic
function

2012[23]

- Human (oxalosis) Hepatic function 2012[24]

- Rat (SD) Hepatic function,
survival extension

2017[25]

- Mouse (NOD/SCID) Alb secretion,
engraftment

2017[26]

- Mouse (FRG) Engraftment, hepatic
function

2013[27]

- Mouse (SCID/Alb-uPA) Analysis of NK cell 2010[28]

UC-MSC (human) Mouse (BALB/c) Engraftment, hepatic
function

2018[29]

Rat - Mouse (C57BL/6 FRG) 2018[30]

- Rat (Wistar) Engraftment 2015[31]

- Rat (SD) Engraftment, hepatic
function

2015[32]

- Rat Engraftment 2014[33]

- Rat (DPP4-) Engraftment,
repopulation

2014[34]

- Rat (An alb) Engraftment, hepatic
function

2014[35]

HSCs (Rat), SECs
(Rat)/Co

Mouse (C57BL/6) Engraftment, survival
extension

2014[36]

- Rat (SD) Hepatic function 2010[37]

Mouse Organoid Mouse (C57BL/6) Engraftment 2017[38]

- Mouse (emdr2−/−) Engraftment,
Repopulation

2015[39]

- Mouse (Fah-/-) Hepatic function 2010[40]

- Mouse (FVB/N) Engraftment, analysis of
metabolite

2010[41]

- Mouse (C57BL/6) Engraftment 2010[42]

Hepatocytes (fetal) Rat - Rat (DPPIV-) Engraftment,
repopulation

2018[43]

Mouse - Mouse (C57BL/6) Engraftment, hepatic
function

2012[44]

Liver cells Rabbit - Rabbit (New Zealand) Hepatic function 2012[45]

Hepatic oval cells Rat - Rat (Lewis) Hepatic function,
survival extension

2013[46]

Hepatoma cell line - Rat (SD) Hepatic function,
survival extension

2013[47]

UC-MSCs Human - Human after OLT Hepatic function,
intervention rate

2017[48]

- Human after OLT Hepatic function 2017[49]

BM-MSCs/BM-MNCs Human - Human (LC) Hepatic function 2017[50]

- 2016[51]

- Human (Liver failure) Hepatic function 2013[52]

Rabbit - Rabbit Remodeling 2011[53]

BM-MSCs/HSCs Human - Human (EPP) Engraftment 2010[54]

BM-MSC Human - Human (LC) Engraftment, hepatic
function

2011[55]

- Rat (Wistar) Hepatic function 2014[56]

- Mouse (SCID) Engraftment, analysis of
glucose

2017[57]
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- Mouse (Pfp/Rag2−/−) Engraftment 2010[58]

Rhesus macaque - Mouse Hepatic function 2018[59]

Rat - Rat (SD) Hepatic function 2014[60]

BM-MNC-EPC Rat - Rat (SD) Remodeling 2012[61]

Liver-MSCs Human - Mouse (NOD/SCID) Engraftment,
repopulation

2011[62]

AD-MSCs Human - Mouse (c57/B6) Analysis of IRI 2014[63]

Mouse - Mouse (Swiss CD1) Repopulation 2012[64]

AD-MSC-Hep Mouse - Mouse (C57BL/6) Engraftment 2015[65]

CD34+ cells Human - Human (LC) Hepatic function 2015[66]

ESCs-Hep Mouse - Mouse (BALB/c) Engraftment, hepatic
function

2012[67]

iPSC-Hep Human Organoid Mouse (Alb-Tk-NOG) Survival extension,
hepatic function

2017[68]

Organoid Mouse (NOD/SCID) Engraftment 2013[69]

Mouse - Mouse (Fah-/- C57Bl/6) Engraftment 2010[70]

iMPC-Hep Human - Mouse (FRG) Engraftment 2014[71]

GPSCs-Hep Mouse - Mouse (Hfe-null) Engraftment 2015[72]

Liver stem cells Rat Organoid Rat (Fah−/−Il2rg−/−) Engraftment, hepatic
function

2016[73]

“-” means negative treatment. ALF: Acute liver failure; ACLF: Acute on chronic liver failure; SD: Sprague dawley; UC-MSCs: Umbilical cord deriver
mesenchymal stem cells; BM-MSCs: Bone marrow derived mesenchymal stem cells; MNCs: Mononuclear cells; HSCs: Hematopoietic stem cells; LC: Liver
cirrhosis; EPP: Erythropoietic protoporphyria; BM-MNC-EPC: BM-MNC derived endothelial progenitor cell; AD-MSCs: Adipose derived MSCs; IRI:
Ischemia-reperfusion injury; AD-MSC-Hep: AD-MSC derived hepatocyte; iMPC: Induced multipotent progenitor cell; GPSCs: Germ line cell-derived
pluripotent stem cells.

patients  with  errors  of  metabolism  and  acute-on-chronic  liver  failure  (ACLF).
Nevertheless, the use of human hepatocytes has limitations including limited organ
availability,  limited  cell  proliferation,  loss  of  function,  and  risk  for  immune
rejection[101,102]. Previous studies have explored the application of not only hepatocytes
but  other  cell  sources  as  well.  Xue  et  al[103]  performed  a  meta-analysis  of  cell
transplantation for ACLF including nine RCTs. In this report, UC-MSCs and bone
marrow-derived MSCs (BM-MSCs) were used as the cell source, which improved the
survival period and liver function.

MSCs,  especially  BM-MSCs,  have shown immunomodulatory and antifibrotic
effects in other organ systems, and MSC transplantation has shown positive results in
the treatment of liver fibrosis[104,105]. We also found 2 reports of hematopoietic stem cell
transplantation, but they were relatively less applied than UC-MSCs and BM-MSCs.

Most  importantly,  MSCs  can  secure  more  sources  than  hepatocytes,  but  the
problem of cell quality still remains. As a stem cell therapy, iPSCs attract considerable
attention in the field of transplantation. iPSCs were established from adult fibroblasts
by introducing dierent transcription factors[106]. They overcame the ethical aspects of
ESCs  and  have  the  self-renewal  properties  and  pluripotency,  the  ability  to
differentiate into various somatic cells, including hepatocytes[107].

HLCs derived from human iPSCs have been researched as a potential alternative to
hepatocytes for cell therapy, disease models, and evaluating drugs[108,109]

Takebe et al[3]  succeeded in creating a liver bud with iPSCs derived HLCs. This
study demonstrated a three-dimensional liver bud produced by co-culturing with
Human Umbilical Vein Endothelial Cells and MSCs was able to improve the liver
function of recipient following transplantation.

A 3 dimensional (3D) culture is effective for hepatocyte functionality[110], and using
a method combining iPSCs and 3D culture may eventually assure high cell quality
and quantity.

Nevertheless,  because  of  potential  tumorigenicity,  the  risks  of  developing
teratomas, and the lack of long-term safety and ecacy, 3D cultures and iPSCs have not
been  clinically  applied  yet[111,112].  In  our  search,  we  did  not  find  many  studies
elucidating the in vivo application of iPSCs.

Cell transplantation also suffers from these above-mentioned challenges. Moreover,
in the recent years, in vitro expansion of human hepatocytes has been explored[113] to
overcome the challenges with iPSCs. The improvements in these approaches may lead
to the development of alternative therapies.

Xeno-organ transplantation
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Table 2  Xeno-organ transplantation

Donor organ Recipients Outcomes Year

GTKO pig Tibetan macaques Cytokine profile 2017[74]

Baboon Survival extension 2018[5]; 2017[14]; 2014[75]; 2012[76]; 2010[77]

Analysis of thrombotic
microangiopathy

2016[78]

Analysis of platelet 2014[79]

Analysis of rejection 2012[80]

Platelet aggregation 2012[81]

Analysis of coagulopathy 2012 [82]

Hepatic function 2010[83]

Pig Baboon Analysis of immunoglobulin 2018 [84]

Rabbit Porcine, rabbit Analysis of IgG 2012[85]

GTKO: Alpha 1-3 galactosyltransferase gene knockout; IgG: Immunoglobulin G.

The first  successful  animal-to-animal  liver  xenotransplantation  was  reported  in
1968[114]. Because of the development of immunosuppressive drugs, various studies
were conducted that targeted the applicability of harvested organs from other species.
Among animals, pigs were proved as useful in terms of size and rejection strength;
therefore,  genetically  modified porcine  organs  hold enormous potential  for  this
purpose. Although the cornea and skin of pig have been clinically applied, for OLT,
the survival period is so short that liver xenotransplantation could not been applied
clinically.  To  solve  the  problem of  severe  rejection,  GT-KO pig  was  developed,
intending to reduce the risk of GVHD[115]. The recent development of CRISPR/Cas9
has made this animal model more suitable[116].

Regarding xenotransplantation, 12 of 14 articles in our search used GT-KO pigs.
Shah  et  al [14]  reported  that  a  human  prothrombin-concentrate  complex  and
immunosuppression was used on GT-KO pigs and that the survival was improved.
Even  then,  it  is  necessary  to  improve  physiological  problems  such  as  rejection,
coagulation factors, and complementary species specific for application in humans.

Scaffold-based transplantation
Regarding rejection and infection, decellularization of tissue is an attractive method.
Decellularization of tissues and even whole organs represents a novel approach for
developing perfusable extracellular matrix (ECM)-derived scaffolds with preserved
vascular  integrity.  Decellularized tissue  is  rarely  rejected and is  used for  tissue
reconstruction as scaffold material[117].  This decellularized scaffold is transplanted
orthotopically  or  ectopically.  The  decellularization  of  whole  organ  was  first
introduced by Ott et al[118] in 2008 with the aim of developing acellular hearts from
mice.  Bovine  heart  valves  and  corneas  or  those  from  pigs  have  already  been
commercialized  and  clinically  applied[119].  In  recent  years,  research  has  been
conducted on human liver and hepatocytes. Mazza et al[2] reported in 2015 that human
liver was decellularized and re-cellularized with a liver cell line to create engineered
livers.

KaKabadze et al[15] engrafted sheep liver cells on decellularized human placenta and
transplanted them into sheep that underwent partial hepatectomy. Human placenta
was considered as an attractive source because it  has a  well-developed vascular
network and ECM for  tissue engineering.  Moreover,  it  is  usually  discarded and
widely available.

In addition, many articles exhibited the application of decellularized tissues and
biomaterial-based scaffold.

As biomaterials, natural biomaterials are applied such as collagen and hyaluronic
acid,  and  synthetic  materials  such  as  polymers  based  on  polylactic  acid  and
polyglycolic acid, among others[16-18]. Previous reports show that after transplanting
these scaffolds, the liver function in recipients improved[19-21].

More recently, bio-printed scaffolds have been developed that mimic the tissue
using these biomaterials[120].  However,  they have problems of vascularization for
tissue engraftment and repopulation, which warrant further research.

Meanwhile, scaffold-based transplantation with an ECM was proven effective, and
further research is underway with an aim to select ideal cells for humans[119].

iPSCs and few other cell sources are seeded and cultured in decellularized tissue
and other scaffolds such that tissue regeneration in vitro can be performed. Therefore,
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Table 3  Scaffold-based transplantation

Donor
Recipients (strain) Outcomes Year

Scaffold Species Seeding cell

Decellularized organ
liver

Human Mouse (C57BL/6J) Immunogenicity 2015[2]

Porcine Rat (F344) Immunogenicity 2013[86]

Porcine Immunogenicity 2013[87]

Porcine Engraftment 2012[88]

Sheep, rat Sheep, rat Engraftment 2015[89]

Rat Hepatocytes (rat), BM-
MSCs (Rat)

Rat (Lewis) Engraftment 2014[90]

Hepatocytes (rat) Rat (Lewis) Engraftment, Hepatic
function

2010[91], 2011[92]

Mouse Hematopoietic
progenitor cells (mouse)

Mouse (C57Bl/6) Hepatic function,
metabolic function

2018 [93]

BM-MSCs (mouse) Mouse (NOD-SCID) Survival extension,
hepatic function

2014[94]

Placenta Human Liver cells (sheep) Sheep Survival extension,
hepatic function

2018[15]

Amniotic membrane Human AD-MSCs (human) Mouse Survival extension,
hepatic function

2015[95]

Nonwoven
polyglycolic acid
scaffolds

Liver cells (human,
mouse)

Mouse (NOD/SCID) Analysis of human
metabolite

2017[19]

3D hydrogel Hepatocytes (human) Mouse (nude) Engraftment, hepatic
function

2016[16]

Hyaluronan tube Hepatocytes (rat),
adipose-MSCs (human)

Rat (nude) Engraftment, hepatic
function

2016[17]

Polyethylene glycol
hydrogels

Hepatocytes (rat) Mouse (Nude) Engraftment 2015[20]

Microbeads Hepatocytes (rat) Rat (SD) Hepatic function 2014 [96]

Poly-L-glycolic acid Hepatocytes (mouse) Mouse (NOD/SCID) Engraftment 2014[21]

Hyaluronan hydrogels Hepatic stem cells
(human)

Mouse (Athymic nude) Engraftment 2013[97]

Apatite-fiber scaffold Hepatocytes (mouse) +
HSC + SECs

Mouse (BALB/CA nu) Hepatic function 2011[98]

Chitosan-alginate
fibrous scaffolds

BM-MSCs (human) Rat (Wistar) Hepatic function 2010[99]

Hyaluronic acid
sponge

Fetal hepatocyte (rat) Rat (LEC) Engraftment, hepatic
function

2010[18]

3D: Three dimensional; SD: Sprague dawley; HSCs: Hematopoietic stem cells; BM-MSCs: Bone marrow derived mesenchymal stem cells.

further  research should aim to solve this  problem for  actualizing its  application
clinically.

Conclusion and future perspectives
Our study summarized alternative therapies for OLT. Alternative therapies have been
deeply researched, particularly xeno-organ, scaffold-based, and cell transplantations.
Clinically, only cell transplantation with hepatocytes or MSCs has been applied.

Scaffold-based transplantation is a comprehensive treatment that combines xeno-
organ and cell transplantations. Future research on the clinical application of scaffold-
based transplantation is expected.
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Table 4  Sources of alternative therapy

Donors Species Numbers

Organ liver Total 25

Human 1[2]

Porcine 16[5,14,74-84,86-88]

Sheep 1[89]

Rabbit 1[85]

Rat 4[89-92]

Mouse 2[93,94]

Hepatocytes (adult) Total 31

Human 10[13,16,22-29]

Rat 14[17,20,30-37,90-92,96]

Mouse 7[21,38-42,98]

Hepatocytes (fetal) Total 3

Rat 2[18,43]

Mouse 1[44]

Liver cells Total 3

Human 1[19]

Sheep 1[15]

Rabbit 1[45]

MSCs (umbilical cord) Human 3[29,48,49]

MSCs (bone marrow) Total 15

Human 9[50-52,54-58,99]

Macaques 1[59]

Rabbit 1[53]

Rat 3[60,61,90]

Mouse 1[94]

MSCs (Adipose) Total 4

Human 2[17,63]

Mouse 2[64,65]

MSCs (liver) Human 1[62]

Hematopoietic stem cells Human 2[54,66]

ESCs Mouse 1[67]

iPSCs Total 3

Human 2[68,69]

Mouse 1[70]

GPSCs Mouse 1[72]

Liver stem cells Total 2

Human 1[97]

Rat 1[73]

MSCs: Mesenchymal stem cells; ESCs: Embryonic stem cells; iPSCs: Induced pluripotent stem cells; GPSCs: Germ line cell-derived pluripotent stem cells.

ARTICLE HIGHLIGHTS
Research background
Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however,
the shortage of donor organs limits its application. To overcome this problem, many researchers
have attempted to develop alternatives to OLT.

Research motivation
There are several reports of alternative therapies. Nevertheless, no study has comprehensively
analyzed these therapies from varying perspectives.

Research objectives
This systematic review aims to summarize the current status of alternative transplantation
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therapies for OLT and to support future research.

Research methods
A systematic review was performed by searching the PubMed, Cochrane Library and EMBASE
databases for studies concerning alternative transplantation therapy for OLT. We used the
following  MeSH terms:  “liver  transplantation”,  “cell”,  “differentiation”,  “organoid”,  and
“xenotransplantation”. Various types of studies were retrieved for full-text evaluation. Of these,
we selected articles involving in vivo transplantation.

Research results
A total of 89 studies were selected. There are three principle forms of treatment: Xeno-organ
transplantation (14 articles), scaffold-based transplantation (22 articles), and cell transplantation
(53 articles). Various types of sources for transplantation were discussed: Organ liver, 25 articles;
adult hepatocytes, 31 articles; mesenchymal stem cells (MSCs), 25 articles; induced pluripotent
stem cells, three articles and other sources. Clinical applications were discussed only for cell
transplantation (12 studies; four studies using hepatocytes, five studies using umbilical cord-
derived  MSCs,  three  studies  using  bone  marrow-derived  MSCs,  and  two  studies  using
hematopoietic stem cells).

Research conclusions
This systematic review summarized alternative therapies for OLT from varying perspectives.
Alternative therapies have been deeply researched, particularly xeno-organ, scaffold-based, and
cell transplantation. Clinically, only cell transplantation with hepatocytes and MSCs have been
applied. Scaffold-based transplantation is a comprehensive treatment that combines xeno-organ
and  cell  transplantations.  Future  research  on  the  clinical  application  of  scaffold-based
transplantation is expected.

Research perspectives
This systematic review describes the current status of alternative therapy for OLT in end-stage
liver failure. Further studies are needed for clinical applications in the future.
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