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Abstract
Hepatitis B virus (HBV) and alcohol abuse often contribute to the development of
end-stage liver disease. Alcohol abuse not only causes rapid progression of liver
disease in HBV infected patients but also allows HBV to persist chronically.
Importantly, the mechanism by which alcohol promotes the progression of HBV-
associated liver disease are not completely understood. Potential mechanisms
include a suppressed immune response, oxidative stress, endoplasmic reticulum
and Golgi apparatus stresses, and increased HBV replication. Certainly, more
research is necessary to gain a better understanding of these mechanisms such
that treatment(s) to prevent rapid liver disease progression in alcohol-abusing
HBV patients could be developed. In this review, we discuss the aforementioned
factors for the higher risk of liver diseases in alcohol-induced HBV pathogenies
and suggest the areas for future studies in this field.
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Core tip: In this review, we discussed the literature and some of our recent findings on
the combined effects of alcohol and hepatitis B virus (HBV)-infection in the progression
of liver diseases, such as steatosis, fibrosis, cirrhosis and hepatocellular carcinoma.
Worldwide, 1.5 billion people had chronic liver disease in 2017, most commonly
resulting from HBV (29%) and alcoholic liver disease (2%). Clinical evidence supports
the synergistic effect of alcohol and HBV- infection on progression of end-stage liver
diseases. The possible mechanisms for the chronic liver diseases induced by the
combination of alcohol and HBV-infection are increased HBV replication, oxidative
stress, cell organelles stress [such as endoplasmic reticulum and Golgi stress] and
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importantly, weakened immune responses. Better understanding of these mechanisms
will improve the treatment options for the HBV-alcoholic patients.
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INTRODUCTION
Hepatitis B virus (HBV) infection is an important public health problem. Two billion
population worldwide infected with HBV, including 257 million chronic carriers[1].
The current number of chronic HBV infection cases in United States is 2.2 million[2].
However, many people living with HBV are unaware that they are infected. Usually,
patients with acute hepatitis B clear HBV from their blood and liver within 6 mo.
However, certain factors, such as alcohol abuse, make HBV to chronically persist
which  put  patients  at  a  higher  risk  for  developing  fibrosis,  cirrhosis,  and
hepatocellular carcinoma (HCC)[3-5]. The combination of HBV infection and alcohol
abuse enhances liver  injury progression[6,7],  especially to HCC, which is  5th  most
common  cancer  type  and  2nd  leading  cause  of  cancer  death  in  world[5,8].  The
mechanisms underlying these detrimental effects of alcohol in HBV-infected patients
are not fully understood and are less clear than with chronic hepatitis C virus (HCV)
infection.  Current  treatment  for  chronic  HBV  patients  is  limited  to  antiviral
medications, interferon (IFN) injections, and liver transplants. These treatments do
not fully cure the HBV infection but prevent its spread to uninfected people and
decrease  the  chance  of  developing  end-stage  liver  disease.  However,  these
medications are often largely ineffective when chronic HBV infected patients have
alcohol use disorders (AUD). Elucidation of the mechanisms behind the exacerbation
of HBV pathogenesis by alcohol is crucial for the development of new drugs and
treatment options in alcohol-abusing HBV patients. This article reviews the current
literature concerning alcohol-mediated HBV persistence by exploring ethanol-induced
immune  system  impairment,  HBV  replication,  oxidative  stress,  endoplasmic
reticulum (ER) stress, Golgi apparatus fragmentation, and a higher risk of the end-
stage liver diseases. It also indicates the gaps in our knowledge base for future studies
in this field.

INCIDENCE OF HBV INFECTION
The  epidemiology  of  HBV  infection  is  geographically  diverse,  with  population
prevalence, age, acquisition mode and chance of progression to chronic state being
mutually interdependent[9]. In United States, about 22100 acute hepatitis B cases were
reported in 2017. The prevalence of chronic HBV infection is categorized into low,
intermediate and high prevalence areas based on the percent of  HBV infection’s
incidence: Less than 2% is observed in low-prevalence areas (United States, Canada,
and Western Europe), 2% to 7% is in intermediate-prevalence areas (Mediterranean
countries, Japan, Central Asia, Middle East, and parts of South America) and more
than 8% is in high-prevalence areas (Western Africa and South Sudan)[9].

DEVELOPMENT OF END STAGE LIVER DISEASES IN
CHRONIC HBV INFECTION
The progression to chronic hepatitis B infection enhances the risk for development
end-  stage liver  diseases  leading to  increased mortality[4,5].  The hepatic  steatosis
induced  by  HBV  infection  is  mainly  caused  by  HBx  protein  by  increasing  the
mitochondrial reactive oxygen species (ROS) levels, oxidative stress and through the
interaction with liver-enriched transcription factors, hepatocyte nuclear factor 3-β,
CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor α
axis, and fatty acid–binding protein 1[10,11]. Interaction between viral proteins in the
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liver and immune system induces hepatocyte damage, followed by tissue repair[12].
This repair process causes deposition of extracellular matrix leading to progressive
liver  fibrosis.  HBV X protein may also have fibrogenic  and oncogenic  effects  on
liver[13].  Progression to advanced fibrosis can be either rapid or slow, or sporadic
based on disease stages and levels of liver inflammation and injury[14]. A recent study
reported that elevated α-fetoprotein levels and hepatitis B e antigen (HbeAg)-negative
hepatitis  are  risk  factors  for  liver  fibrosis.  In  addition,  these  authors  found that
interleukin (IL)-1β elevation is important for the progression of liver fibrosis during
chronic HBV infection[15]. The mean age of cirrhosis onset in chronic HBV infection
acquired during childhood is about 40 years, and the complications become clinically
evident 3 years to 5 years later[3,16]. Cirrhosis development is 3-fold more frequent in
chronic HBV patients with high viral  load than in those with low viral  load[17-19].
HBeAg-positivity and elevated HBV DNA levels were reported as risk factors for the
onset of liver cirrhosis in patients with chronic hepatitis B[20]. Liver cirrhosis is a pre-
malignant  condition  that  increase  incidence  of  genetic  aberrations  and  cellular
transformations. The chronic hepatic inflammation as well as increased hepatocyte
turnover found in cirrhosis lead to genetic mutations. Uncontrolled proliferation and
the  high  rate  of  genetic  mutations  promote  progression  to  liver  cancer[21].  HBV
infection is one of the major risk factors for the development of HCC. Below, we will
overview the  role  of  alcohol  in  progression  of  HBV-infection  to  end-stage  liver
disease.

ROLE OF ETHANOL METABOLISM ON VIRAL HEPATITIS
Alcohol abuse is another major health problem prevalent throughout the world. AUD
is characterized by compulsive alcohol intake and a pessimistic mood when not using
alcohol. The National Survey on Drug Use and Health found that 15.1 million adults
and 623000 adolescents (age 12-17) had AUD. Only 6.7% of these adults and 5.2% of
these  adolescents  received  treatment.  Furthermore,  alcohol  abuse  poses  an
extraordinary economic burden. Excessive alcohol use cost the United States $249
billion per year[22], and alcoholic liver disease (ALD) is an escalating global problem
accounting for more than 3 million deaths annually[23].

Chronic alcohol intake alters the architecture and compromises the functional
capacity of the liver. Alcohol metabolism is catalyzed by alcohol dehydrogenase and
cytochrome P450 2E1 (CYP2E1) to acetaldehyde and this major metabolite is  the
culprit  for  the  majority  of  the  toxic  effects  associated  with  alcohol  use[24,25].
Acetaldehyde is both highly toxic and carcinogenic[26].  CYP2E1 is involved in the
induction  of  ROS,  which  interact  with  fat  molecules  thereby  causing  lipid
peroxidation[27]. In addition, both acetaldehyde and CYP2E1 induce oxidative stress[28].
Overall, the effect of alcohol metabolism on protein function, DNA, changes to the
immune system and oxidative stress affect both hepatocytes and other liver cells.
They  take  place  under  both  acute  and  chronic  exposure  to  alcohol  and  induce
significant functional impairments resulting in cell death, tumorigenesis, altered cell
to cell communication, and become more prone to viral infections[29,30].

Ethanol  metabolism is  often associated with viral  hepatitis,  because  liver  is  a
primary site for both hepatotropic viruses (HCV and HBV) replication and ethanol
metabolism.  ALD  accompanied  with  the  hepatitis  virus  accelerates  the  disease
course[31]. Synergic hepatotoxic effect caused by alcohol and HCV infection increased
the risk of advanced liver disease, rapid progression of fibrosis, and higher prevalence
of HCC[32,33]. It has been reported that combination of HCV infection and daily alcohol
intake (> 80 g) increased the risk of HCC development > 100-fold[34]. The incidence of
HBV is higher among alcoholics than among the general population[35,36]. Studies has
been  conducted  on  the  combined  effect  of  alcohol  and  viral  hepatitis  in  the
progression of liver diseases, but the role of alcohol metabolism as risk factors in
pathogenesis of HBV infection has not been studied yet[30].

CLINICAL EVIDENCE OF HBV INFECTION ASSOCIATED
LIVER DISEASES IN ALCOHOLICS
Alcohol  abuse pattern has wide geographical  distribution depending on alcohol
drinking habits in various parts of the world. As reported, about 50% of HBV carriers
drink alcohol and more than 10% are heavy drinkers in Korean population[37]. A study
from  Taiwan  reported  that  alcohol  drinking  is  linked  to  a  lower  prevalence  of
hepatitis B surface antigen (HbsAg) alone but to higher prevalence of HBeAg among
HbsAg-positive drinkers compared with nondrinkers[38]. Recently, Iida-Ueno et al[27]

WJG https://www.wjgnet.com March 7, 2020 Volume 26 Issue 9

Ganesan M et al. Alcohol and HBV infection

885



extensively reviewed the role of alcohol in the exacerbation of HBV infection and
progression to end-stage liver diseases. Marcellin et al[39] found a strong association
between  alcohol  consumption  and  mortality  in  HBV patients.  Two prospective
community-based  cohort  studies  from Taiwan and  Korea  reported  that  alcohol
consumption had an increased risk of HCC in HBsAg-positive men when compared
HBsAg-positive patients with HbsAg negative patients without alcohol consumption,
but relative risk was not significant[40,41]. It has been shown that chronic HBV infection
potentiated by co-factors, such as alcohol consumption, may act in synergy with the
virus  in  determining  an  early  onset  and  a  more  rapid  progression  of  HCC[42,43].
Furthermore, the risk of HCC development is 6-fold higher in alcohol abusers[44]. In
addition, according to Loomba et al[45] both obesity and alcohol have synergistic effects
in increasing the incidence of HCC in HBsAg–positive men. It has been reported in
cohort of Italian cirrhotic patients that the combined effect of alcohol and HBV was
high risk factor for HCC (18-fold increase) than the HBV alone[34,46]. In addition, people
who use alcohol for at least 15 years had enhanced the risk of liver cancer in chronic
HbsAg carriers for 3-4 times[46].

Alcohol also increases the risk of fibrosis in patients with coexisting HBV[47], as well
as enhances liver necroinflammatory changes in HBsAg positive patients[48]. There is
an increased alteration of liver tests in HBsAg alcohol abusers[49]. In addition, self-
resolved HBV infection (defined as HBsAg-negative and HBcAb-positive) can be
qualified as a risk factor for developing HCC in patients with alcoholic cirrhosis[50].
Interestingly,  a  recent  study  on  liver  disease  progression  in  subjects  with
simultaneous presence of HBV/HCV dual infection and history of alcohol abuse
suggests  that  females are at  a  higher risk of  liver  cirrhosis  than males[51].  Future
studies should focus on the unresolved issues, such as the influence of alcohol in
inactive HBsAg carriers, immune tolerant or long-term virally suppressed patients for
the risk of liver disease progression[34]. Importantly the mechanisms of synergistic
effects between alcohol and HBV infection, which increases the risk of end-stage liver
diseases should be the subject of extensive research[52].

HBV REPLICATION CYCLE AND ALCOHOL
Under normal circumstances, HBV behaves as a stealth virus, escaping the immune
response[53,54]. HBV is an enveloped DNA virus containing a partially double-stranded
relaxed circular DNA genome tropic to hepatocytes[55].  The HBV replication cycle
requires  binding and entry of  the virus via  its  receptors,  cytosolic  transport  and
uncoating of the nucleocapsid, formation of covalently closed circular DNA in the
nucleus, the transcription and translation of virus-specific genes, assembly of capsids
and initiation of reverse transcription, followed by budding and secretion of virions
and sub-viral particles as shown in Figure 1.

HBV replication cycle is a classical process, which is regulated by both host and
viral  factors[55-57].  Double-stranded  DNA  genome  encodes  only  7  viral  proteins
including DNA polymerase,  capsid protein (Core),  HBeAg,  X protein,  and three
envelope  proteins:  LHBs  (L),  MHBs  (M)  and  SHBs  (S)[57,58].  A  hallmark  of  all
Hepadnaviridae is the secretion of surface proteins as sub-viral particles (for HBV,
HBsAg particles) in spherical or filamentous form and HBsAg do not contain viral
DNA and are non-infectious[59].

Alcoholic patients often have higher levels of HBV markers. Under experimental
conditions, Larkin et al[35] found that ethanol-fed mice had up to 7-fold higher levels of
HBsAg and HBV DNA compared to control diet- fed mice. HBV RNA levels were
increased in alcohol-fed mice, also showing higher expression of core, surface, and X
antigens in the liver. This is consistent with the higher HBV marker levels present
among alcoholics and supports the idea that alcohol abuse increases HBV replication.
The ability of HBV to evade and/or suppress the immune system also supports this
idea,  especially  when  the  immune  system  is  impaired  by  excessive  alcohol
consumption. Recently, based on in vitro studies, we reported that ethanol metabolism
increased  the  HBV  RNA,  covalently  closed  circular  DNA,  and  HBsAg  in  HBV
transfected  cells[60].  This  report  is  in  agreement  with  a  previous  study  which
demonstrated that ethanol significantly increased HBV replication in mice[61].  The
mechanism behind the ethanol- induced HBV replication may be related to increased
CYP2E1 activity and subsequent oxidative stress induction. As shown by Min et al[62]

ethanol-induced overexpression of CYP2E1 significantly increased the expression of
HNF-4a, a major transcription factor for the HBV core promoter, thereby increasing
the HBV replication in ethanol exposed HepAD38 cells. The same authors reported
that alcohol per se stimulates the HBV genome transcription by increasing the liver-
specific transcription factors/nuclear receptors in an oxidative stress-independent
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Figure 1

Figure 1  Schematic presentation of hepatitis B virus replication cycle. Hepatitis B virus (HBV) enters
hepatocytes via hepatocyte-expressing receptors for viral entry, either sodium taurocholate co-transporting
polypeptide or heparan sulfate proteoglycan. The next stage is uncoating of the nucleocapsid, which takes place in
cytosol and then formation of covalently closed circular DNA occurs in nucleus. Next, the transcription and translation
of HBV specific genes take place and finally, the HBV virions are released to circulation. X protein, and three
envelope proteins: LHBs (L), MHBs (M) and SHBs (S). HBV: Hepatitis B virus; NTCP: sodium taurocholate co-
transporting polypeptide; cccDNA: Covalently closed circular DNA; HSPG: Heparan sulfate proteoglycan; rcDNA:
Relaxed circular DNA; ER: Endoplasmic reticulum; Pol: DNA polymerase; Core: Capsid protein; HBeAg: Hepatitis B e
antigen.

mechanism. In addition, there are other factors, PPARa, FXRa, and PGC involved in
regulation of HBV RNA transcription[63,64].  They also bind to HBV core promoter,
thereby  increasing  the  transcription  of  HBV pgRNA[65-67].  The  above-mentioned
mechanisms are attributed to ethanol-induced activation of HBV transcription[62].
Recently, Lin et al[68] showed that alcoholic HBV patients have higher hepatitis B viral
load. In addition, acetaldehyde affects the lipid composition of cellular membranes in
lipid  rafts,  thereby  influencing  HBV  infectivity[30,69].  Thus,  the  increased  HBV
replication plays a role in establishment of chronic hepatitis and/or liver end-stage
disease in alcohol abusing HBV patients.

HBV PATHOGENESIS/IMMUNOPATHOGENESIS AND
ALCOHOL
The natural history of HBV has been subdivided into two types of infection. In adults,
90%-95% of HBV infections is acute where immune-competent people clear the viral
infection effectively[70,71]. Acute infection is characterized by inflammation and necrosis
of hepatocytes and has low mortality rate (0.5%-1%)[71]. The persistence of HBsAg in
blood for longer than 6 months after the initial infection is a sign of chronic hepatitis
B[70]. This infection is mainly asymptomatic without any intense liver damage, but in
some cases, it leads to chronic hepatitis, followed by fibrosis, cirrhosis development,
and HCC. Majority of infected children aged 1-5 years, are not able to clear HBV and
represent the source of chronic patients[71,72], whereas 5%–10% of HBV-infected adults
are prone to develop chronic HBV infection with the mortality rate of 15%-25% from
cirrhosis and HCC[71,73].

Based on the virus-host interactions, the natural course of chronic HBV infection is
sub-divided into 4 stages[3,74]: (1) Immune-tolerant phase is characterized by HBeAg
positivity, and high levels of serum HBV DNA due to active HBV replication[75,76].
Mostly, children and young adults who are HBsAg positive for 10-30 years from the
initial infection are in this phase[71];  (2) Immune clearance phase accompanied by
elevated serum ALT levels and decreased HBV DNA load; and (3) Immune-control
phase is characterized by low-replication, patients lose HBeAg with seroconversion to
anti-HBeAg, accompanied by liver disease remission; this is typical for the inactive
carrier state. However, about 20%–30% of these patients may have a viral relapse
followed by reactivation phase during follow-up period[75,76].

There are very limited reports available to support the role of  alcohol in HBV
pathogenesis in relation to HBV markers.  For example,  it  has been reported that
alcohol abused cirrhotic patients with higher levels of serum HBV DNA are more
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prone to liver cancer than those with low serum HBV DNA. An increasing HBV DNA
levels precipitate the progression of liver cirrhosis to HCC[77]. In another study, the
synergism between HBsAg positivity  and drinking were  reported,  suggesting a
stronger influence of viral infections and alcohol drinking on the risk of liver cancer[78].
In contrast, as reported by an older study, increased alcohol consumption is related to
higher prevalence of HBeAg seroconversion to anti-HBe, increased prevalence of ALD
and  lower  prevalence  of  chronic  hepatitis[79].  Furthermore,  some  early  studies
demonstrated more frequent presence of anti-HBs and anti-HBc antibodies in blood of
alcoholics than in the non-alcoholics[80-82]. In addition, it has been shown that alcohol
consumption  increased  liver  necro-inflammatory  changes  in  HBsAg  positive
patients[48] and elevated liver tests[49].

ROLE OF ALCOHOL IN HBV INNATE IMMUNITY
Host cells activate innate immune response when they contact pathogen to prevent
the spread of  infection and to stimulate efficient adaptive immune response[71,83].
Pattern-recognition receptors, through identifying the specific pathogen determinants
activate innate immunity to protect against pathogens. Viral sensing, induction of
type I IFNs and production of different cytokines are performed via toll-like receptors
(TLRs),  RNA  helicases,  RIG-I-like  receptors,  NOD-like  receptors,  melanoma
differentiation-associated protein 5 and protein kinase R. Namely, TLR5, and TLR9
are receptors for viral DNA, TLR7 and TLR8 for single-stranded RNA, while TLR3
can bind double-stranded RNA[71,83-89].

Production of  IFN type 1  -α/β and activation of  natural  killers  (NK) cells  are
induced at the initial phase of viral infections. Infected plasmacytoid dendritic cells
(pDC) are the main producers of IFN-α/β, while NK and natural killer T (NKT) cells
produce IFN-γ. In addition to IFN-α/β, other cytokines, like IL-12 and IL-18, control
viral replication[54,90-93].

HBV is relatively inefficient at inducing the anti-viral cytokines, including IFN-α/β.
This appears to be due to limited sensing of HBV stealth virus combined with active
suppression of innate immunity[94,95].  IFN-α/β induced interferon inducible genes
(ISGs) are responsible for antiviral effects that minimize pathogenetic processes by
limiting the viral production and spread[96,97]. Studies conducted on acutely infected
chimpanzees as well as in humans showed decreased production of type-1 interferons
and ISGs[94,97-100].  Interestingly,  McClary et  al[101]  using transgenic mouse model or
hepatoma cell lines have shown that HBV replicates in IFN-γ knockouts and IFN-α/β
receptor knockouts mice at  levels  higher than those observed in wild type mice,
implying that baseline levels of these cytokines control HBV replication in the absence
of inflammation. In support to the above study, Lucifora et al[102] demonstrated that
HBV elicits a strong and specific innate antiviral response (production of IFN-β and
activation of ISGs) that results in a non-cytopathic clearance of HBV DNA in HepaRG
cells. In contrast, in a chimeric mouse model, HBV inhibited the nuclear translocation
of  STAT1  in  response  to  IFNα,  thereby  preventing  ISG  transcription  in  human
hepatocytes[103]. The effect of ethanol on IFN-α/β innate responses and ISGs activation
in HBV infection pathogenesis has not been investigated, but there are several studies
which suggests that alcohol impairs IFN-α/β innate responses and anti-viral gene
expressions  in  HCV  pathogenesis [24 ,104-106].  Future  studies  should  focus  on
understanding the effect of alcohol metabolism on IFN-α/β innate responses and ISGs
activation during HBV infection pathogenesis as well as examine whether IFN-α/β
therapy could be a useful strategy for HBV alcoholics.

HBV infection may elicit differential cytokine responses among various liver cell
types  different  from hepatocytes,  depending  on  the  stage  or  route  of  infection.
Guidotti et al[107] elegantly demonstrated that HBV can be controlled by immune cells
in  a  non-cytolytic  manner  through  the  release  of  cytokines  and  other  immune
mediators. Both in vitro and in vivo studies showed that TNF-α, IL-12, and IL-18 are
involved  in  controlling  HBV  replication  in  addition  to  IFN-γ  and  IFN-α/β
induction[108-110]. Several cytokines control HBV transcription through liver-enriched
transcription  factors[111].  It  has  been  demonstrated  that  IL-4,  IL-6,  IL-1β,  and
transforming growth factor-β (TGF-β) were effective in diminishing HBV replication
markers[112-116] via regulating HBV transcriptional activity. However, while all these
cytokines are protective during acute HBV infection, their persistence in chronic
infection may cause liver inflammation.

While the effect of alcohol in modulating these cytokines in HBV infection has not
been investigated, but it has been well documented that pro-inflammatory cytokines
levels  were  increased  and anti-inflammatory  cytokines  were  decreased  in  ALD
patients[117,118]. Taken together, it is reasonable to expect that alcohol could affect the
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anti-viral activity of these cytokines during acute infection and potentiate persistent
liver inflammation in chronic HBV infection, thereby promoting progressive end-
stage liver diseases. The excessive or persistent presence of immune mediators in
tissues have been recognized to play important roles in the pathogenesis of human
diseases[117,118]. It is very important to conduct future studies to understand and fill the
gaps in our understanding of  the role of  alcohol  in both acute and chronic HBV
infection induced cytokine responses.

Being important innate immunity component, NK cells control viruses via direct or
indirect cytolytic effects, namely, through the release of cytokines, IFN-γ, TNF-α,
TGF-β and IL-10[83,119]. In this regard, NK cell can directly lyse infected hepatocytes
through granzyme/perforin or death receptor pathways causing the death of infected
hepatocytes[119,120]. Non-cytolytic mechanisms of HBV clearance through cytokines like
IFN-γ[121] also control virus in the infected liver without affecting cell integrity[119].

The antiviral capacity of NK cells in HBV-infection has been extensively reviewed
by two different  groups[119,120].  In  this  regard,  NK cells  efficiently  inhibited HBV
replication in a transgenic mice mouse model of HBV infection[122] and contributed to
HBV  clearance  using  acute  HBV  mouse  model[123].  In  chimpanzees,  NK  cells
participated  early  in  non-cytolytic  clearance  of  HBV-infected  hepatocytes
accompanied  by  increase  in  intrahepatic  content  of  IFN-gamma  and  TNF-α[107].
However, subsequent experiments revealed a critical role for T cells rather than NK
cells in HBV control in this model[124].  In the pre-clinical  ramp-up phase of acute
hepatitis B patients, it  was observed an increase in the number of circulating NK
cells[125,126], while activation and effector function was suppressed; this led to viral load
increase[98].  There  was inversive  correlation between low NK cell  activation and
induction of the immunosuppressive cytokine IL-10, raising the possibility that HBV
can actively evade immune responses[98].

NK cells display varying changes in proportion, phenotype and/or function in
different studies of chronic HBV infection. The defects in NK cells are reflected in
many aspects: In chronic HBV patients: (1) The proportions of hepatic and peripheral
NK cells are reduced with or without changes in their subsets[127-129];  (2) There are
changes in expression of activating or inhibitory receptors on NK cells[130,131]; (3) There
is an increase of some molecules with negative effects, such as T cell immunoglobulin
and mucin domain containing molecule-3[132]; (4) The cytolytic activity is maintained
or even enhanced, which correlates with the severity of liver injury[128,129,131]; and (5)
There is defect in the production of cytokines, like IFN-γ and TNF-α, making them
inefficient in promotion of direct non-cytolytic antiviral roles as well  as in T-cell
responses[128,130-132].

Activated  NK  cells  play  a  role  in  early  HBV-infected  hepatocyte  clearance.
However,  with the progression of  chronic  infection,  both NK and T cells  can be
suppressed by tolerogenic effects of hepatic ligands and cytokines which limit their
antiviral efficacy[119,133].  Further studies are needed for better understanding of the
factors  triggering and mediating the opposing roles  of  NK cells  in  chronic  HBV
infection which could allow these cells to be successfully exploited as therapeutic
targets[119]. Importantly, the role of alcohol on NK cell responsiveness in the HBV-
infected  liver  has  not  been  addressed.  As  reported,  NK  cells  are  impaired  by
alcohol[134], which ultimately affects antiviral activity of NK cells during acute HBV
infection. Another possible mechanism is the alcohol-induced impairment of IFN-γ
signaling which would decrease the protective ISGs gene expression. We recently
reported that ethanol metabolite, acetaldehyde impaired IFN-γ signaling via the JAK-
STAT1 pathway in HBV transfected cells[60]. Future studies in this topical area will
improve our understanding of NK cell immunity in HBV-infected alcoholic patients.

Dendritic cells (DCs), (both conventional/myeloid DCs, mDCs and plasmacytoid
DCs,  pDCs)  effectively  connect  the  adaptive  and  innate  immune  responses[135].
Subpopulations of DCs can be distinguished from other immune cells by specific
surface markers[136,137]. pDCs play a crucial role against viral infection by producing
vast  amounts  of  type  I  interferon  due  to  up-regulated  TLR7  and  TLR9
expression[138-140]. It has also been reported that pDCs increase the co-stimulatory and
major  histocompatibility  complex  (MHC)  molecules  expression  on  target  cells
enabling them to present antigen to T cells[141].

Cui et al[142] elucidated three main ways of recognition of HBV antigens by DCs.
First  is  that  HBV  DNA  can  be  recognized  by  DCs  through  TLR9,  second  DCs
internalize HBV DNA and third, HBsAg can be internalized by DCs through the
mannose receptor. DCs phagocytize HBV, process viral antigens to antigenic peptides
and present them to CD4+ and CD8+ T cells[143]. DCs activate antibody-dependent
cytotoxicity  cells  and  NK  cells,  which  stimulate  these  cells  to  secrete
immunosuppressive  cytokines,  IL-10  and  TGF-β,  assisting  in  the  induction  of
regulatory T cells (Tregs) with the participation of mDC to destroy HBV-infected
hepatocytes[144]. To date, there have been no studies which investigated the effect of
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alcohol on DCs function in pathogenesis of HBV infection. There are several reports
support that alcohol consumption decrease the DCs functional ability which leads to
impaired adaptive immunity and gives more chances to detrimental events upon
pathogens exposure[145-148]. It is possible that ethanol-induced dysfunction of DCs leads
to reduction in their HBV antigen presentation property, thereby causing prolonged
persistence of virus and progression to end-stage liver disease.

EFFECT OF ALCOHOL ON ADAPTIVE IMMUNITY IN HBV
INFECTION
The  adaptive  immune  response  is  responsible  for  viral  clearance  and  disease
pathogenesis during HBV infection[54,149].  Cell-to-cell  interactions may play either
protective or pathogenic roles, and are important for anti-viral adaptive immune
response in HBV infection[150]. These immune cells are: (1) CD4+ T cells, the helper T
cells, robust producers of cytokines required for the efficient development of effector
cytotoxic CD8+ T cells  and B cell  antibody production;  (2)  CD8+ T cells  directly
recognizing  virus-infected  cells  and  responsible  for  HBV-infected  hepatocytes
clearance via cytolytic and non-cytolytic mechanisms[151,152]; and (3) B cells neutralizing
free viral particles by antibodies to prevent (re) infection[153,154] and affect participation
of helper T cell in HBV antigen presentation[150]. The development of antiviral immune
response  is  typical  for  acute  HBV infection,  while  chronic  HBV patients  do  not
generate efficient antiviral response[149].

ROLE OF ALCOHOL ON B CELL RESPONSES IN HBV
INFECTION
Minimal information is available regarding the specificity of B cell responses to HBV,
although different  antibodies  are  routinely  used to  distinguish between clinical
phases of infection[155]. Recently, two different groups, extensively reviewed the role of
B cell responses in acute and chronic HBV infection[155,156]. It has been reported that in
chronic HBV patients, B cells are capable of producing polyclonal antibodies, which
targeted a range of HBV antigens, including HBcAg, HbeAg, and the large, medium
and small forms of HBsAg[157]. Antibodies against HBV surface antigen and HBV core
antigen are produced in acute HBV infection with different kinetics.  Anti-HBs is
considered as a marker of disease resolution whereas anti-HBc is marker of active or
past  infection[158].  Some  studies  showed  that  anti-HBc  response  has  also  been
associated with acute liver damage[159,160]. Antibodies targeting HBsAg and HBeAg
(anti-HBs and anti-HBe)  appear  later  in  acute  infection and are  associated with
favorable outcomes of infection[161]. The well-identified antiviral effector function of B
cells is related to their differentiation into plasma cells, which produce neutralizing
antibodies,  preventing  entry  of  the  virus  into  target  cells  either  through  steric
obstruction or through direct binding to the receptor-binding site on virions[162,163].
During HBV infection, only antibodies directed against the envelope protein (anti-
HBs) have neutralizing activity, underscored by their ability to recognize and bind to
key viral epitopes required for infectivity[164,165]. The function of B cells is not only in
production of neutralizing antibodies, but they also act as potent antigen presenting
cells (APCs), specifically for helper T cells[166]. During the flares of chronic hepatitis B,
there is  an enrichment of  IL-10 producing B cells  which modulate inflammatory
events as well as HBV-specific T cell responses[167]. Again, there is a huge gap on the
role of alcohol in terms of the regulation of B cells function and its input in HBV
pathogenesis.  It  has  been  previously  reported  that  alcohol  decreased  the  B  cell
numbers and especially lowered the circulating B cell levels[168-170]. Alcohol-induced
loss of peripheral  B cells  primarily affects certain subpopulations of cells,  which
develop into long-lived memory B cells critical in protection from the infection with
same pathogen[171]. It is possible that alcohol may weaken the B cell immune responses
by decreasing the level of B cells leading to reduction in antibodies against HBV
antigens, thereby causing chronic HBV. Geissler et al[172] demonstrated that in female
mice fed ethanol diet and immunized by DNA-based construct containing the pre-
S2/S gene, the levels of anti-HBs were marginally reduced compared with those in
control mice.
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ROLE OF ALCOHOL ON CYTOTOXIC T-LYMPOCYTE
RESPONSES IN HBV INFECTION
Regarding acute HBV-infection, there is less information available on B-cell response
but HBV-specific CD4+ and CD8+ mediated responses become normally measurable
during the period of exponential rise in HBV replication[125,126]. Capsid protein epitopes
were specifically recognized by CD4+ T helper cells, whereas CD8+ T cells naturally
recognize epitopes positioned within diverse HBV proteins. HBV-specific T cells are
Th1  focused  and  vigorous  in  self-limiting  acute  infection  compared  to  chronic
infection[97,173-175].  CD4+ T cell  response to HBV is  vigorous,  and multi-specific  in
patients with acute hepatitis who ultimately clear the virus, but it is comparatively
weak  in  persistently  infected  patients  with  chronic  hepatitis[176].  Many  studies
provided evidence for a strong relationship and association between CD4+ T cell
response, acute hepatitis, and viral clearance[177-179]. As also reported, there is no effect
on viral clearance and liver disease when CD4+ T cells are depleted at the peak of
HBV infection  in  chimpanzees[124],  suggesting  that  CD4+ T  cells  do  not  directly
participate in viral  clearance and tissue damage.  It  is  possible that  CD4+ T cells
indirectly control HBV infection by facilitating the induction and maintenance of the
virus-specific B cell and CD8+ T cell response[54].

HBV-specific CD8+ T cell response acts as the principal effector mechanism of viral
clearance and liver inflammation[156]. HBV-specific CD8+ T cells are enriched within
the infected liver, lyse HBV infected hepatocytes[124,180] and secrete cytokines (mainly
IFN-γ) that trigger a process of non-cytolytic HBV clearance[121] and recruitment of
inflammatory immune cells[122,181]. As mentioned earlier, like CD4+ T cells, CD8+ T cell
response  is  detectable  in  acute  HBV.  But  in  chronically  infected  patients,  the
peripheral blood T cell response is weak and narrowly focused[182-184]. Maini et al[185]

examined a relationship between the number of intrahepatic HBV specific CD8+ T
cells, extent of liver disease, and levels of HBV replication in chronically infected
patients, demonstrating that inhibition of virus replication could be independent of
liver  damage and that  the  functionality  of  HBV-specific  CD8+ T cells  was more
important than total number of T cells to control HBV replication. Experiments in
chimpanzees  have  shown that  the  viral  clearance  and the  onset  of  liver  disease
coincide with the accumulation of virus-specific CD8+ T cells and the induction of
IFN-γ, as well as ISGs in the liver[107,124].

In 2010, Chisari et al[54] clearly outlined the role of cytotoxic T lymphocyte (CTL)
response  in  viral  clearance  by  killing  infected  cells.  Although CTL killing  is  an
inefficient process, in order to kill the infected cells, a direct contact between CTLs
and infected cells is required. Hence, it is not possible to kill all infected cells by CTLs
because unlike HCV infection, HBV can infect as many as up to 1011 hepatocytes[107,186].
Therefore, although hepatitis in HBV infection is due to the cytopathic activity of the
CTLs, viral clearance may require more efficient CTL functions than just killing. There
are few studies which investigated the pathogenetic and non-cytopathic antiviral
functions  of  the  CTL  response  in  HBV  transgenic  mice  that  develop  an  acute
necroinflammatory  liver  disease  after  adoptive  transfer  of  HBsAg specific  CTL
clones[121,180,181].  They found that  CTLs rapidly enter  the liver  and recognize viral
antigen which triggers two events: (1) Apoptosis of the hepatocytes that are physically
engaged with CTLs; and (2) Secretion of IFN-γ which non-cytopathically inhibits HBV
gene expression and replication in the rest of the hepatocytes[121,187]. It has also been
reported  that  the  cytopathic  and  antiviral  functions  of  CTLs  are  completely
independent  from each other[121].  All  these results  suggest  that  CD8+-dependent
cytopathic and non-cytopathic clearance of HBV are effective in the limitation of HBV
viral  infection[100,107,121,124].  Studies  conducted in both animals  and humans clearly
showed that alcohol reduces the number of T- cells, changes the ratio of T- cell types,
decrease  the  T-  cells  activation  and  function  and  finally,  promote  the  T-  cell
apoptosis[171].  Geissler et  al[172]  showed in a transgenic mouse model that ethanol-
induced effects on CTL activity against the middle envelope protein (MHBs) as well
as on T-cell proliferation and cytokine release may partially contribute to a higher
incidence  of  persistent  HBV infection  in  alcoholics.  Again,  there  are  no  studies
directly investigating the role of alcohol in the context of CTL responses in HBV
infection. It  is very important to study the association between alcohol and HBV
adaptive immune response for understanding of the exact mechanisms of alcohol-
induced impairment of various arms of the adaptive immunity. The clarity in this
matter will be useful for the development of treatment strategy for the end stage liver
diseases in alcoholic HBV patients.

WJG https://www.wjgnet.com March 7, 2020 Volume 26 Issue 9

Ganesan M et al. Alcohol and HBV infection

891



ROLE OF ALCOHOL IN HBV MHC CLASS I AND II ANTIGEN
PRESENTATION
MHC class I antigen presentation pathway plays important role in the detection of
virally infected cells by CTLs. MHC class I molecules are expressed on the cell surface
of  all  nucleated  cells  and  present  peptide  fragments  derived  from intracellular
proteins[188]. As mentioned above, in HBV infection, CTLs expressing specific T- cell
receptors are responsible for elimination of HBV-presenting hepatocytes. When the
display of viral peptide/MHC class I complex on HBV-infected hepatocytes is altered,
it  may  reduce  CTL  activation  and  thereby,  suppress  HBV-infected  hepatocyte
clearance[60]. Hence, the presentation of HBV-viral peptide-MHC class I complex on
hepatocytes surface is necessary for the effective elimination of HBV infected cells.
Sastry et al[189] and Khakpoor et al[190] reported that the recognition of different HBV
viral  peptides-MHC class  I  complex  (HBV epitopes)  are  important  for  efficient
immune therapeutic control of chronic HBV infection and that determination of these
epitopes will be useful in delivering antiviral drugs or cytokines directly to virus-
infected cells. As we mentioned earlier, MHC class I pathway is usually fueled by
endogenous antigens whereas main source of Ag entering the MHC class II pathway
is exogenous protein, which is endocytosed/phagocytosed by professional APCs[191].
CD4+ T cell activation is triggered when the specific antigenic peptide is presented on
MHC class II molecules. Exogenous antigens may also enter MHC class I pathway,
which is called cross-presentation by DCs and macrophages. Furthermore, antigens
expressed in the context of HBsAg virus-like particles can access MHC class I and
class II pathways of primary DCs to elicit adaptive immune responses. In addition,
Murata et  al[192]  reported that  intrahepatic  cross-presentation by DCs in the liver
augments HBV-specific CD8+ T cell expansion, while concomitant or subsequent
hepatocellular  presentation of  endogenously synthesized antigen is  essential  for
expansion and cytolytic differentiation of HBV-specific CD8+ T cells induced by DC
activation.  There  are  two old  studies  which  reported  that  strong  MHC class  II-
restricted CD4+ T cell response to HBV core is associated with viral clearance in acute
HBV infection[177,193].  There are limited number of studies investigating the role of
alcohol on MHC class I  and II presentation in HBV- infected cells.  Pasala et al[171]

reported that immune response to the HBV vaccination yielded a smaller immune
response in patients who abuse alcohol compared with healthy patients. We have
recently  reported  that  in  hepatocytes,  the  combination  of  HBV  and  ethanol
metabolites impairs proteasome function as well as IFN-γ-signaling through the Jak-
STAT1 pathway and suppresses HBV peptide cleavage by immunoproteasome. It also
disactivates  protein  loading  complex  components,  TAP  and  tapasin,  which  are
required for HBV peptide-MHC class I trafficking to the membrane, finally, affecting
the expression of HBV core peptide 18-27- MHC class I complex on cell surface[60]. All
these events may prevent CTLs activation to limit their ability to identify/clear HBV-
infected hepatocytes resulting in liver inflammation and its progression to fibrosis
and HCC. Importantly, future studies should be focused on the effects of ethanol on
MHC-class II presentation, which is mainly catalyzed by effector cells, such as APCs.
Overall, the combination of a weakened innate and adaptive immune response due to
ethanol consumption could decrease the ability to clear HBV from the body, allowing
the virus to persist chronically, followed by development of end - liver diseases, such
as cirrhosis and HCC.

ALCOHOL INDUCED IMPAIRMENT OF GUT-MICROBIOME
AND HBV PATHOGENESIS
The  unique  intestinal  blood  supply  containing  microbe-derived  products  and
metabolites  affect  the  composition  of  hepatic  immune  cells ,  immune
microenvironment and the regulation of antiviral immune responses. The immune
response in the liver is closely controlled by the intestinal commensal microbiota
signals.  The  host’s  ability  to  clear  HBV  is  correlated  with  the  establishment  of
commensal microbiota. Wu et al[194] using HBV- transfected mice, demonstrated the
critical role of CD4+ T cells in HBV clearance mediated by commensal microbiota.
Both  human  and  animal  studies  have  shown  that  the  intestinal  barrier  of  the
gastrointestinal tract has exceptionally high permeability as a result of alcohol abuse.
The  tight  junctions  between epithelial  cells  in  the  gastrointestinal  tract  are  also
disturbed as a result of alcohol abuse, allowing bacterial substances to leak into the
bloodstream[195-197]. It is possible that alcohol influenced bacterial composition due to
depletion  of  beneficial  commensal  bacteria  and  high  pathogenic  bacteria
colonization[198].  All  these  changes  could  contribute  to  impairment  in  the  HBV
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clearance dependent on the establishment of commensal microbiota.

ROLE OF ETHANOL AND HBV- INDUCED OXIDATIVE
STRESS IN LIVER INJURY
As mentioned earlier, ethanol metabolism in the liver can lead to an increase in the
production of ROS, mainly hydrogen peroxide and superoxide anion[27]. Moderate
drinking (<  50  g/d)  has  been shown to  increase  the  probabilities  of  developing
oxidative  stress  three-fold,  while  heavy drinking (>  50  g/d)  has  been shown to
increase these odds by 13 to 24 times[199]. Few studies have investigated the role of
alcohol-induced oxidative stress in HBV infection pathogenesis and associated liver
injury. In addition, oxidative stress may play a key role in the progression of liver
disease where alcohol consumption is associated with chronic hepatitis B[27]. Ha et al[200]

reported that even moderate ethanol consumption promotes oxidative stress and liver
injury  in  HBx transgenic  mice,  implying that  compromised antioxidant  defense
increases alcohol-associated liver injury. In addition, Min et al[62] found that CYP2E1-
induced oxidative  stress  potentiates  the  ethanol-related transactivation of  HBV.
Recently,  we  reported  the  ethanol  metabolite,  acetaldehyde  induces  lipid
peroxidation, and adduction of proteins with 4-hydroxynonenal and malonaldehydes
(oxidative stress markers) suppress the proteasome activity, necessary for generation
of antigenic peptides for MHC class I -restricted antigen presentation. This results in
decreased presentation of HBV peptide-MHC class I complex for the recognition by
CTLs and limits elimination of infected cells[60]  leading to persistence of HBV and
subsequent end-stage liver diseases.

However, it is very difficult to dissect the role of alcohol- induced oxidative stress
in HBV infection and associated liver injury since HBV has also been shown to cause
oxidative stress[201-203]. In a study on 158 HBV patients and 42 healthy individuals, total
oxidative stress levels were significantly higher for the patients infected with chronic
HBV compared to the other groups[204]. Findings from a recent study consist of 296
chronic HBV patients suggesting that oxidative stress might be a useful indicator of
the progression of  HBV-induced liver  disease in patients[202].  HBV has also been
shown  to  induce  oxidative  stress  in  transgenic  mice  and  human  primary
hepatocytes[205,206].  Also,  HBx  protein-induced  ROS  plays  an  important  role  in
autophagosome formation and the  ensuing viral  replication[207].  In  addition,  the
development of  HCC in HBx transgenic  mice is  preceded by oxidative stress[208].
Overall, both alcohol and HBV proteins induced ROS activated pathways (such as the
mitogen-activated protein kinase pathway) that aid in the formation of chronic liver
disease[200]. Since, alcohol and HBV act as an individual factor in causing oxidative
stress, there are no studies which investigated the combined effect alcohol- and HBV-
induced oxidative stress in the pathogenesis of liver injury. Hence, it is very important
to  conduct  more  studies  to  find  out  the  synergistic  effect  of  alcohol-  and HBV-
induced oxidative stress in the progression of end stage liver disease.

ETHANOL AND HBV INDEPENDENTLY INDUCE ER STRESS
When the protein load exceeds the protein-folding capacity of the ER, the unfolded
protein response (UPR) is  induced as  an attempt to decrease the load.  A strong,
prolonged UPR leads to ER stress. Both ethanol and HBV have been shown to induce
the UPR and ER stress[209-212].

It  is known that ALD leads to an impaired ability of the liver to secrete serum
proteins, such as serum albumin and clotting factor proteins. There is evidence to
support that this impairment is caused by a malfunctioning ER, which makes sense
because the ER is involved in folding and modification of proteins that will eventually
be secreted. Howarth et al[213] reported that the exposure to ethanol metabolites caused
ER fragmentation and increased expression of UPR genes in hepatocytes. The same
group found that ethanol exposure caused ER morphological abnormalities, defects in
hepatocyte secretion, and a strong UPR in zebrafish[213]. Several investigators reported
that acetaldehyde and its adducts cause ER stress[214-218].

HBV infection has also been shown to cause ER stress. Li et al[219], found that the
UPR was induced in HBV-infected hepatocytes. However, only specific branches of
the UPR were induced, while the branch leading to apoptosis was not affected. This
allowed UPR and ER stress to persist while preventing apoptosis[219].  Kim et al[220]

reported that chronic HBV infection results in chronic ER stress. This chronic ER stress
plays a major role in the pathogenesis of liver diseases, including viral hepatitis and
liver cancer.
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Since both HBV and ethanol abuse cause ER stress, these stress responses may be
additive or even synergistic. It has been reported that ER stress is synergistically
induced  by  alcohol  in  the  presence  of  environmental  factors,  drugs,  or  viral
infection[221]. The possible mechanism behind the alcohol- induced ER stress in HBV
infection may be due to the alcohol-triggered viral replication (as we mentioned in the
earlier  section)  by  increasing  HBV DNA,  HbsAg,  and  HBx  protein.  These  viral
components have been involved in the UPR activation and ER stress, playing a role in
HBV pathogenesis[212,220,222,223]. It has been reported that alcohol and anti-HIV drugs
induced the ER stress and liver injury[224]. Importantly, for the effective elimination of
HBV- infected cells by CTLs, the proteasome generated antigenic peptides should be
loaded into MHC class I molecules and form peptide loading complex in the ER for
the HBV peptide-MHC class I complex presentation on hepatocytes surface. We have
recently reported that acetaldehyde suppressed the presentation of HBV peptide-
MHC class I in HBV transfected cell, in part, due to the acetaldehyde-induced ER
stress which leads to the impaired trafficking of this peptide complex in ER to Golgi
then to the cell surface[60].

ETHANOL INDUCES GOLGI FRAGMENTATION
A stressed ER often corresponds with a stressed Golgi apparatus since proteins from
the ER are trafficked to the Golgi before they are secreted from the cell. There is no
well-characterized system of Golgi stress markers as exists for the UPR proteins in ER,
so  the  best  way  to  determine  the  presence  of  Golgi  stress  is  to  view  Golgi
fragmentation  morphologically.  Siddhanta  et  al[225]  demonstrated  that  ethanol
exposure  leads  to  Golgi  fragmentation  and  fragmented  Golgi  cannot  function
properly. A malfunctioning of Golgi along with a malfunctioning ER impairs the
ability of hepatocytes to secrete serum and membrane proteins[225]. Recently Petrosyan
et al[226-228] revealed that abnormalities in the Golgi apparatus function is crucial for the
development of  alcoholic  liver injury.  They reported that  ethanol-induced Golgi
fragmentation  and  disorganization  of  Golgi  matrix  proteins  is  one  of  the  main
contributors  of  Golgi  scattering.  They  also  found  that  alcohol-induced  Golgi
fragmentation alters the Golgi-to-plasma membrane trafficking. Interestingly, it has
been reported that under viral infection, Golgi is partially fragmented[229] and that
HCV also caused Golgi fragmentation[230]. There are no studies conducted on the role
of alcohol and HBV-induced Golgi fragmentation in HBV infection pathogenesis and
subsequent progression of liver injury.

CONCLUSION
The  combination  of  HBV  infection  and  alcohol  abuse  can  provide  detrimental
consequences. To gain better understanding of the mechanisms behind this dangerous
combination could save millions of lives. Many possible mechanisms explain the
synergistic progression of end-stage liver disease and the development of chronic
hepatitis  B infection in alcohol-abused patients  (Figure 2).  These factors  include
alcohol-induced increase in HBV replication, oxidative stress and suppressed immune
response,  which finally leads to fibrosis  and HCC development.  Other potential
contributors to this rapid disease progression are ER and Golgi stress,  which are
induced by each alcohol and HBV, but effects are synergized by the combination of
both insults. While many potential mechanisms for the synergistic effects of HBV and
alcohol abuse exist, most of them have not been explicitly studied and characterized.
More research is required to understand the complex interactions between alcohol
consumption and HBV infection. Once elucidated, these mechanisms could aid in the
development of new treatments to prevent the progression of end-stage liver disease
in alcohol abusing HBV patients.
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Figure 2

Figure 2  Mechanisms of alcohol and hepatitis B virus-infection induced liver injury. Alcohol and hepatitis B virus together increase hepatitis B virus replication,
oxidative stress, and cell organelle stress (endoplasmic reticulum and Golgi stress) which ultimately suppresses both adaptive and innate immune response, thereby
leading to end- stage liver diseases. HBV: Hepatitis B virus; ER: Endoplasmic reticulum; IFN: Interferon; IL: Interleukin; MHC: Major histocompatibility complex; NK:
Natural killers.
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