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Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease 
characterized by memory loss and cognitive impairment. It is caused by synaptic 
failure and excessive accumulation of misfolded proteins. To date, almost all 
advanced clinical trials on specific AD-related pathways have failed mostly due to 
a large number of neurons lost in the brain of patients with AD. Also, currently 
available drug candidates intervene too late. Stem cells have improved 
characteristics of self-renewal, proliferation, differentiation, and recombination 
with the advent of stem cell technology and the transformation of these cells into 
different types of central nervous system neurons and glial cells. Stem cell 
treatment has been successful in AD animal models. Recent preclinical studies on 
stem cell therapy for AD have proved to be promising. Cell replacement 
therapies, such as human embryonic stem cells or induced pluripotent stem 
cell–derived neural cells, have the potential to treat patients with AD, and human 
clinical trials are ongoing in this regard. However, many steps still need to be 
taken before stem cell therapy becomes a clinically feasible treatment for human 
AD and related diseases. This paper reviews the pathophysiology of AD and the 
application prospects of related stem cells based on cell type.

Key words: Alzheimer's disease; Stem cell; Therapy; Pathogenesis; Animal experiment; 
Clinical trial
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Core tip: Alzheimer’s disease (AD), a progressive neurodegenerative disorder featuring 
memory loss and cognitive impairment, is caused by synaptic failure and the excessive 
accumulation of misfolded proteins. Stem cell-based therapies cast a new hope for AD 
treatment as a replacement or regeneration strategy. The results from recent preclinical 
studies regarding stem cell-based therapies are promising. Human clinical trials are now 
underway. However, a number of questions remain to be answered prior to safe and 
effective clinical translation. This review explores the pathophysiology of AD and 
summarizes the relevant stem cell research according to cell type. We also briefly 
summarize related clinical trials. Finally, future perspectives are discussed with regard to 
their clinical applications.
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INTRODUCTION
Dementia is a neurodegenerative, debilitating, and fatal disease characterized by 
progressive cognitive impairment, behavioral disorders, and loss of function in daily 
life. Alzheimer's disease (AD) is the most common cause of dementia, accounting for 
50%-70% of dementia cases worldwide[1]. The 2018 World Alzheimer's Disease Report 
shows that 50 million people worldwide have dementia. With a new case occurring 
every 3 s worldwide, AD has rapidly become an epidemic, with the number of cases 
predicted to be 152 million by 2050[2].

AD has several neuropathological hallmarks, including the deposition of β-amyloid 
(Aβ) peptides in the extracellular matrix between neurons (known as amyloid 
plaques), the intracellular formation of neurofibrillary tangles arising from the 
accumulation of hyperphosphorylated tau protein in neurons, neuronal loss, 
neuroinflammation, and oxidative stress. Despite advances in understanding the 
etiology of AD, treating the disease by retaining acetylcholine and reducing glutamate 
is limited to symptom management[3]. Although cerebrospinal fluid (CSF) and positron 
emission tomography (PET) biomarkers combined with some relatively new clinical 
standards can help diagnose alive patients, the certainty of diagnosis was achieved 
only by post-mortem autopsy[3]. These criteria highlight that the gold standard for the 
etiological diagnosis remains the neuropathological assessment. Accordingly, the 
results of CSF biomarkers for AD may provide explanatory evidence for 
neurocognitive symptoms and predict the type of evolution, especially when there are 
no other obvious causes of cognitive impairment. Reducing Aβ levels has been the 
dominant treatment strategy in development to halt, retard, or even reverse the 
progression of AD pathology. In fact, currently available treatments include three 
types of cholinesterase inhibitors, one N-methyl-daspartate receptor antagonist, and 
one combined drug therapy (memantine plus donepezil) are currently approved for 
clinical use[4]. However, it is unclear how valuable such a palliative drug-based 
approach can be.

Therefore, new and effective treatments, such as removing toxic deposits and 
replacing lost neurons, need to be developed to improve the pathological state of the 
disease, stimulate neural precursors, prevent nerve death, enhance structural neural 
plasticity, and so forth. At the same time, it is also necessary to provide a better 
environment for the remaining cells. Current breakthroughs in preclinical research 
and clinical trials of stem cells have ignited hope for the treatment of refractory 
neurodegenerative diseases such as AD. They are considered to be the most suitable 
choice to provide uniform and unique cells required for cell replacement therapy[5]. 
This review focuses on the mechanisms of AD pathogenesis and discusses clinical and 
preclinical findings on the role of stem cells in the treatment of AD.

https://www.wjgnet.com/1948-0210/full/v12/i8/787.htm
https://dx.doi.org/10.4252/wjsc.v12.i8.787
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RESEARCH PROGRESS IN THE PATHOGENESIS OF AD
Genetics of AD pathogenesis
Studies have shown that two typical misfolded proteins accumulate in the brain of 
patients with AD. The first is Aβ, which is a pathological cleavage product of amyloid 
precursor protein (APP). The accumulation of Aβ into plaques and smaller oligomers 
is one of the pathological features of AD[6]. APP mutations have been confirmed to be 
associated with hereditary familial AD. Familial AD is an early-onset autosomal 
dominant genetic disease. The age of onset is less than 65 years, but it only accounts 
for 2% of all AD cases[7] . Many failed clinical trials targeted this pathway directly or 
indirectly through small-molecule or antibody therapies to reduce Aβ production or 
promote Aβ clearance[6,8]. The second misfolded protein in AD is tau, a microtubule-
associated protein that aggregates in cells in the form of neurofibrillary tangles. The 
most closely related pathological feature is AD cognitive decline[9,10]. However, the vast 
majority (> 98%) of cases of AD, which do not involve mutations in APP processing 
pathways, are sporadic, and the age of onset is more than 65 years[6]. For this 
population, the main predictive factor for AD is the genetic risk factor apolipoprotein 
(APO) E4, in addition to age[6]. APOE4 carriers account for 60%–75% of AD cases. 
Compared with noncarriers, patients with AD and APOE4 are younger[11].

Tau protein and AD pathogenesis
In AD neurons, the protein kinase/protein phosphatase phosphorylation system is 
imbalanced, resulting in abnormal and overphosphorylated tau protein. The human 
tau protein is encoded by a single gene containing 16 exons on chromosome 17[12], 
which is expressed in the brain as six isomers that contain amino acid sequences at the 
carboxyl and amino ends, where the carboxyl end is repeated. The sequence is a 
microtubule-binding region, and the tau protein can enhance the stability of 
microtubules in axons[13,14]. Mitogen-activated protein kinases include the extracellular 
signal-related kinases, which are activated by multiple stimuli including growth 
factors, c-Jun N-terminal kinases, and p38 mitogen-activated protein kinases. These 
kinases cause neuronal tau protein phosphorylation and are closely related to AD 
disease progression[15]. The tau protein in AD is overphosphorylated and accumulates 
in cells in the form of double-helix filaments, straight filaments, and tangled skeletons. 
This hallmark damage is directly related to the degree of dementia[16]. Abnormal tau 
protein is found in hereditary Parkinson-like frontotemporal dementia related to 
chromosome 17; it leads to neurodegenerative diseases and dementia[17]. The 
composition of abnormally hyperphosphorylated tau protein can be used to measure 
p-tau protein levels in the cerebrospinal fluid[18]. Decreased phosphatase activity, 
especially reduced protein phosphatase-2A activity, plays a key regulatory role in 
abnormal hyperphosphorylation of tau protein[19]. PET brain imaging technology 
shows that the accumulation of tau protein more directly predicts future 
neurodegenerative changes in patients with AD. The progress of tau pathology and 
brain atrophy in different regions may reflect a phase shift. Local elevation in tau 
levels precedes atrophy[20]. Tau may be one of the targets for the early clinical 
treatment of AD[21].

β-amyloid protein and AD pathogenesis
The Aβ is an important hypothesis for the pathogenesis of AD. The relationship 
between APP and Aβ explains the pathogenesis of the lesion. APP is first cleaved at 
beta-secretase (BACE) 1 site by β-secretase to produce soluble amylase precursor 
protein and released outside the cell. Then, C99 remaining in the cell is cleaved by γ-
secretase to produce Aβ polypeptide and APP intracellular domain. Aβ peptides, 
mainly Aβ1–40 and Aβ1–42, are released outside the cell, while APP intracellular 
domain remains inside the cell[22]. Neuronal damage or death is caused by the 
accumulation of toxic Aβ in the brain, which causes senile plaques in cells. Aβ1-40 in 
the brain has the highest content of Aβ, but Aβ1-42 is more likely to form fibers and 
oligomers. The highly toxic Aβ1-42 oligomers are an important cause of AD[23]. The 
accumulation of Aβ in the brain and subsequent plaque formation are pathological 
features of AD[24]. The impaired ability of the central nervous system to export Aβ to 
the periphery through the barrier is considered to be the cause of Aβ accumulation in 
AD and eventual plaque formation[25]. Studies have shown that the expression levels of 
blood–brain barrier endothelial cell receptors change with age and the development of 
AD. The expression level of efflux receptors decreases, and the expression level of 
influx receptors increases[26]. Changes and dysfunctions increase the accumulation of 
Aβ, and neuronal synaptic rupture and apoptosis occur[27].
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However, the central conclusion that either accumulation of tau protein or of Aβ 
protein is the cause of AD, at very least, is premature. The recent failure of clinical 
trials based on the immunotherapeutic approach against Aβ protein questioned the 
validity of the “amyloid cascade hypothesis” as the molecular machinery causing the 
disease. However, important suggestions come from the critical analysis of such flop. 
Although synapse dysfunction is a key early event and accurate correlate of AD 
progression, Aβ plaque deposition can occur without synapse loss[28]. Conversely, 
synapse and dendritic tree loss can occur in areas where there is no Aβ deposition, 
although synapse loss does usually appear exacerbated near Aβ plaques[29]. 
Furthermore, synaptic gene dysregulation in early AD can occur independently of 
alterations in the expression of APP and regulators of APP metabolism[30]. Thus, the 
timing of an Aβ- or tau-targeted intervention has proven critical for clinical response 
since once Aβ-induced synaptic dysfunction and extensive neurodegeneration occur, 
they can no longer be reversed by simply reducing brain amyloid burden[31]. This 
paradigm has shifted clinical trials from late clinical AD dementia to the early, 
asymptomatic stages of the disease[32].

In fact, Aβ or tau may be a player in a more complex view of disease and, further, its 
role may even be variable. We conclude that it is essential to expand our view of 
pathogenesis beyond Aβ and tau pathology. Current drug design strategies are based 
on ‘‘one drug-one target’’ paradigm[33], which until now failed to provide effective 
treatments against AD, due to the multifactorial nature of the disease[34,35]. Reducing 
Aβ or tau levels has been the dominant treatment strategy in development to halt, 
retard, or even reverse the progression of AD pathology. However, they are 
experiencing difficulties in clinical trials[36] as the effects appear independent from 
symptomatic improvement[37].

The revolutionary discovery of stem cells has cast a new hope for the development 
of disease-modifying treatments for AD, in terms of their potency in the replenishment 
of lost cells via differentiating towards specific lineages, stimulating in situ 
neurogenesis, and delivering the therapeutic agents to the brain. Indeed, researchers 
have effectively treated AD in transgenic mouse models in more than 50 different 
ways[38]. A recently completed open-label phase I clinical trial evaluated the safety and 
tolerability of intracranially injected allogeneic human umbilical cord blood-derived 
mesenchymal stem cells (MSCs) (Trial identifier: NCT01297218, NCT01696591)[39]. 
Alternatively, due to the complex nature of AD pathophysiology, a multimodal 
approach may be required, incorporating pharmacological targeting of pathology, 
stimulation of endogenous neurogenesis and synaptogenesis, as well as exogenous 
neuroreplacement.

STEM CELL CLASSIFICATION
In recent years, embryonic stem cells (ESCs), MSCs, brain-derived neural stem cells 
(NSCs), and induced pluripotent stem cells (iPSCs) are most commonly used in AD 
research.

CLASSIFICATION BESED ON CELL ORIGIN
Embryonic stem cells
ESCs are derived from the inner cell mass of pluripotent blastocysts[40] and classified as 
pluripotent because of their ability to generate cell types from the ectoderm, 
mesoderm, and endoderm. Studies have shown that ESCs can improve spatial 
learning and memory in rats with AD by differentiating into basal forebrain 
cholinergic neurons and γ-aminobutyric acid neurons[41]. However, the clinical 
application of ESCs is limited due to the high risk of teratoma formation, abnormal 
immune response, and rejection. In addition, ethical disputes must be clarified before 
they can be used in Food and Drug Administration-approved clinical trials[42]. Several 
reports have explored the role of ESCs in rodent models of AD. Pluripotency is one of 
the greatest advantages of ESCs. It represents one of the major disadvantages of ESCs 
because their differentiation can occur in any direction and cause tumors or 
teratomas[43,44]. Therefore, current research strategies focus on establishing a 
differentiating agreement. Mouse ESCs (mESCs) were successfully used to produce 
basal forebrain cholinergic neurons (BFCNs), which were severely affected in patients 
with AD. These neurons, when transplanted into AD rat models, drive the derivation 
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of ESCs and induce neural precursor cell (NPC) differentiation[45].
In addition, these rats showed significant behavioral improvements in memory 

deficits. Human ESCs (HESCs) can also produce cholinergic neurons in the vitreous 
and hippocampal tissues, which are connected to existing neural network[46]. Similarly, 
mESCs and hESCs were introduced into mature BFCNs, and improvements in 
learning and memory performance were observed after transplantation into mice with 
AD[47]. Another method is to differentiate hESCs into medial ganglion protrusion 
MGE-like progenitor cells because MGE is the origin of basal forebrain neurons 
(including BFCNs and γ-aminobutyric acid intermediate neurons) during 
development. The transplantation of these MGE-like progenitor cells into the 
hippocampus of mice produced results similar to the findings of the present study[41].

Mesenchymal stem cells
MSCs are involved in the development of mesenchymal tissue types, which can be 
obtained from umbilical cord blood (ucb-MSCs) or the Wharton jelly. They are also 
found in some adult stem cell pupae, including bone marrow and adipose tissue. 
MSCs are classified as pluripotent cells and are capable of producing multiple cell 
types. These cells have a common embryonic origin: The mesoderm germ layer. 
Nevertheless, the phenotypic expression and differentiation potential of bone marrow 
MSCs may vary depending on the source tissue[23]. Umbilical cord blood is the residual 
blood of the placenta and umbilical cord after childbirth. The blood is rich in 
hematopoietic stem cells and other stem cells such as MSCs[48]. Previous studies on 
ucb-MSCs (mainly MSCs) using murine models of AD have shown that ucb-MSCs can 
improve spatial learning and prevent memory decline. Many mechanisms have also 
been proposed,  including reduct ion of  Aβ plaques,  BACE and tau 
hyperphosphorylation, and reversal of microglial inflammation and promotion of anti-
inflammatory cytokines[49]. Immunomodulatory and anti-inflammatory effects have 
also been observed by upregulating neuroprotection and downregulating pro-
inflammatory cytokines. Another important way for MSCs to participate in tissue 
repair is the secretion of extracellular vesicles and microvesicles, which has been 
widely explored. Bone marrow MSCs can release extracellular vesicles that target Aβ 
deposition through genetic modification and are supplemented with therapeutic 
drugs, including siRNAs and enzymes[50,51]. Alternatively, MSCs can be regulated to 
overexpress cytokines and vascular endothelial growth factor, and show regeneration 
effects in the AD model[52]. Despite ethical issues, especially commercial cord blood 
banks, MSCs are the most common source of stem cells used in AD research because 
they are relatively easy to pick and handle if harvested after normal delivery[53,54].

Induced pluripotent stem cells
iPSCs were first obtained from mouse fibroblasts in 2006. They are derived in vitro 
from mature somatic cells, usually adult dermal fibroblasts, by small-molecule therapy 
or viral vector–mediated upregulation of transcription factors. Genetic modification 
makes them pluripotent and ESC-like in terms of phenotypic and differentiation 
capacity[55].

iPSCs are thought to differentiate into a variety of cells, including neurons[56] and 
neurospheres[57]. Both in vitro and posttransplantation into the rodent cortex studies 
have shown that iPSCs can be used to generate and automate neuronal subtypes[58-61]. 
For example, iPSC-derived glial cells can be used to study the inflammatory response 
of AD[62]. Another study with a mouse model of AD used iPSCs to obtain macrophages 
capable of expressing neprilysin, an Aβ-degrading protease[63]. An iPSC model is a 
powerful tool for studying the APP treatment of tissue-specific cells in mutant 
individuals caused by FAD[64,65]. Yagi et al[66] found increased levels of Aβ42 secretion in 
neurons with presenilin1 (PSEN1) (A246E) and PSEN2 (N141I) mutations[66]. Further 
research on neurons with the pathogenic PSEN1 mutation showed an increase in the 
ratio of Aβ42:40[67-69]. Similarly, iPSC-derived neurons with the APP V717I genotype 
showed an increased Aβ42:40 ratio[70-72] and an increased Aβ42:38 ratio[73]. Arber et al[74] 
used multiple patient–derived iPSC neurons to simulate APP processing and Aβ 
production in the context of fAD-APP and PSEN1 mutations, indicating that iPSCs 
provided a valuable model for studying potential cell dysfunction caused by genetic 
fAD mutations[74].

However, the following unresolved questions about the use of iPSCs pose huge 
obstacles to their clinical application: Teratoma formation, long-term safety and 
effectiveness, tumorigenicity, immunogenicity, patient genetic defects, optimal 
reprogramming and so forth[75-78].
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CLASSIFICATION BASED ON CELL TYPE
Neural stem cells
NSCs are responsible for the production of all nerve cell types during development. 
They also exist in the adult brain and are confined to discrete neurogenic niches in the 
subventricular zone and the granular layer of the dentate gyrus of the hippocampus. 
Adult NSCs are located in the subgranular zone of the dentate gyrus and the 
subventricular zone of the lateral wall of the ventricle. They are self-renewing 
pluripotent cells that produce neurons, oligodendrocytes, or astrocytes[79].

The paracrine effect of NSCs has significant therapeutic potential. In rodent AD 
models[80] and senile primate brains[81], transplantation of growth factor-secreting NSCs 
can improve neurogenesis and cognitive function, while transplantation of human 
NSCs with high expression of choline acetyltransferase can reverse spatial memory 
and learning deficits in rodent models of alkaline neurotoxicity[82] NSC transplantation 
may reduce neuroinflammation in AD rodent models through the paracrine release of 
neuroprotective or immunomodulatory factors and also mediate neuronal 
differentiation[83]. These cells reduce tau and Aβ expression levels[84], promote 
neurogenesis and synapse formation[85,86], and reverse cognitive deficits[83,85,86], 
However, non-glial cells widely produced from transplanted NSCs are the main 
limiting factor for neural replacement strategies[87]. Studies on rodent AD models have 
shown that human NSCs (hNSCs) from the embryonic telomere, when transplanted 
into the lateral ventricle of the brain of mice with AD, can migrate and differentiate 
into neurons and glial cells in the lateral ventricle. This phenomenon reduces tau 
phosphorylation and Aβ–42 levels, decreases glial and astrocyte hyperplasia[84], 
enhances endogenous synapse formation[86], and increases neuronal, synaptic, and 
nerve fiber density[88], ultimately improving spatial memory in mice with AD. These 
effects are achieved through a variety of mechanisms, including regulation of 
signaling pathways, metabolic activity, secretion of anti-inflammatory factors, and 
cell-to-cell contact. Brain-derived neurotrophic factor (BDNF) is an important 
neuroprotective factor derived from NSCs. By increasing the synaptic density of the 
hippocampus[80] and the number of cholinergic neurons[87,89], BDNF can be used in AD 
rodent transplanted NSCs (obtained from the brain or hippocampus). Animal 
cognition plays an important role. The hNSC line that overexpresses choline 
acetyltransferase is transplanted into elderly Institute of Cancer Research mice. By 
directly producing acetylcholine and restoring the integrity of cholinergic neurons, 
hNSCs can increase the levels of BDNF and nerve growth factor (NGF) neurotrophins 
and improve the cognitive function and physical activity of elderly mice[90]. In 
addition, hNSCs can be genetically modified to express NGF and transplanted into 
mice with induced cognitive dysfunction to improve their learning and memory 
abilities[91].

STEM CELLS AND AD
Animal experiments
Neural stem cells: Researchers have used methods such as brain injury, neurotoxin-
induced brain cell loss, and intraventricular injection of Aβ peptide to establish AD-
like pathology and induce memory impairment models in rats and mice[92,93]. Martinez-
serrano et al[94] transplanted forebrain cholinergic neurons into the host striatum and 
Meynert nuclei, and found that cells survived well in the host brain for a long time and 
induced hypertrophic responses of cholinergic neurons. Sinden et al[95] found that the 
transplantation of choline-rich NSCs could reduce AD symptoms in rats. Qu et al[96] 
injected human undifferentiated NSCs into the brain of 6-mo-old and 24-mo-old rats, 
revealing a significant improvement in cognitive function. Wu et al[97] found that 
human fetal brain–derived NSCs transplanted into adult rat brains could produce 
cholinergic neurons in specific regions. Wang et al[98] transplanted ESC-derived 
neurospheres into the frontal cortex of a mouse model of Meynert nuclear injury. The 
transplanted neurospheres survived, migrated, and differentiated into choline 
acetyltransferase–positive serotonin-positive neurons. The rate of working memory 
error in neuron- and neurosphere-transplanted mice was significantly reduced. On the 
contrary, ESCs in the control group developed teratomas, which did not express 
neurons, and the working memory significantly deteriorated.

Animal models related to Aβ-induced memory loss are widely used in exploring the 
pathophysiology of AD and the efficacy of therapeutic targets. Prakash et al[99] used a 
lateral ventricular injection of Aβ to observe the effect of peroxisome proliferator- 
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activated receptor γ agonist pioglitazone on BDNF and found that Aβ-injured animals 
showed obvious memory impairment; BDNF levels were reduced, and this situation 
was reversed by pioglitazone[99]. Tang and others showed that the Aβ-40 fiber was 
neurotoxic in the hippocampus of rats, characterized by Congo erythema and 
degeneration neurons at the injection site; the Morris water maze test showed 
impaired cognitive function in rats[100]. Transplanted cells improved Aβ-induced 
cognitive dysfunction in rats; they further survived, integrated, and differentiated into 
neuronal cells 16 wk after transplantation[101]. Blurton Jones and others transplanted 
NSCs into aged transgenic mice expressing mutant presenilin, tau, and APP, and 
found that transplanted NSCs could improve spatial learning and memory function in 
mice with dementia without altering the pathology of Aβ. In addition, NSCs 
underwent BDNF-mediated regeneration and promoted a decrease in synaptic 
density. When recombinant BDNF was additionally supplemented, memory loss was 
restored[80]. When NSCs were genetically engineered to stably release the Aβ-
degrading enzyme neprilysin, synaptic plasticity could be enhanced and the potential 
Aβ pathological characteristics of transgenic mice could be improved[102].

The cells either replace degenerated neurons or secrete trophic factors to provide a 
protective environment for endogenous cells. They secrete a variety of neurotrophic 
factors to regulate synaptic function in the brain. In particular, BDNF is synthesized by 
neurons and is highly expressed in the cerebral cortex and hippocampus; these regions 
are essential for brain learning and memory[103]. Therefore, it is reasonable to conclude 
that these preliminary studies point to a potentially viable treatment for AD and that 
the effect of stem cell transplantation into the brain is supported by a combination of 
methods and mediated, or at least significantly affected, by paracrine effects to a large 
extent.

Mesenchymal stem cells: MSCs have been widely studied due to their accessibility 
and relative ease of operation. They have three main roles in AD treatment: (1) 
Immune regulation; (2) Reduction of Aβ plaque burden through internalization and 
Aβ degradation of endosomal–lysosomal pathway oligomers; and (3) Neurotrophic/ 
regenerative potential[104]. Systematic injection of green fluorescent protein–labeled 
bone marrow MSCs has been shown to reduce the size of Aβ plaques in the 
hippocampus of animal models of AD[105] and function in an immunomodulatory 
manner. Transplantation of placental-derived MSCs in the lateral ventricle in Aβ1-42 
perfused mice has also been shown to have beneficial effects, including improving 
memory deficit function and reducing Aβ1–42 levels, APP and BACE1 expression 
levels, alpha- and beta-secretase activity, and gliomas[106]. After injecting MSCs in AD 
animal models, NPCs were induced to differentiate into hippocampal mature neurons 
by activating the Wnt pathway, providing evidence for MSCs supporting the growth 
and differentiation of local stem and progenitor cells[107]. In another study, human 
MSCs transplanted into aged rats have been shown to reach the brain and differentiate 
into nerve cells, restoring motor and cognitive activity[90]. It is worth noting that the 
encouraging clinical results obtained under different pathological conditions and the 
preclinical results of MSCs in animal models of AD[108] facilitated the start of clinical 
trials of MSCs in patients with AD (https: //clinical trials.gov, using MSCs and AD as 
keywords). One of these trials has completed the first phase of the study, confirming 
the feasibility and safety of MSC injection in human brains in nine patients[38].

Embryonic stem cells: ESCs are totipotent and self-renewing. They can differentiate 
into NPCs in vitro, hence serving as therapeutics when transplanted into animal 
models of AD[38]. Generally, the direct transplantation of ESCs into animal models of 
AD results in the formation of teratomas rather than neurons. However, the safety 
level of ESC-derived NPC and neuron transplantation has been demonstrated[38]. They 
can differentiate into astrocytes and neuron-like cells and improve neurodegenerative 
diseases in vivo[101]. In the AD rat model, mESCs-derived NPCs were transferred to 
unilateral meynert basal nucleus with and without pretreatment, improving learning 
and memory abilities. The mainstream cells of transplanted NPCs maintain a neuronal 
phenotype, but nearly 40% of these cells show a cholinergic phenotype[45]. Despite no 
report on the potential of hESCs for treating AD, hESCs can be considered as a new 
factor in treating different types of neurodegenerative diseases and brain damage[110]. 
However, these cells are derived from pre-implantation human embryos, and 
therefore ethical issues must be addressed before using hESCs in AD clinical trials. In 
addition, the possibility of the use of immune rejection in ESC-based AD cell therapy 
remains a controversial issue[110].

Induced pluripotent stem cells: In some AD models, attempts to regulate endogenous 
neurogenesis, replace lost neurons, or reverse pathological changes through iPSCs 

https: //clinical trials.gov, using MSCs and AD as keywords
https: //clinical trials.gov, using MSCs and AD as keywords
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have demonstrated early effectiveness. In a Parkinson (PD) APP transgenic mouse 
model, an ipsilateral injection of cholinergic neuron precursors in humans stimulated 
endogenous neurogenesis and reversed spatial memory disorders[111]. Human 
iPSC–derived macrophage-like cells were genetically modified to express neprilysin-2, 
an Aβ-degrading protease, differentiate into functional neurons, and therapeutically 
reduce Aβ levels in a five familial AD (5 × FAD) transgenic mouse model[63]. In 
addition, the inoculation of human iPSC-derived NSCs into the hippocampus of a 
mouse model of stroke could significantly improve neural function, which might be 
explained by the transition from the pro-inflammatory cytokine response to the anti-
inflammatory cytokine response through neurotrophin-related reprogramming 
effects[112]. In a recent study, the use of protein-induced iPSCs and ferritin released by 
mESCs greatly promoted the differentiation and maturation of oligodendrocytes, 
thereby reducing plaque deposition and improving bilateral brain transplantation in 5 
× FAD transgenic mice with AD. Cognitive dysfunction highlights the significance of 
stem cells that promote the differentiation of transplanted cells into different cell 
lines[113]. Despite these successful studies, autologous iPSCs may show genetic 
instability and phenotypic neuropathology, such as significant Aβ load rates, 
shortened axon lengths, and increased tau phosphorylation, hindering their clinical 
application in AD[73,78,114]. However, healthy neurons can be transplanted into patients 
with AD by implementing genome-editing techniques, such as recombinant homologs, 
transcription activator-like effect nucleases, and regularly spaced short palindromic 
repeats (CRISPR-cas9)[115]. To date, the efficiency and repeatability of automated iPSC 
reprogramming procedures have resulted in stable, high-quality cell lines for major 
disease modeling or cell therapy. Studies have shown efficient production of neuronal 
subtypes, such as cortical pyramids and BFCNs[59].

Clinical trials
In 2015, human umbilical cord blood MSCs were used for the first phase of a clinical 
trial in nine patients with mild-to-moderate AD[38]. In an attempt to treat AD, patients 
were stereotactically injected with human umbilical cord blood MSCs into the 
hippocampus and anterior hippocampus, confirming that the method of stem cell 
administration was safe and feasible without any adverse reactions. However, the 
clinical effect of the method on the pathogenesis of AD needs to be further verified. 
Several clinical trials are ongoing on patients with AD; however, the results have not 
been published (Clinicaltrials.gov, NCT01547689, NCT02672306, NCT02054208, and 
NCT02600130). Since 2011, preclinical trials of bone marrow MSCs in animal models of 
AD have achieved good results and are sufficient to authorize patients with AD to 
begin clinical trials (Table 1). Intravenous infusion is the most ideal method for stem 
cell implantation, and cord blood stem cells are the most commonly used source of 
cells. Kim et al[38] stereotactically transplanted human umbilical cord blood–derived 
MSCs into the hippocampus and anterior thalamus.

Despite no serious adverse events, no significant clinical effects on cognitive decline 
were observed (Clinicaltrials.gov, NCT01297218, NCT01696591)[116]. In addition, no 
pathological changes or neuroprotective effects have been observed[106,116,117]. These 
results might be partly attributed to neuroimaging, which is an insensitive method for 
detecting these changes compared with postmortem biochemical analysis. Stem cell 
therapy using both MSCs and iPSCs reveals great potential in the treatment of several 
neurodegenerative disorders (AD and PD). Their use has shown promising results 
with regard to modulation of inflammation. Moreover, they can promote other 
beneficial effects, such as neuronal growth. In a recent AD clinical trial, intracranially 
injected MSCs were evaluated for safety and tolerability. Nine patients participated in 
this study. The criteria for inclusion in the study involved a Mini-Mental Status 
Examination score range from 10 to 24, indicating mild to moderate dementia. The 
patients were also confirmed to have Aβ pathology using PET scans. The patients were 
divided into two groups, one of them received a low dose while the other received a 
higher dose of the same injection. MSCs were directly injected into the hippocampus 
of the patients surgically. Follow-up examinations were taken at the 3- and 24-mo time 
points. No slowing of cognitive decline was found at the 24 mo, and no decrease of AB 
pathology was observed. None of the patients showed adverse side effects from the 
surgery and transplantation[118]. Although preclinical trials in animal models 
demonstrated neuroprotective effects, they did not translate clinically.

In addition, specific issues such as the specific cell stage to be transplanted, dose, 
route of administration, and duration of therapeutic effect must be solved[119]. Thus, 
there are still numerous open questions which have to be answered before clinical 
trials can be initiated. Preclinical evidence of the efficacy and safety of stem cells from 
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Table 1 Completed clinical trial trials of stem cells in patients with Alzheimer’s disease

Outcome measuresStudy name 
(study date)

Current 
state

Length 
(phase) Site Subjects 

(age) Design Stem 
cell

Route 
(n)

Dosage 
(participants)

n1

Primary Secondary

NCT03117738 
(4/2017-
9/2019)

Active, NR 32 wk 
(I/II)

United 
States

AD (> 50) PBO-
control, 
Double-
blind

AD-
MSC

IV (9) NA 21 ADAS-
cog

MMSE, CDR-
SB, NPI, GDS, 
ADL, 
biomarkers 
(MRI, Aβ, etc.)

NCT04040348 
(4/2019-
9/2021)

Recruiting 65 wk (I) United 
States

AD (50-85) Open 
label

H-
MSC

IV (NA) 1 × 108 (5), 2 × 
108 (5)

10 AE 
number

ADAS-cog, 
MMSE, GDS, 
ADL, NPI, 
diverse 
biomarkers

NCT02600130 
(4/2019-
9/2021)

Active, NR 65 wk (II) United 
States

AD (50-80) PBO-
control, 
Double-
blind

L-MSC IV (1) 2 × 107 (10), 1 × 
108 (10), PBO (5)

25 AE 
number

ADAS-cog, 
ADL, 
biomarkers 
(CSF, Aβ)

NCT02672306 
(10/2017-
10/2019)

Active, NR 36 wk 
(I/II)

China AD (50-85) PBO-
control, 
Double-
blind

HUC-
MSC

IV (8) 0.5 × 106/kg 
(NA), PBO (NA)

16 ADAS-
cog

ADAS-cog, 
CIBIC, CIBIC 
plus, MMSE, 
ADL, NPI 
biomarkers 
(plasma Aβ, 
etc.)

NCT03724136 
(10/2018-
10/2022)

Recruiting 12 mo United 
States

AD+ other 
neurological 
disease (> 18)

Open 
label, 
Three 
groups

B-MSC IV (NA) NA 100 MMSE, 
ASQ-SE

Activities of 
daily living

NCT01547689 
(2012.3-
2016.12)

Unknown 
status

10 wk 
(I/II)

China AD (50-85) Open 
label, 
Single-
center, 
Self-
control

HUC-
MSC

IV (8) 0.5 × 106/kg 30 AE 
number

ADAS-cog, 
MMSE, CIBIC, 
ADL, NPI 
biomarkers 
(Aβ, tau, etc.)

1Number of total participants. Aβ: Amyloid-beta; AD: Dementia due to Alzheimer’s disease; ADAS-Cog: Alzheimer’s Disease Assessment Scale-Cognitive 
Subscale; AE: Adverse events; NPI: Neuropsychiatric Inventory; CSF: Cerebrospinal fluid; AD-MSC: Autologous adipose tissue-derived mesenchymal 
stem cells; H-MSC: Human mesenchymal stem cells; L-MSC: Leukemia mesenchymal stem cells; B-MSC: Bone marrow mesenchymal stem cells; HUC-
MSC: Human umbilical cord blood-derived mesenchymal stem cells; ADL: Activities of daily living; NA: Not available; CDR-SB: Clinical Dementia Rating-
Sum of the Boxes scale; GDS: Geriatric Depression Scale; MMSE: Minimum Mental State Examination; CIDIC: Composite International Diagnostic 
Interview Core; PBO: Placebo; IV: Intravenous; ASQ-SE: Ages and stages questionnaires-social-emotional.

different sources is necessary for the development of clinically useful therapies. 
Extensive cell characterization, more efficient modelling of human diseases, and better 
comprehension of the interaction with resident and immune/scavenging cells are 
some of the key points that still need to be properly addressed by researchers.

DISCUSSION
The field of cell therapy awaits the results of many ongoing clinical trials on AD. 
Scientists are still working to solve some of the small technical issues in this area to 
pave the way for effective treatment of AD and accelerate the pace of development. In 
addition to insufficient survey funding, the question of participant registration is 
undoubtedly the most critical obstacle to the development of clinical investigations. 
First, the appropriate timing of stem cell transplantation for AD has not been 
determined. Some intervention trials for AD have failed because they have not been 
conducted at the appropriate time. AD is a progressive chronic disease that usually 
begins several years before diagnosis. Therefore, an individual's brain is severely 
damaged by the time symptoms or signs appear and a large number of central 
neurons in the brain are dead, resulting in an irreversible loss. CSF biomarkers are 
being used more and more widely, to increase the diagnostic certainty, provide 
comprehensive patient information, and optimize management, from the beginning of 
clinical symptoms. Most ongoing therapeutic trials target subjects with MCI due to 
biomarker-confirmed AD, since many recent longitudinal studies have demonstrated 



Liu XY et al. Alzheimer's disease

WJSC https://www.wjgnet.com 796 August 26, 2020 Volume 12 Issue 8

the ability of biomarkers to predict the progression of cognitive impairment and the 
development of overt dementia[120,121]. In MCI, identifying AD lesions helps to predict 
the progression towards AD dementia. The evidence that CSF biomarkers could 
identify or exclude AD is strong in patients with mild dementia, but weaker in 
ambiguous cases. However, there are still uncertainties regarding the individual 
course of cognitive decline, even though the biomarkers show a typical AD profile. 
There is no precise framework for the use of biomarkers with regards to the age and 
general health status of the patient. The multiple causes of cognitive impairment in 
elderly and very elderly subjects make their interpretation difficult and ethical and 
clinical reflection must be systematically conducted. Conversely, in some cases, brain 
imaging showed that a few study participants did not have a trial treatment plan for 
amyloidosis, suggesting an urgent need for early detection technology 
(ClinicalTrials.gov, Reg. No. NCT01163825). Given that clinical trials lasted for several 
years, patients with dementia received several injections and went through some 
difficult follow-up procedures; some participants withdrew before the end of the trial, 
making it difficult to evaluate the results (NCT02600130, NCT03117738, etc.). 
Unfortunately, another subtle point not considered in clinical trials was sex-related 
differences. It is estimated that women account for about two thirds of the patients 
with AD. Therefore, to obtain meaningful data and hence develop effective treatments, 
randomized controlled trials targeting specific populations need to adapt and evolve 
to cope with sex-related differences.

CONCLUSION
Animal research is difficult to translate into human trials. The transgenic model used 
in preclinical research is based on the familial AD hypothesis, and the clinical 
distribution of AD has genetic heterogeneity. In addition, results from rodent models 
or from models using higher-order animals may not be sufficient to support the 
clinical use of stem cells in AD because of significant differences in neuronal function 
and anatomy in rodents and primates. None have successfully replicated the complex 
microenvironment of the human brain or the precise pathophysiological conditions of 
AD. Consequently, it is challenging to precisely characterize the beneficial effects of 
stem cells in AD.

Another important area that requires further research is the role of stem cells in the 
lymphatic system. This system, which is composed mainly of astrocytes, is a recently 
discovered macroscopic waste removal system[122]. It plays an important role in 
eliminating potentially neurotoxic waste, including Aβ. In addition, previous studies 
have shown that Aβ clearance disorder due to a dysfunctional lymphatic system is a 
cause of AD pathology[123]. Therefore, vigorous research is needed to elucidate the 
interactions between stem cells, astrocytes, Aβ clearance, and the lymphatic system.

AD is a progressive neurodegenerative disease with no effective treatment 
currently. Because of their regenerative potential, stem cells may be an effective 
treatment option (compared with traditional therapies). Although the mechanism of 
action of stem cell therapy has not been fully elucidated, many preclinical studies have 
provided promising results. However, human clinical trials are still in their infancy. 
Further relevant animal research and clinical trials (with standardized protocols) are 
needed for the successful clinical transformation of this technology.

Stem cells used in AD and animal models have achieved certain results, but there 
are still many problems to be solved before they can be extended to clinical 
applications. One of the disadvantages of stem cell therapy is the requirement for a 
neurosurgical procedure and immunosuppression. Human and rodent studies have 
reported tumor formation resulting from autologous haematopoietic stem cell[124], 
allogeneic fetal NSC[125], and genetically engineered MSC[126] transplantation. At this 
point, the major concerns are related to controlling the proliferation and differentiation 
of stem cells, controlling the targeting of molecular markers, and developing cell 
delivery systems, as well as understanding and exploiting the heterogeneity of AD 
patients. Related to the heterogeneity of AD, transgenic animal models to date have 
been developed for the familial type of AD. However, most human AD cases are 
sporadic. Regarding these issues, researchers will continue to attempt to optimize cells 
by genetic engineering approaches to improve safety, efficacy, and patient-specific 
individualization of cell therapy. Furthermore, the recent technological developments 
of stem cells, involving the use of hydrogels, nano-technology, and light therapies 
have made drug delivery and regeneration treatments more efficient neural 
replacement, and regeneration therapy can soon be translated into the clinical setting 
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with further research combining these recent advancements. Stem cell therapy for AD 
carries enormous promise but remains under development. Many problems such as 
uncertainty about the amyloid hypothesis, differing objectives such as preventing 
progression from MCI to AD vs symptomatic treatment of established AD, and 
methodological designs of the trials themselves have been mentioned. Additionally, 
temporary recovery of behavior is relatively easily obtained, but often fail to be linked 
to a complete cure. Curative treatment is likely dependent upon sufficiently early 
diagnosis (MCI) to prevent further cell death and brain deterioration. A combination 
of NSC transplantation alongside administrating existing approved medication and 
preventing further Aβ aggregation may be the most effective way. It is important to 
note that whilst behavioral or cognitive improvement is interpreted as positive 
outcomes, it can be frequently misinterpreted as permanent arrest or even reversal of 
AD progression. Alternatively, due to the complex nature of AD pathophysiology, a 
multimodal approach may be required, incorporating pharmacological targeting of 
pathology, stimulation of endogenous neurogenesis and synaptogenesis, as well as 
exogenous neuroreplacement.
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