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Abstract
BACKGROUND 
Mesenchymal stem cells (MSCs) have been reported to possess immune 
regulatory effects in innate and adaptive immune reactions. MSCs can mediate 
intercellular communications by releasing extracellular vesicles (EVs), which 
deliver functional molecules to targeted cells. MSC derived EVs (MSC-EVs) confer 
altering effects on many immune cells, including T lymphocytes, B lymphocytes, 
natural killer cells, dendritic cells, and macrophages. A large number of studies 
have suggested that MSC-EVs participate in regulating autoimmunity related 
diseases. This characteristic of MSC-EVs makes them be potential biomarkers for 
the diagnosis and treatment of autoimmunity related diseases.

AIM 
To verify the potential of MSC-EVs for molecular targeted therapy of 
autoimmunity related diseases.

METHODS 
Literature search was conducted in PubMed to retrieve the articles published 
between 2010 and 2020 in the English language. The keywords, such as “MSCs,” 
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“EVs,” “exosome,” “autoimmunity,” “tumor immunity,” and “transplantation 
immunity,” and Boolean operator “AND” and “NOT” coalesced admirably to be 
used for searching studies on the specific molecular mechanisms of MSC-EVs in 
many immune cell types and many autoimmunity related diseases. Studies that 
did not investigate the molecular mechanisms of MSC-EVs in the occurrence and 
development of autoimmune diseases were excluded.

RESULTS 
A total of 96 articles were chosen for final reference lists. After analyzing those 
publications, we found that it had been well documented that MSC-EVs have the 
ability to induce multiple immune cells, like T lymphocytes, B lymphocytes, 
natural killer cells, dendritic cells, and macrophages, to regulate immune 
responses in innate immunity and adaptive immunity. Many validated EVs-
delivered molecules have been identified as key biomarkers, such as proteins, 
lipids, and nucleotides. Some EVs-encapsulated functional molecules can serve as 
promising therapeutic targets particularly for autoimmune disease.

CONCLUSION 
MSC-EVs play an equally important part in the differentiation, activation, and 
proliferation of immune cells, and they may become potential biomarkers for 
diagnosis and treatment of autoimmunity related diseases.

Key words: Mesenchymal stem cells; Extracellular vesicles; Exosome; Autoimmunity; 
Tumor immunity; Transplantation immunity

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Mesenchymal stem cells (MSCs) have been reported to possess 
immunomodulatory effects on autoimmune responses. MSCs can mediate intercellular 
communications by releasing extracellular vesicles (EVs), which deliver functional 
molecules to targeted cells. MSC derived EVs (MSC-EVs) exert immunomodulatory 
effects on many immune cells. A large number of studies have suggested that MSC-EVs 
and the encapsulated bioactive molecules are potential targets for autoimmune disease, 
cancer, and other diseases. However, there is still a long way for investigating the 
molecular mechanism of MSC-EVs in autoimmunity. This review will focus on the 
immunomodulatory function and underlying mechanism of MSC-EVs in autoimmunity 
related diseases.

Citation: Wang JH, Liu XL, Sun JM, Yang JH, Xu DH, Yan SS. Role of mesenchymal stem cell 
derived extracellular vesicles in autoimmunity: A systematic review. World J Stem Cells 2020; 
12(8): 879-896
URL: https://www.wjgnet.com/1948-0210/full/v12/i8/879.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i8.879

INTRODUCTION
Mesenchymal stem cells (MSCs) are a group of common multipotent progenitor cells, 
which can be found in bone marrow[1,2], synovium[3,4], umbilical cord[5], and adipose 
tissue[1,6]. They are characterized by a multilineage differentiation potential and 
paracrine function[7]. There is growing evidence that MSCs exert immunomodulatory 
effects through their paracrine function[8], in which multiple small molecules, 
including extracellular vesicles (EVs), cytokines, chemokines, growth factors, and 
interleukin(IL), are secreted to the extracellular microenvironment in animal models[9]. 
Recently, numerous studies demonstrated that MSCs can be used in clinical therapy 
for immunomodulation and regenerative medicine in vivo and in vitro[10-12]. Despite 
great improvements in the MSC therapeutic strategies for autoimmune diseases, 
treatment failures are still common and there is no doubt that it is imperative to carry 
out more studies to investigate the specific molecular mechanisms. EVs are key 
components of the paracrine process that play a vital role in intercellular 
communication by transmitting biological molecules in pathological and physiological 
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conditions.
EV is newly identified small vesicle wrapped in lipid membranes, which is widely 

produced by many cells and secreted into the extracellular microenvironment. In 1967, 
Wolf first discovered EVs and described them as function-free platelet wastes[13]. EVs 
can be isolated from various extracellular fluids, like blood, urine, saliva, tear, 
cerebrospinal fluid, milk, and so on, and various cells, including stem cells[14-18], 
primary cells of the immune and nervous system[19-22], and multiple cancer cell 
types[23-25]. Their encapsulated functional molecules can be novel biomarkers and 
therapeutic targets for many kinds of diseases, for instance, cancer, autoimmune 
diseases, and neurodegenerative disorders. The role of EVs in immunity and 
inflammation regulations has been attracting attention during the past few decades. 
According to diameter, EVs can be divided into three types, including apoptotic 
bodies, microparticles, and exosomes (Figure 1)[26,27]. Exosomes are the most common 
EVs with a diameter of 50-100 nm[28]. Exosomes were first discovered in sheep 
reticulocytes, by electron microscopy[29]. Microparticles, also called microvesicles, are 
submicronic vesicles with a diameter of 100-1000 nm, which are formed by budding of 
the cellular membrane after cell stimulation or stress, such as cell activation, apoptosis, 
and hypoxia. Apoptotic bodies also belong to EVs with a diameter of 50-4000 nm. They 
are usually released during the stage of cell apoptosis. EVs participate in the 
intercellular communication by delivering numerous proteins and nucleotides with 
biological activity, and nucleotides include microRNAs (miRNAs), long non-coding 
RNAs (lncRNAs), mRNA, and even extra-chromosomal DNA[30,31]. They play vital roles 
in regulating inflammation, immune response, vascular reactivity, and tissue 
repair[32,33]. During the past few decades, MSC derived EVs (MSC-EVs) have been 
implicated in regulating inflammation and autoimmunity[7]. It has been well 
established that EVs are involved in regulating autoimmune disorders by delivering a 
large number of bioactive molecules, including cytokines, enzymes, transcription 
factors, cytokines receptor antagonists, miRNAs, lncRNAs, and circRNAs[34]. MSCs, as 
a specific group of cells,  are multipotent stem cells characterized by 
immunomodulatory and self-renew properties[35,36]. Cosenza et al[37] have reported the 
important pathogenic or therapeutic role of MSC-EVs in rheumatic diseases. 
Therefore, we proposed that MSC-EVs can become potential biotargets for the 
development of novel molecular targeted drugs in autoimmune related diseases based 
on the above conclusions. This systematic review will provide in-depth knowledge of 
biogenesis and functional roles of MSC-EVs, especially exosomes, in autoimmunity.

MATERIALS AND METHODS
Literature search
The key words “MSCs,” “EVs,” “exosome,” “autoimmunity,” “tumor immunity,” and 
“transplantation immunity” were used to retrieve relevant articles published in 
English from 2010 to 2020 in PubMed database. Besides, Boolean operator “AND” and 
“NOT” were combined admirably with those keywords to search the related articles. 
Reference lists from those articles were reviewed to exclude irrelevant articles. 
Manuscripts available were reviewed and recognized by using document management 
tool. All available information was obtained by skimming the abstracts of searched 
articles. Data were analyzed using descriptive statistics.

All repetitive documents were excluded, and the remainder needed to be restored 
for reading. Nevertheless, full text retrieval was performed due to many documents 
with unavailable abstract.

Statistical analysis
This article was a systematic review and no statistical method was used in this article.

RESULTS
Initially, we retrieved 198 records for this review. Then, repetitive and irrelevant 
documents were excluded, and we retained ultimately 96 high-quality papers with 
innovative viewpoints for reference lists. The screening process of those documents is 
showed in Figure 2.

EVs can regulate many immune and inflammatory responses by mediating 
intercellular communication. Moreover, MSC-EVs have been well documented to 
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Figure 1  Various kinds of extracellular vesicles. Extracellular vesicles primarily consist of exosomes, apoptotic bodies, and microparticles derived for 
normal cells or apoptotic cells.

Figure 2  Flowchart for literature retrieval and screening. Flowchart shows that the repeated siftings have brought 198 search records to the 96 articles for 
final reference lists.

induce multiple immune cells to mediate immune responses in innate immunity and 
adaptive immunity, namely, they modulate the differentiation, activation, and 
proliferation of immune cells, like T lymphocytes, B lymphocytes, natural killer cells 
(NKs), dendritic cells (DCs), and macrophages in the autoimmune system 
(Figure 3)[38-41].

There is growing evidence that MSC-EVs serving as a type of signal molecules play 
major biological roles in the initiation, maintenance, and progression of multiple 
autoimmune related diseases, such as autoimmune diseases, cancer, and graft-versus-
host disease. The features of MSC-EVs immunomodulation and their therapeutic 
potential in autoimmune related diseases are summarized in Tables 1 and 2.

DISCUSSION
MSC-EVs and T lymphocytes
T lymphocytes are important immune cells in adaptive immunity and play a 
significant role in the occurrence and development of many autoimmune and 
inflammatory diseases. MSC derived exosomes and microparticles down-regulate T 
cell proliferation, and CD4+ and CD8+ T cell subsets decrease significantly in 
quantity[7]. Adipose mesenchymal stem cell (AMSC) derived exosomes depress the 
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Table 1 Immune modulation of extracellular vesicles in autoimmune related diseases

Disease EVs Expression MSC-EVs source/ 
Target molecules

Target immune 
cells Pathway(s) involved Ref.

RA MSC derived 
exosomal miR-150-
5p

Down Bone marrow derived 
MSC-EVs/MMP 14 
and VEGF

Macrophages TGF-β pathway Chen et al[80]

Exosome-
encapsulated miR-
548a-3p

Down TLR4 Macrophages MiR-548a-3p/TLR4/NF-κB 
axis

Wang et al[81]

Exosome-
encapsulated miR-
6089

Down TLR4 Macrophages TLR4/NF-κB signaling 
pathway

Xu et al[82]

Exosome-derived 
lncRNA Hotair

Up MMP-2 and MMP-13 Macrophages - Song et al[83]

Exosomal miR-17 Up TGFBR II T cells - Wang et al[84]

MicroRNA-155 Up SHIP-1 Macrophages - Kurowska-
Stolarska et al[85]

MicroRNA-146 Up - Macrophages, T 
cells, B cells

- Nakasa et al[86]

SLE Exosomal miR-26a Up Podocyte proteins, 
actin family members, 
and intermediate 
filaments

Podocytes - Ichii et al[99]

Exosomal miRNA-
146a

Up - - Interferon-γ pathway Perez-Hernandez 
et al[100]

pSS EV derived LCN2 Up TNF-α B cells TNF-α signaling Aqrawi et al[107]

EV derived 
APMAP

Up TNF-α B cells TNF-α signaling Aqrawi et al[107]

EV derived CPNE1 Up TNF-α B cells TNF-α signaling Aqrawi et al[107]

IBD MSC-EVs Up Bone marrow derived 
MSC-EVs

Macrophages JAK1/STAT1/STAT6 
signaling pathway

Cao et al[113]

Breast cancer Exosomal PD-L1 Down PD-1 T cells PD-L1/ PD-1 pathway Yang et al[120]

Lung cancer EV derived miR-
103a

Up Lung cancer cell 
derived EVs/PTEN

Macrophages PI3K/ AKT and STAT3 axis Hsu et al[121]

Pancreatic 
cancer

Exosomal miR-
301a-3p

Up PTEN Macrophages PI3Kγ signaling pathway Wang et al[122]

GVHD MSC-EVs Up T cell derived EVs - - Park et al[126]

RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus; pSS: Primary Sjgren's syndrome; IBD: Inflammatory bowel diseases; GVHD: Graft-versus-
host disease; MSC: mesenchymal stem cell; EV: Extracellular vesicle; MSC-EV: Mesenchymal stem cell derived extracellular vesicle; MMP: Matrix 
metalloproteinase; VEGF: Vascular endothelial growth factor; TGFBR II : Transforming growth factor beta receptor II; SHIP-1: Src homology 2-containing 
inositol phosphatase-1; PD-1: Programmed death-1; PD-L1: PD-1 ligand; LCN2: Neutrophil gelatinase-associated lipocalin; APMAP: Adipocyte plasma 
membrane-associated protein.

activity of T cells, and up-regulate IL-4, IL-10, and transforming growth factor-β and 
down-regulate IL-17 and interferon-γ in streptozotocin induced type-1 diabetes 
mellitus mice, thus deadening the progression of diseases[42]. MSCs have been 
extensively reported to decorate the activation of CD4+ T cells by some specific T cell 
effector cytokines or direct contact, down-regulating their immune activity and 
converting them to a regulatory phenotype (Treg)[43,44]. Programmed death-1 (PD-1) is a 
valuable cytokine inducing T cell activity. Research shows that MSCs express and 
secrete PD-1 ligands (PD-L1 and PD-L2) to regulate T cell dependent immune 
responses by binding with PD-1[45], suggesting that MSCs possess immunosuppressive 
properties via the modulation of T cells. AMSCs under stimulation with IFN-γ can 
secret a big body of exosomes to the conditioned medium, and importantly, T cells 
isolated from that medium are significantly inhibited in activity and proliferation[46]. In 
a word, MSC-EVs down-regulate the activity and proliferation of T cells to inhibit T 
dependent autoimmune responses.
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Table 2 Therapeutic potential of extracellular vesicles

Disease EVs Experimental sample Therapeutic potential Ref.

RA MSC derived exosomal miR-
150-5p

Collagen induced arthritis mouse model MiR-150-5p could reduce joint destruction by inhibiting synoviocyte hyperplasia and 
angiogenesis

Chen et al[80]

Exosome-encapsulated miR-
548a-3p

Macrophage-like cells MiR-548a-3p could inhibit the proliferation and activation of pTHP-1 cells via the 
TLR4/NF-κB signaling pathway

Wang et al[81]

Exosome-encapsulated miR-
6089

Macrophage-like cells MiR-6089 could regulate LPS/TLR4-mediated inflammatory response Xu et al[82]

Exosome-derived lncRNA 
Hotair

Blood mononuclear cells Hotair may contribute to the dissolution of bone and cartilage matrix through activation of 
MMP-2 and MMP-13 in osteoclasts and RA synoviocytes. Hotair is more stable and easily 
detected in body fluid

Song et al[83]

Exosomal miR-17 Blood mononuclear cells MiR-17 can suppress regulatory T cell differentiation by inhibiting the expression of 
TGFBR II

Wang et al[84]

MicroRNA-155 MiR-155–deficient mice MiR-155–deficient mice are resistant to collagen-induced arthritis, and antigen-specific 
Th17 cell and autoantibody responses are suppressed markedly to reduce articular 
inflammation

Kurowska-Stolarska et al[85]

MicroRNA-146 Human RA synovial fibroblasts MiR-146a is expressed in the superficial and sublining layers of synovial tissue, like 
synovial fibroblasts, macrophages, T cells, and B cells

Nakasa et al[86]

SLE Exosomal miR-26a Female B6.MRLc1 and C57BL/6 mice; C57BL/6 (9 mo 
of age)

Podocytes mainly expresse miR-26a in mouse kidneys. Glomerular miR-26a expression in 
B6.MRLc1 mice correlates negatively with the urinary albumin levels and podocyte 
specific gene expression

Ichii et al[99]

Exosomal miRNA-146a Urine sample of SLE patients Up-regulated exosomal miRNA-146a is found in the presence of active lupus nephritis Perez-Hernandez et al[100]

pSS EV derived LCN2 Saliva and tear samples from pSS patients and healthy 
controls

EV derived LCN2 is over-expressed in pSS patients Aqrawi et al[107]

EV derived APMAP Saliva and tear samples from pSS patients and healthy 
controls

EV derived APMAP is over-expressed in pSS patients Aqrawi et al[107]

EV derived CPNE1 Saliva and tear samples from pSS patients and healthy 
controls

EV derived CPNE1 is over-expressed in pSS patients Aqrawi et al[107]

IBD MSC-EVs LPS treated macrophages and an in vivo DSS induced 
mouse model

EVs promote the up-regulation of pro-inflammatory factors (TNF-α, IL-6, and IL-12) and 
down-regulation of the anti-inflammatory factor IL-10 in LPS-induced macrophages. EVs 
promote polarization of M1-like macrophages to an M2-like state

Cao et al[113]

Breast cancer Exosomal PD-L1 MDA-MB-231 (231) human breast cancer cells and 4T1 
mouse mammary tumor cells with PD-L1 expression or 
PD-L1KO

Exosomal PD-L1 bind to PD-1 on T cells to inhibit T cell activation and killing activities Yang et al[120]

Lung cancer EV derived miR-103a Human adenocarcinoma cell lines NCI-H1437, NCI-
H1792, and NCI-H2087 and human embryonic kidney 
HEK293 cells

miRNA inhibitor could inhibit effectively miR-103a mediated M2-type polarization, 
improving the cytokine prolife of tumor infiltration macrophages

Hsu et al[121]
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Pancreatic cancer Exosomal miR-301a-3p Pancreatic cancer blood samples, Pancreatic cancer cell 
lines PANC-1, BxPC-3 and monocytic cell line THP-1

Pancreatic cells generate miR-301a-3p-rich exosomes in a hypoxic microenvironment, 
which polarize macrophages to promote malignant behaviors of cancer cells

Wang et al[122]

GVHD MSC-EVs Kidney samples from acute cellular rejection iKEA (integrated kidney exosome analysis) shows a high level of CD3-positive EVs in 
kidney rejection patients and achieved high detection accuracy (91.1%)

Park et al[126]

RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus; pSS: Primary Sjgren's syndrome; IBD: Inflammatory bowel diseases; GVHD: Graft-versus-host disease; MSC: mesenchymal stem cell; EV: Extracellular vesicle; MSC-EV: 
Mesenchymal stem cell derived extracellular vesicle; MMP: Matrix metalloproteinase; VEGF: Vascular endothelial growth factor; TGFBR II: Transforming growth factor beta receptor II; SHIP-1: Src homology 2-containing inositol 
phosphatase-1; PD-1: Programmed death-1; PD-L1: PD-1 ligand; PD-L1KO: PD-L1 knockout; LCN2: Neutrophil gelatinase-associated lipocalin; APMAP: Adipocyte plasma membrane-associated protein; CPNE1: Copine.

MSC-EVs and B lymphocytes
B lymphocytes are also vital immune cells in adaptive immunity. A growing number 
of studies suggest that MSCs possess an immunomodulatory effect on B cells, but the 
molecular mechanisms involved are still mysterious[47]. Nevertheless, there is little 
research on the role of MSC-EVs in mediating the regulatory effect of B cells on 
inflammatory and immune responses. Membrane vesicles derived from MSCs inhibit 
both B cell proliferation and differentiation in a dose-dependent fashion[48]. Traggiai E 
and his colleagues found that MSCs positively influence the proliferation and 
differentiation of B cells into plasma cells secreting more immunoglobulins[47]. Thus, 
MSCs promote downstream immune responses by mediating the conversion of B cells. 
Systemic lupus erythematosus (SLE) is a typical autoimmune disease characterized by 
constantly producing various antibodies to counter autologous cells. It is well 
established that B cells play a critical role in autoimmune responses via autoantibodies 
dependent mechanisms. Therefore, we infer that MSCs mediated cell conversion can 
boost the inflammatory progression. Therefore, MSCs can serve as a potential 
therapeutic tool in autoimmune diseases.

MSC-EVs and monocytes
Monocytes are secreted from bone marrow into the circulatory system and transported 
to target tissue, where they differentiate into mature macrophages[49]. Macrophages are 
critical effectors and regulators of the immune system and play a central role in 
inflammation[50]. It has been well documented that macrophages can be divided into 
two subpopulations: The classic M1 and the alternative M2 macrophages under 
microenvironmental factors. The classical M1 macrophages are induced by TLR 
ligands and IFN-γ and alternative M2 macrophages are induced by the immune 
complex IL-4/IL-13[51,52]. M1 macrophages are characterized by strong microbicidal and 
tumoricidal activity, which can promote Th1 related inflammatory responses by 
releasing a range of proinflammatory cytokines, such as IL-6, IL-12, and TNF-α[53], 
whereas M2 macrophages with anti-inflammatory function produce less 
proinflammatory cytokines and more IL-10 and other anti-inflammatory factors[54]. In 
short, both M1 and M2 macrophages contribute to the balance between destruction 
and repair of tissue in pathological conditions. A study suggested that after coculture 
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Figure 3  Immunomodulatory effects of mesenchymal stem cell derived extracellular vesicles. Mesenchymal stem cell derived extracellular 
vesicles (MSC-EVs) exert immunomodulatory effect on innate and adaptive immune reactions mediated by many immune cells, primarily including T lymphocytes, B 
lymphocytes, natural killer cells, dendritic cells, and macrophages. In brief, MSC-EVs can inhibit the proliferation, differentiation, and activation of T, B, and natural 
killer cells and the pathogen-presenting function of dendritic cells and macrophages. In addition, macrophage polarization can be shifted under different 
microenvironments in accompany with MSC-EVs.

of AMSCs with inflammatory cytokines IFN-γ and TNF-α, a higher level of exososmes 
can be detected in the medium supernatant, which induce M1 differentiate to anti-
inflammatory M2 phenotype[55]. Adipose tissue accumulating constantly in the body 
leads to obesity and inflammatory responses, which increase the risk of incidence of 
many chronic diseases, including type 2 diabetes, cardiovascular events, and part of 
cancers[56-58]. Previous studies have revealed that the invasion of macrophages and T 
cells promote the formation of chronic inflammation in white adipose tissues[59,60]. In 
high fat diet fed mice, AMSC derived exosomes promote white adipose tissue 
hypertrophy by inducing M2 macrophage polarization[61]. A study by Németh et al[62] 
showed that endotoxin stimulated MSCs induce M2 macrophage polarization to 
release IL-10 and attenuate sepsis via the NF-κB signal pathway in a mouse model[62]. 
MSC-EVs induce the production of M2 macrophages with anti-inflammatory 
properties to restrain many relevant immune responses.

MSC-EVs and NK cells
NK cells, a vital cell type in the innate immune system, mediate cytotoxic activity and 
produce certain cytokines and chemokines to mediate antigen presentation, antiviral 
responses, autoimmune responses, and the occurrence of various autoimmune 
diseases[63]. A previous result showed that MSC-EVs injected into periocular tissue 
depress the transfer of CD161+ NK cells, delay the progression of disease, and restore 
damaged tissue in autoimmune uveitis rat models[64,65]. Decidua parietalis MSCs 
release IL-2 to CD69 (NK cell receptor) to stimulate IL-2 dependent NK cells and thus 
promote the proliferation of activated NK cells[66]. Thus, decidua parietalis MSCs 
induce directly the activity of NK cells through IL-2 and CD69. Recent research 
suggested that fetal liver MSC derived exosomes carrying LAP, TGFβ, and TSP1 
restrain the proliferation and activation of NK cells via TGFβ/Smad2/3 signaling[67]. 
Although available data show that MSC-EVs depress the activation and proliferation 
of NK cells, the research on that is limited in quantity and more studies need to be 
carried out in the future.

MSC-EVs and DCs
DCs, important bone marrow derived APCs, present multiple antigenic peptides 
(major histocompatibility complex - peptide complexes) to other immune cells, like T 
cells, and play a key role in bridging innate to adaptive immune systems. Coculture of 
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DCs with MSC-EVs led to down-regulated cellular surfactants and IL-10, IL-6, and IL-
17 and up-regulated the number of regulatory T cells[68], and the activity and 
maturation of DCs are apparently restrained. Many studies suggest that these MSC-
EVs stimulate immature DCs to release TGF-β and PGE2, and regulate the 
immunocompetence of T cells in DC and T cell culture medium. Those small 
molecules mediate autoimmune responses with unclear mechanism. MSCs induce 
mature DCs to immature status with low immunogenicity and immunoregulatory 
property. The immature DCs express less immunomodulatory factors Ia, CD11c, 
CD80, CD86, and CD40, except for increased CD11[39]. Overall, MSC-EVs down-
regulate the immune activity of DCs and T cell dependent adaptive immune responses 
indirectly. Nevertheless, the research on the interaction between DCs and MSC-EVs is 
limited, and the exact molecular mechanisms warrant further studies.

MSC-EVs and autoimmune disease
MSC-EVs have been suggested in many kinds of diseases, which can serve as 
promising strategies for autoimmune disease diagnosis and treatment, such as 
rheumatoid arthritis (RA), SLE, primary Sjgren's syndrome (pSS), systemic sclerosis, 
and inflammatory bowel diseases (IBD) due to their vital role in intercellular 
communications. Nevertheless, the precise molecular mechanism underlying EV 
regulation in autoimmunity warrants in-depth investigation.

Epidemiological survey and analysis suggest that the incidence of autoimmune 
diseases has been increasing year by year over the past several decades[69]. 
Autoimmune diseases usually influence multiple organs and systems, such as the 
motor system, respiratory system, digestive system, and circulatory system[70]. They 
lead to a heavy burden to public health. It is well known that some autoimmune 
diseases are genetically susceptible[71]. Women tend to be affected by some 
autoimmune diseases, and approximately 90% of patients with autoimmune disease 
are female[72]. Currently, glucocorticoids and immunosuppressive drugs are still the 
most frequently used non-specific therapeutic agents. That traditional therapeutic 
strategy causes many adverse reactions, such as opportunistic infections and metabolic 
abnormalities, and the development of biological molecular targeted drugs to cause 
slower disease progression is a priority. Accumulating data reveal the biological 
features of MSCs in relieving immune cell-driven systemic inammatory responses to 
down-regulate immune responses, such as autoimmune diseases[73], and MSC-EVs are 
a significant regulator[74]. The current knowledge of EVs in autoimmune diseases will 
be discussed in detail in the following text.

MSC-EVs and RA
RA is one of the most common chronic and systemic autoimmune diseases involving 
multiple systems, which is characterized by the destruction of synovial joints. The 
representative clinical manifestations are redness, swelling, and pain of distal joints, 
especially small joints of hands and feet[75]. Many researchers have suggested that the 
occurrence of RA is caused by many complex factors, such as genetic factors and 
environmental factors[76,77]. Dysregulation of immune responses occupies a necessary 
position in RA.

Increasing data have revealed EVs as critical regulators in the pathogenesis of RA 
by delivering specific functional molecules to targeted cells. Previously, the 
effectiveness of MSC therapies has been elucidated in cartilage repair in both animal 
studies[78] and human clinical trials[79]. Previous studies have revealed that EVs 
generated by MSCs play a critical role in protecting against cartilage destruction and 
enhancing cartilage regeneration. Particularly, exosomal noncoding RNAs (ncRNAs), 
including miRNAs and lncRNAs, have been implicated in regulating inflammation 
and immune response. MSC derived exosomal miR-150-5p down-regulated 
inflammatory responses and reduced joint destruction and vasculitis by targeting 
matrix metalloproteinase 14 (MMP14) and vascular endothelial growth factor in a 
collagen-induced arthritis mouse model, which is considered as a potential therapeutic 
biomarker for RA[80]. We have previously demonstrated the important role of exosome-
encapsulated miR-6089 and miR-548a-3p in affecting macrophage-mediated 
inflammatory response in RA[81,82]. Exosome-derived lncRNA Hotair affected the 
migration of activated macrophages and significantly decreased the levels of MMP-2 
and MMP-13, suggesting that it is a potential biomarker for RA[83]. A study by Wang 
et al[84] has shown that exosomal miR-17 inhibits regulatory T cells by targeting TGFBR 
II in RA[84]. Besides, exosomes-encapsulated miR-155 and miR-146a produced by DCs 
can serve as important regulators in immune response and inflammatory response in 
RA[85-87]. It has been shown that the expression of exosomal amyloid A is positively 
correlated with anti-CCP antibody and CRP, suggesting a vital role of exosomal 
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protein in predicating the disease activity of RA patients[88]. Taken together, exosomal 
ncRNAs play critical roles in regulating immune and inflammatory cells and thus 
participate in the occurrence and development of RA. Nevertheless, more studies are 
warranted to explore the molecular mechanisms of those exosomes harboring ncRNAs 
in the pathogenesis of RA.

MSC-EVs and SLE
SLE is a systemic autoimmune disease with various autoantibodies, which usually 
affects multi-organ systems due to enhanced inflammation and complex autoimmune 
disorders[89,90]. It has been well established that SLE is caused by the abundant 
activation of T and B lymphocytes, elevated pro-inflammatory cytokines, 
sedimentation of immune complex substance, and finally multiple organ damage, 
while the kidney is the most commonly involved organ in SLE and lupus nephritis 
(LN) is often caused[91]. EVs are significant regulators in mediating cell-to-cell 
communications involved in inflammation and immune regulations. Mounting 
evidence has suggested that EV delivered nucleic acids, proteins, autoantigens, 
cytokines, and surface receptors can serve as significant regulators in SLE[92,93].

Microvesicles purified from SLE patients have been identified to contain higher 
concentrations of immunoglobulins and complements[94,95]. Circulating exosomes from 
patients with SLE have been shown to induce a proinflammatory immune response, 
which is characterized by high levels of TNF-α, IL-1β, IL-6, and other inflammatory 
mediators[93]. The study by Asami et al[96] supports that MSCs may confer 
immunosuppressive effects in SLE[96]. Previously published studies have elucidated 
that the EVs produced from MSCs, can also contribute to immunosuppressive function 
in SLE[97]. Accordingly, EVs can be used as drug carriers because they are less 
immunogenic. Umbilical cord derived MSCs have been used in the treatment of SLE 
patients, which shows good tolerance and few adverse events associated with 
transplantation[98]. Therefore, MSCs and MSC-EVs can effectively control the active 
SLE and be used as a therapeutic strategy, particularly for the treatment of refractory 
SLE. Ichii and the colleagues have found that exosomal miR-26a is positively 
associated with urinary protein level, which suggests that exosomal miR-26a in urine 
of LN patients can be used as a potential biomarker for predicting podocyte injury[99]. 
In addition, Perez-Hernandez et al[100] have shown that urinary exosomal miRNA-146a 
is significantly up-regulated in active LN patients[100]. Therefore, testing urinary 
exosomal miRNA can be a non-invasive method for the detection and monitoring of 
LN. Nevertheless, the specific molecular mechanism of EVs in regulating 
autoimmunity in SLE is still unclear, which warrants further investigation by more 
future studies.

MSC-EVs and pSS
pSS is a systemic autoimmune disease that is characterized by chronic lymphocyte 
infiltration in the exocrine glands, primarily the lacrimal and salivary glands[101,102]. The 
primary target organs are the lacrimal and salivary glands, and dry eyes and dry 
mouth are often caused[103]. EVs purified from saliva[104,105] and tear fluid[106,107] have been 
identified to be potential biomarkers for the diagnosis and treatment of pSS in 
previous studies. Those differentially expressed proteins isolated from EVs of saliva 
and tear fluid from patients with pSS can contribute to pSS by regulating TNF-α 
signaling and B cell survival, including neutrophil gelatinase-associated lipocalin, 
adipocyte plasma membrane-associated protein, and copine[107]. The increase of 
platelet-derived microvesicles, soluble CD40 ligand (sCD40L), and soluble P-selectin 
(sCD62P) in pSS patients reflects platelet activation, which can serve as disease 
biomarkers[108]. Currently, studies on MSC-EV mediated immune responses in pSS are 
rare. More studies are needed to elucidate the role and underlying mechanisms of EVs 
in pSS.

MSC-EVs and IBD
IBD is a common digestive disease characterized by chronic, relapsing gastrointestinal 
tract inflammatory reactions, including two main forms, Crohn’s disease and 
ulcerative colitis[109,110]. To the best of our knowledge, the pathogenic mechanisms and 
pathogenesis of IBD are complicated, and many factors contribute to the occurrence of 
this disease, like autoimmune disorder, genetics, and environment[111]. Macrophages 
have been seen as important immune cells inducing IBD[112]. Experimental studies 
showed that inflammatory responses are significantly restrained by inducing the 
production of M2 macrophages in the dextran sulphate sodium induced mouse model 
of colitis[113]. Moreover, higher levels of immunosuppressive factors (IL-10 and TGF-β) 
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were observed in mice treated with MSC-EVs, promoting repair and regeneration of 
damaged epithelial cells[113]. Studies have confirmed that MSC-EVs down-regulate the 
production of IL-1β, NO, and IL-18 by depressing NF-κB and iNOS-driven signaling in 
2,4,6-trinitrobenzene sulfonic acid induced colitis[114,115]. Therefore, MSC-EVs, as an 
important regulator, can suppress inflammatory responses and promote injured tissue 
repair. That delineates the potential of MSC-EVs as biomarkers for IBD treatment.

MSC-EVs and tumor immunity
Tumor immunity is critical in the processes of immune response, immune escape, and 
immune surveillance in cancer[116,117]. Previous research findings show that EVs play an 
critical role in anti-tumor immune reaction and inflammatory response during 
carcinogenesis and cancer progression[118]. In the last decade, exosomes have attracted 
more and more attention in cancer immunity, particularly as tumor suppressors[119]. 
Some bioactive factors encapsulated in EVs promote immune and inflammatory 
responses and thus lead to tumorigenesis, while some exert immune suppressive 
effects by inducing Tregs and M1 polarization.

A previous study has demonstrated the specific binding capacity of exosomal PD-L1 
to its receptor PD-1 to depress the anti-tumor effect of T cells in breast cancer[120]. MSCs 
also express and release PD-L1 to regulate T cell activity, and thus both MSCs and 
exosomes possess immunosuppressive effect[45]. Besides, it has been documented that 
EVs play a critical in anti-tumor immune response by regulating macrophages 
polarization. It has been found that EVs-delivering miR-103a contributes to lung 
cancer by targeting PTEN and inducing M2 polarization[121]. Similarly, exosomal miR-
301a-3p purified from pancreatic cancer cells was found to induce M2 macrophage 
polarization via the PTEN/PI3Kγ signaling pathway[122]. Taken together, EVs, 
particularly MSC-EVs, exert immunomodulatory effects on cancer and mediate 
intercellular communications between cancer cells and immune cells through EVs 
harboring bioactive molecules, including proteins and ncRNAs.

MSC-EVs and transplantation immunity
Kidney transplantation is the current preferred treatment for end stage renal disease. 
However, the long-term survival rate of the transplanted kidney is still low because 
the transplanted recipients often suffer from acute or chronic rejection for a long 
period of time[123], which finally leads to graft-versus-host disease. Biopsy is still the 
gold standard for the diagnosis of rejection of kidney transplantation[124,125], but it is 
risky and traumatic. EVs in urine can be a potential biomarker for monitoring kidney 
transplant rejection[126]. T cells infiltrate the renal tubule during acute inflammatory 
response, which is a major cause for transplanted renal damage. MSC-EVs possess 
potential of inhibition of T cell activity and proliferation and thus EVs tend to gather in 
damaged renal tissues and are more likely to enter the urine. Consequently, using 
urine for detecting rejection of kidney transplantation is more likely to operate and 
promising. In addition, a previous report has showed that MSC derived exosomes 
provide a novel and effective clinical treatment for graft-versus-host disease[127]. 
Nonetheless, the role of MSC-EVs in transplantation immunity needs to be further 
investigated in the future.

Conclusions and prospects
MSC-EVs are a hot topic in current molecular biology. Accumulated data have 
implicated their immunomodulatory effects on many immune cells, including T cells, 
B cells, macrophages, NK cells, and DCs. Increasing studies have confirmed that MSC-
EVs can serve as regulators in the pathogenesis of autoimmune related diseases. In 
particular, MSC-EVs and the encapsulated bioactive molecules are potential targets for 
the diagnosis and treatment of autoimmune disease, cancer, and other diseases. MSC-
EVs can serve as new medicines in the suppression of inflammatory responses. 
Increasing experimental results show that application of MSC-EVs can effectively 
inhibit immune reactions and promote the survival and regeneration of injured cells. 
However, there is still a long way for investigating the therapeutic strategy for 
autoimmunity related diseases based on MSC-EVs. More in-depth research is 
warranted in the future, particularly regarding the molecular mechanism of MSC-EVs 
in autoimmunity.
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ARTICLE HIGHLIGHTS
Research background
Mesenchymal stem cells (MSCs) have been reported to possess immune regulatory 
effects in innate and adaptive immune reactions. MSCs can mediate intercellular 
communications by releasing extracellular vesicles (EVs), which deliver functional 
molecules to targeted cells. MSC derived EVs (MSC-EVs) confer altering effects on 
many immune cells, including T lymphocytes, B lymphocytes, natural killer cells, 
dendritic cells, and macrophages. A large number of studies have suggested that MSC-
EVs participate in regulating autoimmunity related diseases. This characteristic of 
MSC-EVs makes them be potential biomarkers for the diagnosis and treatment of 
autoimmunity related diseases.

Research motivation
This article describes and focuses on the identification, characteristics, 
immunomodulatory function, and underlying mechanism of MSC-EVs in 
autoimmunity related diseases. Understanding the immunomodulation effects of 
MSC-EVs better will help us to investigate the pathogenesis of diseases and develop 
novel targeted medicines.

Research objectives
The immune modulation of MSC-EVs play a key role in disease initiation, 
maintenance, and progression. This article provides a new direction for us to 
understand the precise mechanisms of action of autoimmunity related diseases, which 
will promote the improvement of therapeutic regimen.

Research methods
Literature search was conducted in PubMed to retrieve articles published between 
2010 and 2020 in the English language. The keywords, such as “MSCs,” “EVs,” 
“autoimmune responses,” “immune cells,” and “autoimmunity related diseases,” and 
Boolean operator “AND” and “NOT” coalesced admirably to be used for searching in 
vitro studies on the specific molecular mechanisms of MSC-EVs in many immune cell 
types and many autoimmunity related diseases. Studies that did not investigate the 
molecular mechanisms of MSC-EVs in the occurrence and development of 
autoimmune diseases were excluded.

Research results
A large number of articles were retrieved and their abstracts were skimmed. When 
analyzing the publications, we found that it has been well documented that MSC-EVs 
have the ability to induce multiple immune cells, like T lymphocytes, B lymphocytes, 
natural killer cells, dendritic cells, and macrophages, to regulate immune responses in 
innate immunity and adaptive immunity. Many validated EVs-delivered molecules 
have been identified as key biomarkers, such as proteins, lipids, and nucleotides. Some 
EVs-encapsulated functional molecules can serve as promising therapeutic targets 
particularly for autoimmune disease.

Research conclusions
MSC-EVs play an important part in the differentiation, activation, and proliferation of 
immune cells, and they may become potential biomarkers for the diagnosis and 
treatment of autoimmunity related diseases.

Research perspectives
MSC-EVs can serve as regulators in the pathogenesis of autoimmune related diseases. 
In particular, MSC-EVs and the encapsulated bioactive molecules are potential targets 
for the diagnosis and treatment of autoimmune disease, cancer, and other diseases. 
However, there is still a long way for investigating the therapeutic strategy for 
autoimmunity related diseases based on MSC-EVs. More in-depth research is 
warranted in the future, particularly regarding the molecular mechanism of MSC-EVs 
in autoimmunity
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