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Abstract
Three major cardiovascular outcome trials (CVOTs) with a new class of 
antidiabetic drugs - sodium-glucose cotransporter 2 (SGLT2) inhibitors (EMPA-
REG OUTCOME trial with empagliflozin, CANVAS Program with canagliflozin, 
DECLARE-TIMI 58 with dapagliflozin) unexpectedly showed that cardiovascular 
outcomes could be improved possibly due to a reduction in heart failure risk, 
which seems to be the most sensitive outcome of SGLT2 inhibition. No other 
CVOT to date has shown any significant benefit on heart failure events. Even 
more impressive findings came recently from the DAPA-HF trial in patients with 
confirmed and well-treated heart failure: Dapagliflozin was shown to reduce 
heart failure risk for patients with heart failure with reduced ejection fraction 
regardless of diabetes status. Nevertheless, despite their possible wide clinical 
implications, there is much doubt about the mechanisms of action and a lot of 
questions to unravel, especially now when their benefits translated to non-
diabetic patients, rising doubts about the validity of some current mechanistic 
assumptions.The time frame of their cardiovascular benefits excludes glucose-
lowering and antiatherosclerotic-mediated effects and multiple other mechanisms, 
direct cardiac as well as systemic, are suggested to explain their early cardiorenal 
benefits. These are: Anti-inflammatory, antifibrotic, antioxidative, antiapoptotic 
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properties, then renoprotective and hemodynamic effects, attenuation of 
glucotoxicity, reduction of uric acid levels and epicardial adipose tissue, 
modification of neurohumoral system and cardiac fuel energetics, sodium-
hydrogen exchange inhibition. The most logic explanation seems that SGLT2 
inhibitors timely target various mechanisms underpinning heart failure 
pathogenesis. All the proposed mechanisms of their action could interfere with 
evolution of heart failure and are discussed separately within the main text.

Key words: Sodium-glucose cotransporter 2 inhibitors; Heart failure; Cardiovascular 
outcomes; Diabetes mellitus; Physiological mechanisms; Pleiotropic effects
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Core tip: Three major cardiovascular outcome trials with a new class of antidiabetic drugs-
sodium-glucose cotransporter 2 inhibitors unexpectedly showed that cardiovascular 
outcomes could be improved due to a reduction in heart failure events. Moreover, recently 
dapagliflozin was shown to reduce heart failure risk for patients with heart failure with 
reduced ejection fraction regardless of diabetic status. Currently, there is much doubt 
regarding the mechanisms of action of these drugs. The most logic explanation is that they 
are timely targeting various mechanisms underpinning heart failure pathogenesis due to 
pleiotropic effects which are discussed in the main text.

Citation: Grubić Rotkvić P, Cigrovski Berković M, Bulj N, Rotkvić L, Ćelap I. Sodium-glucose 
cotransporter 2 inhibitors’ mechanisms of action in heart failure. World J Diabetes 2020; 11(7): 
269-279
URL: https://www.wjgnet.com/1948-9358/full/v11/i7/269.htm
DOI: https://dx.doi.org/10.4239/wjd.v11.i7.269

INTRODUCTION
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality 
among diabetic patients. Due to US Food and Drug Administration requirements, 
since 2008 a series of large clinical trials with new hypoglycemic drugs have been 
designed to rule out cardiovascular harm and to show noninferiority on the 
cardiovascular outcomes while improving glucose control[1]. Three major 
cardiovascular outcome trials (CVOTs) with a new class of drugs - sodium-glucose 
cotransporter 2 (SGLT2) inhibitors (EMPA-REG OUTCOME trial with empagliflozin, 
CANVAS Program with canagliflozin, DECLARE-TIMI 58 with dapagliflozin; Table 1 
unexpectedly showed that cardiovascular outcomes could be improved possibly due 
to a reduction in heart failure risk, which seems to be the most sensitive outcome of 
SGLT2 inhibition[2-4]. It is worthwhile to mention that no other CVOT to date has 
shown any significant benefit on heart failure events[5].These observations set the stage 
for the new game changers in cardiometabolic pharmacotherapy and opened up new 
possibilities in heart failure strategies, along with its standard medical therapy with 
neurohormonal antagonists [mineralocorticoid receptor antagonists, β-blockers, 
angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor 
blockers(ARBs), neprilysin inhibitors]. American Diabetes Association has already 
recommended new strategies in the treatment of diabetic patients with established 
atherosclerotic cardiovascular disease and patients with heart failure, and that is the 
preferential use of SGLT2 inhibitors (empa-, dapa- and canagliflozin) in these 
patients[1]. Furthermore, even more impressive findings came recently from the DAPA-
HF trial in patients with confirmed and well-treated heart failure: dapagliflozin was 
shown to reduce heart failure risk in patients with heart failure with reduced ejection 
fraction (HFrEF) regardless of their diabetic status[6]. So, at present, there are evidences 
that these new drugs work both for diabetic and nondiabetic patients, regardless of 
existing atherosclerotic cardiovascular disease or heart failure, and probably in both 
HFrEF and heart failure with preserved ejection fraction (HFpEF), making them 
unique and important for clinical practice[7,8]. Nevertheless, despite their possible wide 
clinical implications, there is much doubt regarding the mechanisms of action and a lot 
of questions still left to unravel. While scientific and professional community is 
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Table 1 Major cardiovascular outcome trials with sodium-glucose cotransporter 2 inhibitors

Parameters EMPA-REG OUTCOME CANVAS program DECLARE-TIMI 58

Intervention Empagliflozin/placebo Canagliflozin/placebo Dapagliflozin/placebo

Median follow-up (yr) 3.1 3.6 4.2

Number of patients 7020 10142 17160

Prior cardiovascular 
disease/heart failure (%)

99/10 65.6/14.4 40/10

Primary outcome (3-point 
MACE)

0.86 (95%CI: 0.74-0.99) Noninferiority, P 
< 0.001; Superiority, P = 0.04

0.86 (95%CI: 0.75-0.97) Noninferiority, P 
< 0.001; Superiority, P = 0.02

0.93 (95%CI: 0.84-1.03) Noninferiority, P 
< 0.001; Superiority, P = 0.17

Cardiovascular death 0.62 (0.49-0.77)1 0.87 (0.72-1.06) 0.98 (0.81-1.17)

Myocardial infarction 0.87 (0.70-1.09) 0.89 (0.73-1.09) 0.89 (0.77-1.01)

Stroke 1.18 (0.89-1.56) 0.87 (0.69-1.09) 1.01 (0.84-1.21)

Heart failure 
hospitalization

0.65 (0.50-0.85)1 0.67 (0.52-0.87)1 0.73 (0.61-0.88)1

All cause mortality 0.68 (0.57-0.82)1 0.87 (0.74-1.01) 0.93 (0.82-1.04)

MACE: Major adverse cardiac event. 
1Significant.

struggling in pursuing those answers, at the same time, we are expecting the results of 
several ongoing studies of SGLT2 inhibitors in heart failure to fully evaluate their 
therapeutic potential. In this review we will try to give some mechanistic insights of 
SGLT2 inhibitors’ mode of action regarding heart failure, from current hypotheses of 
possible mechanisms of action to explain cardiac protection to the controversies and 
gaps in evidence, as well as potential future developments in the field.

SGLT2 INHIBITORS AND HEART FAILURE
Sodium-dependent glucose cotransporters are a family of active glucose transporter 
proteins. SGLT1 is widely expressed in numerous organs (heart, liver, small intestine, 
lung, kidney), while SGLT2 is mainly expressed in the renal proximal tubule. Under 
normal conditions, glucose is filtered into the urine at the glomerulus and reabsorbed 
in the proximal tubuli by SGLT2 (90%) and SGLT1 (the remaining 10%). In 
hyperglycemic conditions SGLT2 expression is increased, paradoxically augmenting 
the threshold for urinary glucose excretion in diabetic patients. SGLT2 inhibitors are a 
novel class of antidiabetic agents that promote urinary glucose excretion by inhibiting 
glucose and sodium reabsorption from the renal proximal tubules and have recently 
been investigated in several large randomized controlled trials for cardiovascular 
safety and efficacy in patients with type 2 diabetes[9-11]. Enhancing urinary glucose 
excretion by targeting SGLT2 represents an alternative strategy to the traditional 
antihyperglycemic interventions that have been focused on restoring β-cell activity, 
insulin sensitivity or tissue glucose uptake to normalize plasma glucose levels in 
patients with diabetes. SGLT2 inhibitors are generally well tolerated, and the risk of 
hypoglycemia is low because the efficacy of SGLT2 inhibitors to increase glucose 
excretion attenuates at lower plasma glucose levels[12,13]. Since regulatory agencies have 
issued safety warnings for several adverse events (urinary tract infections, diabetic 
ketoacidosis, acute kidney injury, bone fractures, lower limb amputations) based 
primarily on case report data, a meta-analysis of randomized controlled trials with 
SGLT2 inhibitors was performed and concluded that current evidences do not suggest 
an increased risk of harm with SGLT2 inhibitors as a class over placebo or active 
comparators with respect to acute kidney injury, diabetic ketoacidosis, urinary tract 
infections and bone fractures[14]. Further research is required to ascertain whether there 
is an increased risk of amputations associated with SGLT2 inhibitors. Evidence on the 
risk of lower limb amputations is limited to the results from CANVAS trial. There was 
an increased risk of amputations, although the overall incidence of these events was 
low and the study was not powerful enough to detect significant differences among 
the studied population[13,14].
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According to a recent meta-analysis of the three major CVOTs with these drugs (the 
EMPA-REG OUTCOME trial, the CANVAS Program and the DECLARE-TIMI 58 
trial), even though the exact inclusion criteria and definitions of endpoints varied 
among them, the presence of established atherosclerotic disease and heart failure was 
investigator-reported and no heart failure phenotyping was performed, SGLT2 
inhibitors, as a class, have moderate benefits on atherosclerotic major adverse 
cardiovascular events in patients with established atherosclerotic cardiovascular 
disease but also have robust benefits on reducing hospitalization for heart failure and 
progression of renal disease regardless of existing atherosclerotic disease or a history 
of heart failure (they reduced the risk of heart failure hospitalization by 31% and 
progression of renal disease by 45%)[6,15]. This efficacy in the prevention (primary as 
well as secondary) of heart failure has already translated to efficacy in the treatment of 
heart failure as shown in the above-mentioned DAPA-HF trial including patients with 
HFrEF. But SGLT2 inhibitors may also be valuable in the treatment of HFpEF 
according to the subanalyses of CVOTs and accumulating mechanistic insights[8,16,17]. 
Till now, in trials of HFpEF, several established treatments for HFrEF have shown no 
efficacy. So, if results of ongoing studies with SGLT2 inhibitors in HFpEF would show 
effectiveness, this will represent a true breakthrough in heart failure treatment 
(Table 2).

Heart failure comprises an array of patients categorized by their symptoms and 
ejection fraction (HFrEF with EF < 40%, midrange EF between 40% and 49%, and 
HFpEF with EF > 50%). It is a growing public health problem, with an estimated 63 
million people affected worldwide[16]. Heart failure has a progressive nature and 
preventive strategies have to be adopted early because starting treatment at the 
preclinical stage may improve its outcomes[18]. Hospitalization for heart failure carries 
a 10% mortality rate at 30 days postdischarge, 20% at 1 year, the readmission rate at 6 
months is 50%, and the risk of mortality is greater with each hospitalization[16]. Despite 
established treatment options for HFrEF that are associated with reduced mortality, 
the prognosis of heart failure is still very poor. In the recent US study of Shah et al[19] 
patients across the ejection fraction spectrum have a similarly 5-year mortality around 
75% with an elevated risk for heart failure and cardiovascular hospitalizations. These 
data warn us that treatment strategies of patients with heart failure need to be 
improved.

Heart failure is a particularly common complication of diabetes, with poor 5-year 
survival rates, but it seems to have been neglected because more attention was given 
to atherothrombotic complications of disease. Furthermore, patients with diabetes are 
predisposed to a distinct cardiomyopathy - diabetic cardiomyopathy which is 
independent of concomitant diabetic macro- and microvascular complications. It is still 
poorly understood, but of great clinical importance, given the robust association of 
diabetes mellitus with heart failure and increased cardiovascular mortality[20,21]. Could 
SGLT2 inhibitors be the new heart savers in diabetes and beyond diabetes? How is 
their effect so ubiquitous across the spectrum of heart failure? Are we missing 
something in the pathophysiology of heart failure or there is just a lot of work to do 
with the pleiotropic mechanisms of SGLT2 inhibitors? There are still a lot of questions 
regarding SGLT2 inhibitors that are awaiting answers.

SGLT2 INHIBITORS’ MECHANISMS OF ACTION
Physiological mechanisms responsible for SGLT2 inhibitors’ benefits are not yet well 
defined and the situation has become even more complicated since their benefits have 
recently translated to non-diabetic patients which raised doubts about the validity of 
some current mechanistic assumptions. The time frame of their effects excludes 
glucose-lowering and antiatherosclerotic-mediated mechanism of action[22]. Namely, 
separation of the cardiovascular event curves for SGLT2 inhibitors occurred early in 
the studies and persisted for the entire duration of the treatment than would be 
expected from effects on atherosclerosis. Furthermore, it is known that hyperglycemia 
is a weak risk for cardiovascular disease[23,24]. So, multiple different mechanisms, direct 
cardiac as well as systemic, are suggested to explain the early cardiorenal benefits of 
SGLT2 inhibitors seen in CVOTs and they are presented in Figure 1 and discussed 
below: (1) Lowering elevated blood glucose levels with SGLT2 inhibitors which 
promote glucose excretion and not uptake could reduce glucose toxicity, improve β-
cell function and insulin sensitivity as it was shown in the metabolic study of 
Ferrannini et al[25]. Reduced effects of glucotoxicity on the heart, could also reduce the 
risk of heart failure in diabetic patients[23]. But as it was shown in DAPA-HF, the 
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Table 2 Ongoing larger clinical trials of sodium-glucose cotransporter 2 inhibitors in heart failure

Trial Drug Ejection fraction Diabetic/nondiabetic

Emperor-reduced empagliflozin HFrEF Both

Emperor-preserved empagliflozin HFpEF Both

Deliver dapagliflozin HFpEF Both

HFrEF: Heart failure with reduced ejection fraction; HFpEF: Heart failure with preserved ejection fraction.

Figure 1  Summary of sodium-glucose cotransporter 2 inhibitors’ proposed cardiac protection mechanisms. SGLT2: Sodium-glucose 
cotransporter 2; RAAS: Renin-angiotensin-aldosterone system.

benefits of dapaglifozin on the progression of heart failure occurred regardless of 
diabetes, which somehow undermine the hypothesis of glucotoxicity[24]. Nevertheless, 
it could be that in the group of patients with diabetic cardiomyopathy this particular 
mechanism played a role; (2) Reduced body fat and fluid loss are observed with 
SGLT2 inhibition due to glucose excretion. This could partially account for the blood 
pressure reduction, weight loss and, even though the magnitude of this effects is 
modest, could contribute to cardiovascular risk reduction and heart unloading[26-28]; (3) 
SGLT2 inhibitors produce natriuresis and osmotic diuresis that in turn cause a 
reduction in blood pressure and intravascular volume and in this way simultaneously 
reduce both preload and afterload of the heart which could give rapid results observed 
with SGLT2 inhibitors. Reduced arterial stiffness observed with SGLT2 inhibition and, 
as already mentioned, weight loss also contribute to blood pressure lowering[29]. 
However, how could this affect primary heart failure prevention and to which extent it 
can play a role in non- diabetic patients when it is known that SGLT2 inhibitors induce 
a greater level of glycosuria (consequently osmotic diuresis) in patients with diabetes 
compared to normal individuals, needs to be clarified[30]. Furthermore, previous 
investigations did not show that commonly used diuretics were associated with 
reduction in cardiovascular death, while in CVOTs and DAPA-HF, SGLT2 inhibitors 
reduced cardiovascular death as well as sudden death[24]; (4) Therapy with SGLT2 
inhibitors is associated with small plasma uric acid reduction but this potential benefit 
requires further investigation[31]. It is known that uric acid may be associated with an 
adverse prognosis in heart failure and may play a causative role in metabolic 
syndrome, hypertension, renal damage or endothelial dysfunction[32,33]. In rats, 
hypertension associated with hyperuricemia is linked to reduced expression of macula 
densa neuronal nitric oxide synthase. This synthase affects cardiac function facilitating 
sarcoplasmic reticulum calcium release and thus modulating cardiac excitation-
contraction coupling which could be a potential mechanism of SGLT2 inhibitors in 
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cardiovascular protection and heart failure[34]; (5) SGLT2 inhibition induce volume 
contraction which is accompanied by an increase in circulating renin-angiotensin-
aldosterone system (RAAS) mediators even though this effect do not raise the blood 
pressure during treatment with SGLT2 inhibitors[35]. Combined use of RAAS and 
SGLT2 inhibitors may lead to synergistic beneficial cardiovascular effects. Although 
most of the patients in CVOTs and DAPA HF had already been taking ACE inhibitors 
or ARBs, this combined treatment strategy needs further investigation[36]. Furthermore, 
SGLT2 inhibitor treatment is associated with afferent vasoconstriction rather than 
efferent vasodilatation associated with RAAS inhibitors which attenuate renal 
hyperfiltration and contribute to renal protection in diabetes[35]; (6) Renoprotection of 
SGLT2 inhibitors could play a role in the observed cardiac benefits since the heart and 
kidney are inextricably linked (cardiorenal syndrome) and renal disease adversely 
impacts heart failure outcomes[16]. Recently, the CREDENCE trial (Canagliflozin and 
Renal Events in Diabetes with Established Nephropathy Clinical Evaluation) was 
prematurely stopped because of the achievement of the prespecified criteria for the 
primary composite endpoint (time to first occurrence of end-stage kidney disease, 
cardiovascular/renal death, doubling of serum creatinine) when investigating 
canagliflozin versus placebo. The trial also confirmed significant reductions in 
secondary endpoints of cardiovascular death or hospitalization for heart failure[24]. 
These results emphasize that cardiovascular benefit induced by SGLT2 inhibitors and 
renal protection may be connected. Sano proposed that SGLT2 inhibitors rest the 
exhausted kidney proximal tubular epithelial cells and restore functional and 
structural manifestation of diabetic kidney disease[37,38]; (7) Increased cardiac efficiency 
may be linked to increased oxygen delivery due to hemoconcentration and raised 
erythropoietin associated with SGLT2 inhibition[23,39]. On the other hand, in the study 
with erythropoietin-mimetic agents in patients with heart failure of Swedberg et al[40] 
the correction of anemia did not reduce the rate of death or hospitalization among 
patients with systolic heart failure and there was even a significant increase in the 
thromboembolic risk. This increase in hematocrit value during SGLT2 inhibition could 
be alternatively explained as being a surrogate marker of renal recovery from 
tubulointerstitial injury[37]. Nevertheless, the issue needs to be further clarified; (8) 
Increased heart rate was not observed during SGLT2 inhibitor treatment even though 
they affect blood pressure and induce volume contraction. It seems that the diuretic 
effects of SGLT2 inhibitors do not activate neurohumoral factors which is beneficial in 
heart failure[37]. Maybe the pharmacological implications of SGLT expression found in 
the brain could be manifested through this mechanism[41,42]; (9) Raised glucagon levels 
have been linked to SGLT2 inhibitor therapy and, considering glucagon inotropic 
effect independent of the catecholamine release it induces, this could lead to a better 
cardiac performance[25,43,44]. Glucagon inotropic effect declines with the failing heart 
which means that it could contribute to the maintaining of the heart function when 
heart failure is in its commencing stage. It has also anti-arrhythmogenic property 
which may be linked to the reduction of sudden death[45]. Moreover, glucagon is 
known for hepatic glucose production that could contribute to low risk of 
hypoglycemia with SGLT2 inhibition and it enhances ketogenesis, so the consequences 
of glucagon effects could account for SGLT2 inhibitors’ benefits even in non-diabetic 
patients[9,46,47]. On the other hand, since this hormone has been traditionally considered 
harmful in diabetes, its activity regarding SGLT2 inhibition therapy needs to be further 
clarified; (10) SGLT2 inhibitors can redirect metabolism from glucose to fatty acid 
oxidation. This augments the synthesis of ketones which release energy more 
efficiently than glucose or fatty acids and can be used as alternate fuel source in the 
failing heart. These findings could contribute to increased heart function observed 
with SGLT2 inhibitors even in non-diabetic patients but they need further 
investigation[47-51]. Ketone bodies participate in epigenetic and cellular signaling and 
have antioxidative and anti-inflammatory properties. Oxidative stress and 
inflammation are key contributors to the development of diabetic cardiomyopathy but 
also play a role in the pathophysiology of heart failure irrespective of diabetes[52-57]; (11) 
From experimental animal models it is known that SGLT2 inhibitors exert systemic 
and cardiac anti-inflammatory effects[9]. For example, inflammatory M1 macrophages 
preferentially utilize glucose, so SGLT2 inhibitors could dampen inflammatory 
processes decreasing glucose flux and thus promoting polarization of macrophage 
phenotype to non-inflammatory[23]. Treatment with SGLT2 inhibitors also showed 
reduction in pro-inflammatory cytokines profile such as TNFα and IL-6[9]. As it was 
stated before, inflammation is one of the mechanisms involved in diabetic 
cardiomyopathy pathogenesis but also plays a role in the failing heart irrespective of 
diabetes. Furthermore, heart failure and inflammation are strongly connected and 
mutually enhance each other creating a vicious circle[58]. No doubt that SGLT2 
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inhibitors’ anti-inflammatory capacities could be beneficial in the failing heart, but 
more studies in humans are needed; (12) SGLT2 inhibition is associated to antifibrotic 
effects in animal models. According to the study of Lin et al[59] empagliflozin 
significantly ameliorated pericoronary arterial fibrosis, cardiac interstitial fibrosis, 
coronary arterial thickening, cardiac interstitial macrophage infiltration and cardiac 
superoxide levels in db/db mice. The authors also stated that the observations might 
be attributable to the attenuation of oxidative stress. Recently, in a randomized trial 
with empagliflozin (EMPA HEART CardioLink-6 trial) it has been shown that 
empagliflozin caused a reduction in left ventricular mass index assessed by cardiac 
magnetic resonance imaging over a 6-month period in patients with type 2 diabetes 
mellitus and coronary disease[60]. The issue of antifibrotic effects needs further 
investigation in humans since it could be of great importance in heart failure and 
cardiac reverse remodeling; (13) Antioxidative features are attributable to SGLT2 
inhibitors as it was shown in animal experiments[9]. Oxidative stress plays an 
important role in the pathogenesis of cardiac remodeling, and substantial evidence 
indicate that oxidative stress is increased both in the myocardium and systemically in 
patients with heart failure[56]; (14) By current evidence from experimental animal 
models SGLT2 inhibitors attenuate apoptosis of myocardial cells in models of 
myocardial ischaemia-reperfusion injury and diabetic cardiomyopathy which could be 
very important since apoptosis is likely to play an important role in heart failure[9,61]. 
Nevertheless, further clarification is required; (15) SGLT2 inhibitors could reestablish 
the balance between pro- and anti-inflammatory adipokines that can influence 
atherosclerosis, insulin resistance, inflammation, coagulation and fibrinolysis[15,62]. 
Additionally, perivascular and epicardial fat, through altered paracrine regulation of 
adipokines, is implicated in pathogenesis of heart failure[63]. According to the study of 
Sato et al[64] dapagliflozin might reduce epicardial adipose tissue volume and in this 
way could contribute to heart failure reduction risk while canagliflozin, in comparison 
with glimepiride, reduces serum leptin levels and increases the levels of the anti-
inflammatory adipokine adiponectin[65]; (16) SGLT2 inhibitors could exert direct 
cardiac effect through sodium-hydrogen exchange inhibition. This may lead to a 
reduction in cardiac remodeling, injury, hypertrophy, fibrosis, and systolic 
dysfunction, as well as reduce cytoplasmic sodium and calcium levels, while 
increasing mitochondrial calcium levels[66,67]. Since heart failure is associated with 
intracellular cardiomyocyte sodium and calcium loading, this could affect the origin of 
heart failure[68,69]; (17) SGLT2 inihibitors could modulate electrophysiology in the heart. 
Besides the already mentioned glucagon anti-arrhythmogenic effect, one retrospective 
study showed that treatment with SGLT2 inhibitors reverses ventricular repolarization 
heterogeneity in people with type 2 diabetes, independently of their effect on glycemic 
control[70]. The findings may be linked to the reduction of fatal arrhythmias and thus 
reduced cardiovascular death seen with the SGLT2 inhibition so more studies on 
mechanisms of arrhythmias and SGLT2 inhibition are encouraged; and (18) The effects 
of SGLT2 inhibitors on plasma biomarker N-terminal pro-brain natriuretic peptide 
(NT-proBNP) have been inconsistent in studies on humans and in experimental 
studies[39,71-73]. To better elucidate SGLT2 inhibitors’ action, it would be appropriate to 
determine their effects on NT-proBNP and other natriuretic peptides in patients with 
developed heart failure as well as in asymptomatic individuals. There are interesting 
findings of Majowicz et al[74] with the atrial natriuretic peptide (ANP) and endothelin-3. 
In their study, it has been shown that these vasoactive agents inhibit SGLT2 activity in 
the kidney. If SGLT2 transporters would be inhibited via SGLT2 inhibitors, ANP could 
exert and enhance other functions besides its natriuretic and diuretic actions, for 
example inhibition of RAAS and aldosterone production, protection against 
angiotensin II induced cardiac remodeling by minimizing macrophage infiltration and 
expression of pro-inflammatory factors, and modulation of arterial and cardiac 
baroreflex mechanism, e.g., blunting sympathetic response. This could also give 
synergic effect with neprilysin inhibitors. The hypothesis still needs to be tested but 
theoretically it could partially contribute to SGLT2 inhibitors’ cardioprotection, in 
asymptomatic left ventricle dysfunction and especially in the failing heart where the 
natriuretic peptides are significantly elevated[75,76].

CONCLUSION
In conclusion, based on current evidence, SGLT2 inhibitors are agents with pleiotropic 
effects that are valuable in treating diabetes and preventing its complications. They 
reduce the burden of cardiovascular adverse events especially through decreasing 
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heart failure risk. In addition, these drugs represent a new add-on strategy in the 
treatment of normoglycemic patients with HFrEF and carry the potential to be useful 
even in patients with HFpEF, but the dedicated studies are still ongoing. The benefits 
seen on heart failure appear to be mediated via glucose-independent mechanisms. 
Translational clues to the heart failure benefits recorded in clinical trials so far, should 
be sought in mechanisms of their action, which are not completely explained and are 
yet to be revealed. Particularly missing are human studies designed with enough 
power to elucidate some potential mechanisms essential for their mode of action. 
These data are important since SGLT2 inhibitors have great clinical potential through 
wide indications across the spectrum of heart failure and could lessen polypragmasy 
since they can target various mechanisms underpinning heart failure pathogenesis. 
The most logical explanation of their benefits is the timely targeting of various 
mechanisms implicated in the evolution of heart failure.
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