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Abstract
BACKGROUND 
Indole-3-carbinol (I3C) and other aryl hydrocarbon receptor agonists are known 
to modulate the immune system and ameliorate various inflammatory and 
autoimmune diseases in animal models, including colitis induced by dextran 
sulfate sodium (DSS). MicroRNAs (miRNAs) are also gaining traction as potential 
therapeutic agents or diagnostic elements. Enterohepatic Helicobacter (EHH) 
species are associated with an increased risk of inflammatory bowel disease, but 
little is known about how these species affect the immune system or response to 
treatment.

AIM 
To determine whether infection with an EHH species alters the response to I3C 
and how the immune and miRNA responses of an EHH species compare with 
responses to DSS and inflammatory bowel disease.

METHODS 
We infected C57BL/6 mice with Helicobacter muridarum (H. muridarum), with and 
without DSS and I3C treatment. Pathological responses were evaluated by 
histological examination, symptom scores, and cytokine responses. MiRNAs 
analysis was performed on mesenteric lymph nodes to further evaluate the 
regional immune response.
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RESULTS 
H. muridarum infection alone caused colonic inflammation and upregulated 
proinflammatory, macrophage-associated cytokines in the colon similar to 
changes seen in DSS-treated mice. Further upregulation occurred upon treatment 
with DSS. H. muridarum infection caused broad changes in mesenteric lymph node 
miRNA expression, but colitis-associated miRNAs were regulated similarly in H. 
muridarum-infected and uninfected, DSS-treated mice. In spite of causing colitis 
exacerbation, H. muridarum infection did not prevent disease amelioration by I3C. 
I3C normalized both macrophage- and T cell-associated cytokines.

CONCLUSION 
Thus, I3C may be useful for inflammatory bowel disease patients regardless of 
EHH infection. The miRNA changes associated with I3C treatment are likely the 
result of, rather than the cause of immune response changes.

Key words: Helicobacter muridarum; MicroRNA; Immune; T regulatory cell; T helper 17 
cell; Colitis; Cytokine

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The immune response to Helicobacter muridarum (H. muridarum), an 
enterohepatic Helicobacter species, mimics responses seen during chemically induced 
colitis and human inflammatory bowel disease (IBD) in terms of local and systemic 
cytokine responses and microRNA changes. Most microRNAs that are altered in IBD are 
also altered by H. muridarum infection with or without dextran sodium sulfate treatment. 
Furthermore, H. muridarum does not alter activity of an aryl hydrocarbon receptor agonist, 
indole-3-carbinol, a natural compound being explored as a treatment for IBD. Therefore, 
H. muridarum infection provides a viable model for predicting the effects of enterohepatic 
Helicobacter species on IBD.

Citation: Alkarkoushi RR, Hui Y, Tavakoli AS, Singh U, Nagarkatti P, Nagarkatti M, 
Chatzistamou I, Bam M, Testerman TL. Immune and microRNA responses to Helicobacter 
muridarum infection and indole-3-carbinol during colitis. World J Gastroenterol 2020; 26(32): 
4763-4785
URL: https://www.wjgnet.com/1007-9327/full/v26/i32/4763.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i32.4763

INTRODUCTION
Ulcerative colitis (UC) is a chronic, idiopathic inflammatory bowel disease (IBD) 
characterized by inflammation of the colon. In the past decade, inflammatory bowel 
disease has emerged as a public health challenge and a global disease with increasing 
incidence in newly industrialized and industrialized countries worldwide, especially 
in North America, and Europe[1]. In 2015, 3.1 million adults in the United States were 
living with IBD[2], with direct and indirect costs estimated to be between $14.6 and 
$31.6 billion in 2014 alone[3]. The pathogenesis of IBD is complex and influenced by 
genetic susceptibility, dysregulation of the innate and adaptive immune systems, 
environmental factors, and intestinal dysbiosis; however, a crucial feature of UC is the 
imbalance between T regulatory (Treg) cells and T helper 17 (Th17) cells[4].

The best-known member of the Helicobacter genus is Helicobacter pylori (H. pylori), 
which colonizes the stomach, causing gastritis, gastric cancer, and a range of 
extragastric diseases[5]. Enterohepatic Helicobacter (EHH) species colonize the colon and 
sometimes the biliary tree. Some of these poorly studied organisms commonly cause 
persistent, asymptomatic infections, but occasionally cause intestinal diseases or even 
cancer in species ranging from rodents to primates[6-8]. Several studies suggest that 
EHH species are associated with IBD in humans[9-11]. The prevalence of EHH species in 
human populations is not clearly known, but one study found 9% infection in healthy 
control patients[11]. Helicobacter muridarum (H. muridarum) is an enterohepatic 
Helicobacter (EHH) species that was initially described as a member of the normal flora 
of conventional rodents[12]. Subsequent studies, however, showed that H. muridarum 
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could induce colitis and gastritis in mice, suggesting a potential pathogenic role for the 
bacterium[13-15].

Dextran sodium sulfate (DSS)-induced colitis is the most widely used mouse colitis 
model for studying acute colitis and inflammation-associated colon cancer. DSS is a 
water-soluble, negatively charged, sulfated polysaccharide with a highly variable 
molecular weight. DSS-induced murine colitis, which most closely resembles human 
UC, employs DSS at a molecular weight of 40000 Da[16,17]. The mechanism by which 
DSS induces intestinal inflammation is disruption of tight junctions, allowing 
dissemination of proinflammatory intestinal contents[18]. In conjunction with colonic 
damage, DSS induces a range of proinflammatory cytokines and a Th1/Th17 
response[17,19].

The aryl hydrocarbon receptor (AhR) regulates several signaling pathways relevant 
to intestinal health, including the balance between Tregs and Th17 cells[20,21]. AhR is 
needed for the survival of intraepithelial lymphocytes and also the organogenesis of 
lymphoid structures in the gastrointestinal tract[22]. Indole-3-carbinol (I3C), a dietary 
compound from cruciferous vegetables such as broccoli, activates AhR, as does its 
acidic condensation product, 3,3’-diindolylmethane (DIM)[23]. Both I3C and DIM have 
been investigated as treatments for a range of inflammatory diseases and cancers, 
including colitis[24-26], but the effects of Helicobacter infection on the response to I3C has 
not been studied. I3C and DIM are available for purchase as dietary supplements.

MicroRNAs (miRNAs) are being investigated as potential diagnostic and treatment 
tools. MiRNAs are highly conserved, noncoding, single-stranded, small ribonucleic 
acid molecules (17–27 nucleotides) that control gene expression post-transcriptionally. 
They typically bind at the 3’ untranslated region of the target gene messenger RNA 
(mRNA) leading to the degradation of the target RNA or inhibition of the translation 
of the RNA[27,28]. MiRNAs regulate genes involved in a wide range of cellular signaling 
pathways, including the Immune response. During the past ten years, much research 
has been done to uncover their roles in cellular proliferation, differentiation, 
maturation, and apoptosis[27]. Moreover, substantial scientific evidence underlines the 
functional roles and potential value of these tiny ribonucleic acid molecules for 
regulating autoimmunity and inflammation by affecting the differentiation, 
maturation, and functions of various immune cells in diseases including colitis[28,29]. 
Furthermore, many pieces of evidence show the participation of miRNAs in the 
regulation of T-cell development, differentiation, maturation, and activation[30]. Since 
the Treg/Th17 balance is crucial to intestinal health[31], understanding how miRNA 
expression is controlled by inflammatory and anti-inflammatory signals, such as I3C, 
could lead to identification of miRNAs capable of rebalancing the immune response in 
the inflamed colon.

The aims of this study were to examine the relative effects of H. muridarum and I3C 
on mouse colon pathology, immune response, and miRNA expression. We used the 
standard mouse model of DSS-induced colitis in C57BL/6 mice. Some groups were 
infected with H. muridarum and treated with I3C. Treatment responses were monitored 
in the colon and mesenteric lymph nodes.

MATERIALS AND METHODS
Animals
The research described in this manuscript (including the acquisition of animals and all 
protocols for their use) was approved by the University of South Carolina Institutional 
Animal Care and Use Committee prior to commencement of studies. University of 
South Carolina is an AALAC accredited institution and all animal care procedures 
followed the NIH Guide for the Care and Use of Laboratory Animals. Female 
C57BL/6J mice (aged 8-10 wk) were purchased from The Jackson Laboratory, Bar 
Harbor, Maine, United States. Animals were housed in a controlled environment (12 h 
light/dark cycle) with food and water ad libitum. After one week of acclimation on a 
normal chow diet, the mice were randomly divided into groups. Groups of 5-7 animals 
were used in each experiment. The experimental groups included control (Ctrl), H. 
muridarum, H. muridarum plus DSS, H. muridarum plus DSS plus I3C, DSS, and DSS 
plus I3C (DSS/I3C). Each experiment included either all male or all female mice, as 
indicated in the text.

Bacterial strains, cultivation, and infection
H. muridarum strain ATCC4982 was purchased from the American Type Culture 
Collection and was cultured in a humidified environment at 37 °C with 10% CO2, 5% 
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O2 in Ham’s F-12 medium containing 20 mL/L fetal calf serum in tissue culture flasks. 
H. muridarum bacteria were passaged every 2 to 3 d. After microscopically verifying 
appropriate morphology and motility, the culture was centrifuged at 25°C at 4500 rpm 
for 20 min, then the pellet was suspended in 9 g/L sodium chloride to produce a 
suspension containing approximately 28465 to 142072 adenosine triphosphate (ATP) 
relative luminescence units per 200 μL, as determined using the luminescent BacTiter-
Glo ATP viability assay (Promega Corp.,Madison, Wisconsin, United States). Mice 
were inoculated by orogastric gavage (200 µL) every other day for a total of four 
inoculations. Viability of the remaining bacterial suspension was reconfirmed using 
the luminescent BacTiter-Glo ATP assay.

Infection was confirmed by polymerase chain reaction (PCR) of stool DNA using H. 
muridarum-specific primers as follows. Fecal samples were collected and stored at -
80°C until analysis. Fecal DNA was isolated using the EZNA stool DNA kit (Omega 
Bio-Tek, Inc., Norcross Georgia, United States) according to the manufacturer’s 
recommendations. Fecal PCR was performed using H. muridarum 16S rRNA gene-
specific primers (H. m. p30f, 5’-ATGGGTAAGAAAAAAAAAGATTGCAA-3’, and H. 
m. p30r, 5’-CTATTTCATATCCGCTCTTGAGAATC-3’), which amplify an 800 bp 
conserved region of the 16S rRNA, as previously described[32].

Induction of colitis with DSS
DSS (MW 40 000, Chem-Impex International, Inc, Wood Dale, Illinois, United States) at 
a concentration of 1-30 g/L was provided in drinking water for 10-13 d. The volume of 
DSS consumed, animal weight, diarrhea score, and stool blood score were recorded 
daily. The disease activity index was calculated from weight, diarrhea, and stool blood 
scores as previously described[33,34]. Stool blood was detected using a colorimetric fecal 
occult blood test (Helena Laboratories, ColoScreen catalog No. 5083). Briefly, we 
determined the disease activity index using the following variables: Stool blood (0, 
negative; 1, weakly positive; 2, strongly positive; 3, rusty-colored stool and 4, gross 
bleeding), changes in weight (0, < 1%; 1, 1%-5%; 2, 6%-10%; 3, 11%-15%; and 4, > 15%), 
and stool consistency (0-1, normal; 2-3, loose stools; and 4, diarrhea).

I3C preparation and dosage
For treatment groups, I3C purchased from Chem-Impex International, Inc. was 
suspended in DMSO prior to dilution in corn oil. I3C was administered orogastrically 
at a dose of 40 mg/kg in a total volume of 100 µL, as described previously[24]. Animals 
were treated with either I3C or vehicle (20 mL/L DMSO in corn oil) daily, beginning 
on the first day of the DSS cycle.

Histopathological colitis score
Formalin-fixed colon tissue was embedded in paraffin and cut into 5 μm thick sections. 
Next, the colon sections were stained using hematoxylin and eosin (H and E). Four 
randomly chosen, non-overlapping fields of each stained section were analyzed and 
assigned a colitis severity score by a pathologist using methods described 
previously[34,35]. In short, the degree of colitis was scored on the basis of the following 
parameters: Extent of the injury (0, none; 1, mucosa; 2, mucosa and submucosa; and 3, 
transmural), inflammation severity (0, none; 1, mild; 2, moderate; and 3, severe), and 
crypt damage (0, none; 1, basal one-third damaged; 2, basal two-thirds damaged; 3, 
crypt loss and the presence of surface epithelium; and 4, loss of the entire crypt and 
epithelium). Then the degrees for each of these aforementioned parameters were 
multiplied by an extent score that represented the percentage of each parameter that 
had a given feature as follows: 1, 0-25%; 2, 26%-50%; 3, 51%-75%; and 4, 76%-100%. We 
defined the total score as the sum of the three parameters. The bottom limit total colitis 
score was 0; the upper limit total

Characterization of CD4+ T cells in the mesenteric lymph node and spleen
For flow cytometry, the mesenteric lymph nodes (MLN) and spleens were pooled from 
each group of mice and placed in ice-cold medium. These tissues were mechanically 
disrupted, teased into single-cell suspensions, filtered through a cell strainer (70 μm), 
and placed in complete medium (RPMI-1640 containing 100 mL/L of heat-inactivated 
fetal bovine serum). The isolated cell suspension was stimulated with a cell 
stimulation cocktail (eBioscience™) plus protein transport inhibitors (Invitrogen, 
catalog 00-4975), for 4-6 h. Stimulated cells were incubated with anti-CD4 mAb and 
anti-CD25 mAb for 15 min on ice (Biolegend, United States). For intracellular cytokine 
staining, the cell suspension was incubated with anti-IFNγ, Interleukin-17 after 
treating the cells with Fixation/permeabilization kit (BD Biosciences catalog 554714). 



Alkarkoushi RR et al. Immune responses to H. muridarum infection

WJG https://www.wjgnet.com 4767 August 28, 2020 Volume 26 Issue 32

For Treg identification, we used FOXP3/Transcription Factor Staining Buffer set 
(eBioscience Invitrogen) before adding anti-FOXP3. Staining and washing were carried 
out in complete medium on ice. The stained cells were analyzed with a Beckman 
Coulter FC500 flow cytometer.

Enzyme linked immunosorbent assays
Interleukin-17 (IL-17), IL-6, IL-10, IL-4, IL-6, IL-21, IL-22, IL-23, IL-1β, transforming 
growth factor beta 1 (TGF-β1) , tumor necrosis factor-alpha (TNF-α) and interferon 
gamma (INF-γ), in the plasma and/or in colonic tissue lysates were quantified by 
ELISA kits (R and D Systems, Minneapolis, MN, United States) following the 
manufacturer’s recommendations. Colon tissues were prepared for ELISA as described 
previously[33]. Briefly, the mouse colons where washed immediately with cold 
phosphate buffered saline and frozen at -70°C until use. The samples were 
homogenized in 200 µL protein analysis buffer [10 mL of 1 mol/L Tris-hydrochloric 
acid (pH 8.0), 6 mL of 5 mol/L sodium chloride and 2 mL of Triton X-100 to 182 mL of 
sterilized distilled water][33] in 2 mL microcentrifuge tubes with a 0.9-2.0 mm stainless 
steel bead blend and homogenized with a tissue homogenizer (MP FastPrep-24) at a 
speed of 0.4 m/s for 20 s. Samples were frozen and thawed, and homogenized three 
times, then centrifuged at 30000 g for 30 min at 4°C. The supernatant was collected, 
and the pellet was re-suspended in phosphate buffer. Protein concentrations were 
determined using a bicinchoninic acid assay (Bio-Rad). Samples were frozen until the 
ELISA assays were performed and 0.5-1.0 mg/mL of protein was used for each run, 
depending on the interleukin type.

Sample collection and RNA isolation
Mesenteric lymph nodes were collected from the groups on the day of the sacrifice and 
immediately frozen at -70°C prior to use. Mesenteric lymph nodes were ground with 
mortar and pestle in liquid nitrogen. QIAzol Lysis Reagent (Qiagen, catalog 217004) 
was added to the samples and they were then homogenized by MP FastPrep-24 with 
0.9-2.0 mm stainless steel beads (0.4 m/s for 10 s). Total RNA, including mRNA, 
miRNA and other small RNA molecules, were isolated from all the mesenteric lymph 
node with the miRNeasy Kit (Qiagen, Germany), following the manufacturer's 
procedure. The concentration and purity of the isolated RNA was determined using a 
Beckman Coulter DU800 UV/visible spectrophotometer. RNA quality was assessed by 
measuring the absorbance (A260/A280, A260/A230) of isolated samples and by 
agarose gel electrophoresis.

MicroRNA array analysis
The microarray was performed at the University of South Carolina School of Medicine 
following the protocol described by Bam et al[36,37]. Briefly, total RNA isolated as 
described above was hybridized to an Affymetrix miRNA-v3 gene chip (Affymetrix, 
Sunnyvale, CA, United States) as directed by the manufacturer. Raw data was 
processed in the Transcriptome Analysis Console (Affymetrix). The heat map was 
generated in Genesis[38]. The data from Transcriptome Analysis Console were used to 
calculate the linear fold-change of the expression of miRNAs to compare the miRNA 
expression differences among treatment groups. A linear fold-change of at least ± 1.5 
was used as a cutoff value for the inclusion of a miRNA for further analysis. Moreover, 
only the miRNAs which were significant on the basis of P value (< 0.05) calculated 
using student’s t-test, were included in the analysis.

MiRNA-target gene prediction
Ingenuity Pathway Analysis (IPA, Qiagen, Redwood City, CA, United States) was 
used to predict the targets of the differentially expressed miRNAs. Networks relevant 
to regulatory T cells were generated to identify relevant miRNA species for testing. 
Other databases [TargetScan (http://www.targetscan.org/vert_72/), miRWalk (
http://mirwalk.umm.uni-heidelberg.de/)] were also used to identify genes targeted 
by specific miRNAs.

Quantitative real-time PCR analysis of miRNA and gene expression
Total RNA from MLN was isolated and purified with the miRNeasy Kit (Qiagen, 
Valencia, CA, United States), following the manufacturer's procedure. The miScript II 
RT complementary DNA (cDNA) synthesis kit (Qiagen, Germany) was used according 
to the manufacturer's specifications to reverse-transcribe cDNA by taking 1 μg each of 
total RNA in a 20 μL total volume. The quantitative real-time (qRT-PCR) reactions 
were carried out using miScript Primer Assays or miScript Precursors (Qiagen, 

http://www.targetscan.org/vert_72/
http://mirwalk.umm.uni-heidelberg.de/
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Germany) according to manufacturer instructions. U6, SnorD96, Snor68, Snor234, and 
Snor202 were evaluated for stability among groups and SnorD96 was chosen for 
normalization. SnorD96 has also been used by others[39,40]. Primers were purchased 
from Qiagen, Maryland.

For mRNA expression analysis, cDNA was made from total RNA as described. A 
two-step amplification qRT-PCR was carried out using SsoAdvanced™ SYBR® green 
supermix from Bio-Rad (Hercules, CA, United States) with the mouse primers shown 
in Table 1. The real-time PCR conditions were as follows: Initial step at 95°C for 10 s 
followed by cycles (n = 40) consisting of 30 s at 95°C, followed by 30 s an-
nealing/extension at 60°C and a final extension step for 30 s at 72°C. Data are 
normalized to expression of the reference gene encoding β-actin. Primers were 
purchased from Integrated Technologies and from Invitrogen. Melting temperatures 
ranged from 56.0°C to 64.5°C. Primer efficiency was measured for each primer set. All 
reactions were performed in triplicate. The qPCR experiments were carried out on a 
CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, United 
States). Fold changes were calculated using the 2−ΔΔCT (Livak) method.

Statistical analysis
Significance of differences between groups at single time points were determined 
using the Mann-Whitney U-test using GraphPad Prism software (Version 8.2). P 
values less than 0.05 were considered significant. Colitis symptom time course data 
were analyzed using a repeated measure analysis with 13 measures taken per animal 
(day one to day thirteen) randomly assigned to six groups (Ctrl, H. muridarum, H. 
muridarum/DSS, H. muridarum/DSS/I3C, DSS/I3C) and three experiments. 
Descriptive statistics were computed on the variables. For categorical variables, the 
univariate constructions will be included frequency distributions. For continuous 
variable statistics included measure of central tendency (mean and median) and 
measure of spread (standard deviation and range). Descriptive statistics for main 
variables were carried out for each group. In the analysis, expected mean squares were 
calculated and the appropriate combination used for hypothesis tests with specific 
functions of the repeated measures. General linear model analyses in SAS (MIXED 
procedure) were used to examine the effects of day, group, and day by group 
interaction. Post-hoc comparisons for the appropriate effects were examined. In 
addition, parameter estimates of the effects of covariate (experiment) and of the 
appropriate structure for the repeated observations was estimated. Adjusted Tukey-
Kramer multiple comparison was used for significant effects. Significance levels are 
indicated as aP ≤ 0.05; bP ≤ 0.01; cP ≤ 0.001; dP ≤ 0.0001.

RESULTS
Exacerbation of colitis by H. muridarum is counteracted by I3C treatment
In three independent experiments, female wild-type C57BL/6 mice were infected with 
live H. muridarum bacteria seven, five, three, and one days prior to commencement of 
DSS treatment (day zero). Pathology in mice treated with 30 g/L DSS was so severe 
that one H. muridarum/DSS treated mouse required euthanasia. For this reason, 10 g/L 
DSS was used in subsequent experiments. Figure 1 shows average values from three 
independent experiments. Statistical analysis results are shown in Table 2 and Table S1
. Overall disease activity was increased by each treatment except H. muridarum when 
compared to the control group. H. muridarum alone occasionally induced stool 
softening and a small amount of fecal occult blood, yet H. muridarum decreased 
diarrhea scores in DSS-treated mice (Figure 1A and Table 2). On the other hand, H. 
muridarum increased fecal occult blood and weight loss in DSS-treated mice. I3C was 
as effective in ameliorating colitis symptoms in H. muridarum mice as it was in 
uninfected mice. Significant shortening of the colon, an indicator of inflammation, 
occurred in H. muridarum-infected mice compared with control mice (Figure 1B). DSS 
treatment of H. muridarum mice caused additional shortening and colon length was 
similar to DSS mice. I3C significantly increased colon length in both infected and 
uninfected mice. It is evident from the pathology scores that the infection with H. 
muridarum alone can induce pathology such as dilatation of glandular crypts, edema, 
and destruction of epithelium and glands (Figure 1B). In some cases, pathology caused 
by H. muridarum alone is comparable to that caused by DSS treatment, yet damage to 
the mucosa was not reflected in symptom scores in these mice. Treatment of H. 
muridarum-infected mice with DSS further worsened pathology.

https://f6publishing.blob.core.windows.net/957b25b1-005e-4de6-8f83-0b3ca1138803/WJG-26-4763-supplementary-material.pdf
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Table 1 Primers used for transcription analysis

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

Actb (β-actin) TCACCCACACTGTGCCCATCTACG CAGCGGAACCGCTCATTGCCAATGG

Il17a TCAGCGTGTCCAAACACTGAG CGCCAAGGGAGTAAAGACTT

Foxp3 AGCAGTCCACTTCACCAAGG GGATAACGCCAGAGGAGCTG

Rorc CCGCTGAGAGGGCTTCAC TGCAGGAGTAGGCCACATTACA

Il10 TGAATTCCCTGGGTGAGAAGC ATCACTCTTCACCTCCAC

Il6 AGCCAGAGTCCTTCAGAGAGAT AAAAAGTGCCGCTACCCTGA

Table 2 Colitis symptom score P values

Treatment groups2 % Weight Stool blood Diarrhea DAI

Ctrl vs Hm 0.2495 0.61421 0.02481 0.06591

Hm/DSS < 0.00011 < 0.00011 < 0.00011 < 0.00011

Hm/DSS/I3C 0.9574 < 0.00011 < 0.00011 < 0.00011

DSS 0.0552 < 0.00011 < 0.00011 < 0.00011

DSS/I3C 0.1381 < 0.00011 < 0.00011 < 0.00011

Hm vs DSS 0.9823 < 0.00011 < 0.00011 < 0.00011

Hm/DSS < 0.00011 < 0.00011 < 0.00011 < 0.00011

Hm/DSS vs DSS < 0.00011 0.00071 0.00411 < 0.00011

Hm/DSS/I3C < 0.00011 < 0.00011 < 0.00011 < 0.00011

DSS vs DSS/I3C 0.9977 0.00261 < 0.00011 < 0.00011

1Significant P values. 
2Ctrl: Control; Hm: Helicobacter muridarum; Hm/DSS: Helicobacter muridarum plus DSS; Hm/DSS/I3C: Helicobacter muridarum plus DSS plus I3C; DSS/I3C: 
DSS plus I3C.

Effects of H. muridarum, DSS, and I3C on miRNA expression
Since miRNAs contribute to immune cell differentiation, we sought to determine 
which miRNAs were regulated by I3C, which were regulated by H. muridarum, and 
whether H. muridarum affected the I3C response. To accomplish this, we performed 
miRNA analysis on total RNA isolated from the mesenteric lymph nodes of all groups 
from one of the experiments. A heat map was constructed highlighting the differences 
in miRNA abundance among the groups (Figure 2A). We found that each group had a 
pattern that was distinct from all others. For example, H. muridarum infection alone 
altered miRNA expression and miRNA expression in DSS, I3C treated mice was 
different depending on whether they were infected or uninfected.

We sought to determine whether I3C-regulated miRNAs are associated with 
regulation of the major Treg and Th17 transcriptional regulators, FOXP3 and RORC. 
To this end, we used in silico analysis of predicted miRNA targets and pathways as 
well as online databases to search for miRNAs induced by I3C in H. muridarum /DSS 
mice that could target Foxp3 and Rorc genes. Among these potential miRNAs, we 
identified 3 candidates that had acceptable alignment scores and were highly 
predicted to target Foxp3 or Rorc. These miRNAs included miR-let7a-5p and miR-29a-
3p, which target RORC, and miR-874-5p and miR-6906-5p, which target FoxP3. It 
should be noted that other members of the let-7 family also target Rorc and some were 
similarly regulated by I3C in H. muridarum-infected mice. We performed qRT-PCR on 
cDNA samples reverse transcribed from total MLN RNA. As predicted, we found 
increased expression of miR-23a-3p and let-7a-2, which target Rorc (Figure 2B). 
Differences between untreated and I3C-treated groups were only significant for H. 
muridarum-infected mice, but the Rorc-targeted miRNAs miR-29a-3p and let-7a 
trended higher in uninfected mice. We also found that I3C decreased expression of 
Foxp3-targeting miR-874-5p and miR-6906-5p in H. muridarum-infected mice, but only 
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Figure 1  Symptom scores and histopathology. A: Colitis symptom scores (n = 17-21 per group); B: Colon length (n = 17-21 per group) and histopathology 
scores (n = 7 per group). aP ≤ 0.05; bP ≤ 0.01; cP ≤ 0.001; dP ≤ 0.0001. Ctrl: Control; Hm: Helicobacter muridarum; Hm/DSS: Helicobacter muridarum plus DSS; 
Hm/DSS/I3C: Helicobacter muridarum plus DSS plus I3C; DSS/I3C: DSS plus I3C.

miR-6906-5p was reduced in uninfected mice. This is not surprising since miR-874-5p 
was not predicted to be elevated by DSS in uninfected mice, but it highlights the 
different miRNA responses seen among groups. The miRNAs miR-15b and miR-16 
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Figure 2  MicroRNA expression analysis. A: A heat map of expression intensities for each group was generated using Genesis software with red representing 
high expression and green representing low expression; B: Expression of microRNA as determined by quantitative real time PCR. All values are normalized to 
expression in the control group (n = 7); and C: Venn diagrams generated using Venny 2.1 demonstrate microRNA expression changes common to different treatment 
conditions. aP ≤ 0.05; bP ≤ 0.01. Ctrl: Control; Hm: Helicobacter muridarum; Hm/DSS: Helicobacter muridarum plus DSS; Hm/DSS/I3C: Helicobacter muridarum plus 
DSS plus I3C; DSS/I3C: DSS plus I3C.

support Treg development by targeting a suppressor of Treg development and miR-
15b/16 previously have been shown to be induced by DIM[41,42]. We also found these 
miRNAs to be increased by I3C in H. muridarum-infected, DSS-treated mice (Figure S1

https://f6publishing.blob.core.windows.net/957b25b1-005e-4de6-8f83-0b3ca1138803/WJG-26-4763-supplementary-material.pdf
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), but their expressions were predicted to be oppositely regulated in uninfected mice.
A closer look at miRNA microarray data was illuminating. The first Venn diagram 

shown in Figure 2C highlights miRNAs that displayed a greater than 2-fold change in 
the colitis groups compared with the control group. The H. muridarum group has 679 
miRNAs up or down-regulated compared with the control, vs 666 miRNAs in the DSS 
group, and 722 miRNAs in the H. muridarum /DSS group. Interestingly, the majority (
n = 574) of the miRNA changes are shared between the H. muridarum group and the 
DSS group and most of these (n = 543) are also shared with the H. muridarum /DSS 
group as well. This demonstrates that the miRNA response to H. muridarum infection 
is very similar to the response induced by DSS treatment. More importantly, miRNAs 
common between the H. muridarum group and the DSS group were almost all 
regulated in the same direction. All miRNA data are found in Table S2.

A second Venn diagram further highlights the effect of DSS treatment by 
substituting the H. muridarum /DSS vs H. muridarum comparison for the H. muridarum 
vs control comparison. Not surprisingly, the number of miRNAs changed between H. 
muridarum /DSS and H. muridarum (n = 281) is much smaller than the effect of H. 
muridarum /DSS compared to Ctrl (n = 722), but the majority of those miRNAs (69.8%) 
are also altered by DSS. It should be noted that 80.1% of the miRNAs altered by DSS 
treatment of H. muridarum mice are found within the H. muridarum /DSS vs Ctrl 
comparison. 85.7% if miRNAs common between DSS vs Ctrl and H. muridarum/DSS vs 
H. muridarum were concordant in the direction of change. This recapitulates the 
findings shown in the first Venn diagram, indicating that H. muridarum infection and 
DSS treatment have similar effects.

A third Venn diagram was constructed to study the effects of I3C treatment. In I3C-
treated animals (Figure 2C), there was less overlap between H. muridarum-infected and 
–uninfected animals (87 miRNAs, or 23.5%). Oddly, most of the 87 common miRNAs 
(71.2%) were oppositely regulated in H. muridarum-infected and uninfected mice. In 
most cases, miRNAs were upregulated by I3C in H. muridarum-infected mice, but 
downregulated by I3C in uninfected mice. The predicted fold changes were also larger 
in H. muridarum-infected mice. The reason for this odd regulation pattern is discussed 
in the next paragraph. An alternative method for Identifying I3C effects is to compare 
H. muridarum /DSS/I3C vs control with DSS/I3C vs Ctrl (Figure 2C). These miRNA 
populations overlap heavily (73.1%). Most of the 87 previously identified miRNAs 
(56/87) are found in the overlap group. Since there is also heavy overlap between the 
putative I3C-regulated miRNAs and DSS-regulated miRNAs (529/666), it is not clear 
whether any of the miRNAs are strictly responsive to I3C; however, the overlap is 
consistent with the hypothesis that I3C normalizes miRNAs involved in colitis.

Examination of specific miRNAs provides a clearer demonstration of the effects of 
H. muridarum, DSS, and I3C and an explanation for the differential regulation of 
miRNAs by I3C in infected vs uninfected mice. We examined a list of 45 miRNAs that 
are altered in human IBD[43-45]. Almost all of the human IBD-associated miRNAs were 
altered by H. muridarum and/or DSS. Table 3 shows raw expression data and fold 
changes for the selected miRNAs. When compared with control values, these miRNAs 
were all downregulated, whereas many were upregulated compared to healthy 
controls in humans[43]. Possible reasons for this are discussed later. Expression 
decreases are mostly modest in H. muridarum vs Ctrl, but extreme in H. muridarum 
/DSS vs Ctrl- up to 3,646-fold decreased. The expression reductions were less extreme 
in the H. muridarum /DSS/I3C group compared to Ctrl. Expression of the selected 
miRNAs was lower in DSS/I3C group than the DSS group, but in many cases, the 
reductions were less than two-fold, which is why those miRNAs did not show up as 
common between infected and uninfected mice treated with I3C. It should be noted 
that there was not a global decrease in miRNA expression in any treated groups vs 
Ctrls; the decreases are specific to certain miRNAs. All 45 human IBD-associated 
miRNAs were among the 576 miRNAs in the putative I3C regulated group (Figure 2C) 
and all but two of the 45 were regulated by H. muridarum and/or DSS. Bian et al[46] also 
reported that many of these miRNAs are differentially regulated in DSS-treated mice, 
suggesting that a core set of miRNAs are relevant to colitis in both humans and 
mice[46].

H. muridarum infection alters T helper cell profiles.
Since miRNAs are pleotropic in their effects, we sought to confirm predicted effects on 
Treg and Th17 populations. MLN transcript analysis by qRT-PCR demonstrated that 
I3C decreased RORC and increased FOXP3 expression, consistent with a switch from 
Th17 to Treg (Figure 3). These results were mirrored by the decrease in IL17 and 
increase in IL10 expression. Expression of Il6, which is involved in Th17 induction, is 
also shown. RORC and IL17 were more strongly induced by DSS in H. muridarum-

https://f6publishing.blob.core.windows.net/957b25b1-005e-4de6-8f83-0b3ca1138803/WJG-26-4763-supplementary-material.pdf
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Table 3 MicroRNA expression

Raw expression data Fold changes

miRNA Ctrl Hm Hm/DSS DSS/Hm/ I3C DSS DSS/ I3C Hm vs Ctrl Hm/DSS vs Ctrl DSS/Hm/I3C vs Ctrl DSS vs Ctrl DI vs Ctrl DMI vsDHM DI vs DSS

mmu-let-7a-5p 12.93 11.14 5.72 9.11 10.71 10.59 -3.45 -147.58 -14.06 -4.65 -5.07 10.5 -1.09

mmu-let-7b-5p 14.14 11.84 7.97 10.45 11.21 10.89 -4.92 -72.01 -12.96 -7.62 -9.56 5.56 -1.25

mmu-let-7d-5p 13.76 11.52 8.09 10.44 11.1 10.86 -4.71 -50.67 -9.97 -6.29 -7.42 5.08 -1.18

mmu-let-7e-5p 11.06 10.06 1.7 8.39 9.6 9.23 -2 -654.64 -6.34 -2.74 -3.54 103.31 -1.29

mmu-let-7g-5p 10.31 6.71 1.37 2.01 7.52 6.16 -12.19 -491.93 -317.1 -6.92 -17.81 1.55 -2.58

mmu-miR-103-3p 11.85 10.44 6.42 10.09 10.88 10.02 -2.66 -43.07 -3.39 -1.96 -3.57 12.7 -1.82

mmu-miR-106a-5p 9.29 5.45 1.15 2.03 5.51 2.78 -14.34 -282.96 -153.91 -13.78 -91.54 1.84 -6.64

mmu-miR-127-3p 7.9 4.55 0.95 2.8 2.43 1.91 -10.18 -123.98 -34.2 -44.34 -63.55 3.63 -1.43

mmu-miR-128-3p 5.81 0.79 0.94 1.04 0.77 1.3 -32.4 -29.23 -27.31 -33.04 -22.87 1.07 1.44

mmu-miR-135a-1-3p 3.64 1.3 1.8 1.26 1.43 2.12 -5.04 -3.57 -5.19 -4.62 -2.86 -1.45 1.62

mmu-miR-140-3p 10.2 9.92 1.83 7.91 9.62 8.3 -1.21 -329.16 -4.87 -1.49 -3.73 67.62 -2.51

mmu-miR-140-5p 6.33 1.38 0.79 1.02 1.38 0.87 -30.86 -46.56 -39.48 -30.86 -43.84 1.18 -1.42

mmu-miR-142-5p 2.9 0.99 1.35 0.99 1.16 1.01 -3.78 -2.93 -3.78 -3.34 -3.72 -1.29 -1.11

mmu-miR-145a-5p 12.99 11.51 6.79 10.2 11.15 10.28 -2.78 -73.5 -6.89 -3.57 -6.55 10.66 -1.83

mmu-miR-146a-5p 10.34 7.84 1.24 3.54 7.72 7.84 -5.65 -550.48 -111.6 -6.13 -22.7 4.93 -3.7

mmu-miR-150-5p 13.4 11.1 4.14 8.96 10.4 9.76 -4.92 -614.48 -21.78 -8.01 -12.51 28.22 -1.56

mmu-miR-155-5p 9.86 8.15 1.54 3.58 7.65 5.31 -3.27 -320.03 -77.72 -4.61 -23.48 4.12 -5.09

mmu-miR-15b-5p 11.17 10.17 1.48 8 9.92 8.84 -1.99 -824.5 -9.01 -2.37 -5.02 91.56 -2.12

mmu-miR-16-5p 13.18 10.38 1.35 9.1 10.8 9.11 -7 -3646.25 -16.92 -5.22 -16.9 215.51 -3.23

mmu-miR-17-5p 10.71 9.01 1.33 7.8 9.29 7.82 -3.25 -666.3 -7.53 -2.67 -7.43 88.54 -2.78

mmu-miR-185-5p 9.27 6.58 0.99 5.64 5.86 5.07 -6.45 -310.71 -12.33 -10.58 -18.36 25.19 -1.74

mmu-miR-18a-5p 7.32 1.37 0.84 1.37 1.41 1.74 -61.84 -89.41 -61.84 -60.29 -47.91 1.45 1.26

mmu-miR-195a-5p 10.59 8.03 1.91 5.03 8.22 7.39 -5.89 -409.38 -47.19 -5.17 -9.14 8.68 -1.77

mmu-miR-196b-5p 3.11 0.94 0.94 1.08 1.05 0.83 -4.49 -4.49 -4.09 -4.19 -4.86 1.1 -1.16

mmu-miR-199a-5p 9.5 4.56 1.77 2.01 7.72 1.77 -2.03 -101.88 -21.49 -3.71 -78.21 4.74 -21.08
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mmu-miR-19a-3p 4.08 1.56 1.39 0.91 1.24 1.25 -5.73 -6.45 -9.02 -7.15 -7.13 -1.4 1

mmu-miR-19b-3p 9.43 6.13 1.18 5.87 7.97 5.61 -9.84 -303.99 -11.79 -2.74 -14.07 25.78 -5.14

mmu-miR-20b-5p 9.03 4.87 1.76 2.29 5.85 1.96 -17.77 -154.33 -106.75 -9.05 -133.96 1.45 -14.8

mmu-miR-221-3p 9.19 6.07 1.24 1.42 7.45 5.25 -8.65 -246.56 -218.06 -3.34 -15.34 1.13 -4.59

mmu-miR-222-3p 8.89 7.65 1.12 4.11 6.24 4.58 -2.36 -219.12 -27.5 -6.29 -19.86 7.97 -3.16

mmu-miR-223-3p 5.45 1.57 1.01 0.99 1.84 0.87 -14.69 -21.58 -21.99 -12.14 -23.85 -1.02 -1.96

mmu-miR-24-2-5p 12.74 10.84 1.78 9.51 10.8 10.12 -56.17 -101.73 -64.83 -72.38 -48.35 1.57 1.5

mmu-miR-27a-3p 9.96 5.94 1.35 1.57 8.22 5.2 -16.28 -390.62 -337.26 -3.34 -27.11 1.16 -8.12

mmu-miR-28a-3p 7.53 4.75 0.83 1.4 1.49 1.12 -6.86 -103.85 -69.7 -65.83 -84.8 1.49 -1.29

mmu-miR-29a-3p 10.97 8.84 2.38 7.73 9.45 7.38 -4.37 -386.19 -9.45 -2.86 -12.06 40.85 -4.21

mmu-miR-29c-3p 5.38 0.87 1.23 1.28 2.05 1.8 -22.8 -17.81 -17.22 -10.08 -12.01 1.03 -1.19

mmu-miR-30e-5p 7.8 1.13 1.64 1.64 3.46 1.32 -101.76 -71.46 -71.46 -14.68 -89.04 1 -4.42

mmu-miR-345-5p 5.41 2.46 2.85 3.65 2.81 1.18 -7.76 -5.93 -3.41 -6.1 -18.84 1.74 -3.09

mmu-miR-374b-5p 4.34 0.92 1.19 0.89 1.58 1.13 -10.7 -8.87 -10.91 -6.78 -9.23 -1.23 -1.36

mmu-miR-423-5p 7.07 3.13 1.29 4.25 2.56 1.26 -15.33 -54.69 -7.03 -22.66 -55.78 7.78 -2.46

mmu-miR-491-5p 2.95 1.39 1.15 1.01 1.34 1.07 -2.96 -3.49 -3.84 -3.06 -3.7 -1.1 -1.21

mmu-miR-532-5p 8.4 5.55 0.89 3.43 3.45 1.75 -7.22 -183.34 -31.45 -30.94 -101.04 5.83 -3.27

mmu-miR-760-3p 2.44 0.99 0.74 1.1 1.15 1.17 -2.73 -3.25 -2.54 -2.46 -2.42 1.28 1.02

mmu-miR-877-5p 4.05 3.56 1.93 2.14 3.28 1.8 -1.4 -4.35 -3.75 -1.7 -4.76 1.16 -2.79

mmu-miR-93-5p 10.41 8.67 1.86 7.64 8.66 6.85 -3.34 -373.43 -6.79 -3.35 -11.77 54.98 -3.52

Ctrl: Control; Hm: Helicobacter muridarum; Hm/DSS: Helicobacter muridarum plus DSS; Hm/DSS/I3C: Helicobacter muridarum plus DSS plus I3C; DSS/I3C: DSS plus I3C.

infected mice than in uninfected mice, consistent with the increased pathology. 
Although FOXP3 was less strongly induced by I3C in H. muridarum-infected mice, IL10 
expression was similar to that of uninfected mice treated with I3C. These results were 
corroborated by flow cytometry (Figure S2). The Th17 cell population increased 
sharply following DSS treatment of H. muridarum-infected animals and decreased 
following I3C treatment while the Treg population increased.

Production of cytokines in colon tissue and plasma
Our gene expression and flow cytometry data from the mesenteric lymph nodes 

https://f6publishing.blob.core.windows.net/957b25b1-005e-4de6-8f83-0b3ca1138803/WJG-26-4763-supplementary-material.pdf
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Figure 3  Expression of T helper 17 and Treg-associated genes in mesenteric lymph nodes. Gene expression was determined from total 
complementary DNA using qRT-PCR and values were normalized to the control group (n = 7). aP ≤ 0.05; bP ≤ 0.01; cP ≤ 0.001. Ctrl: Control; Hm: Helicobacter 
muridarum; Hm/DSS: Helicobacter muridarum plus DSS; Hm/DSS/I3C: Helicobacter muridarum plus DSS plus I3C; DSS/I3C: DSS plus I3C.

clearly show that DSS and H. muridarum shift the T helper cell profile towards a Th17-
dominated response, whereas I3C increases the Treg population. We next measured 
cytokine concentrations in colon homogenates to assess local immune cell and 
epithelial responses. These measurements encompass both epithelial cells and 
inflammatory cells. In most cases, production of pro-inflammatory cytokines was 
altered by multiple variables. Infection with H. muridarum alone increased all pro-
inflammatory cytokines tested except IL-17 and IL-23 compared with control mice 
(Figure 4). In fact, cytokine levels in H. muridarum-infected mice were similar to those 
in uninfected, DSS-treated mice. Treatment of H. muridarum-infected mice with DSS 
caused trends towards further increases in most cytokines, but this was only 
significant in the case of IL-17. I3C treatment reduced secretion of all pro-
inflammatory cytokines in DSS-treated, H. muridarum-infected and/or uninfected 
mice.

Levels of the anti-inflammatory cytokines IL-10 and TGFβ were only significantly 
altered by I3C, though TGFβ levels trended lower in DSS-treated mice (Figure 4). 
There were trends towards decreased IL-4 levels in uninfected mice treated with I3C, 
but not in H. muridarum infected mice treated with I3C. To summarize, I3C both 
decreases secretion of pro-inflammatory cytokines an increases secretion of anti-
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Figure 4  Colon cytokine production. Protein levels were determined by ELISA using colon homogenates (n = 17-21). aP ≤ 0.05; bP ≤ 0.01; cP ≤ 0.001; dP ≤ 
0.0001. Ctrl: Control; Hm: Helicobacter muridarum; Hm/DSS: Helicobacter muridarum plus DSS; Hm/DSS/I3C: Helicobacter muridarum plus DSS plus I3C; DSS/I3C: 
DSS plus I3C.

inflammatory cytokines.
Plasma cytokines showed less dramatic changes than colon cytokines, the 

proinflammatory IL-17 and IL-6 cytokine concentrations were elevated in the H. 
muridarum /DSS group and to a lesser extent in the DSS group. I3C treatment reduced 
both to control levels. IL-10 was elevated by I3C in H. muridarum-infected mice and 
trended higher in the DSS/I3C group (Figure 5). TGFβ was reduced only in H. 
muridarum-infected mice and did not respond to I3C treatment. IL-4 and IL-22 were 
not significantly altered under any condition (Figure S3). Serum amyloid a levels were 
significantly increased only in H. muridarum /DSS mice, consistent with more severe 
pathology in that group. The neutrophil marker myeloperoxidase was strongly 
increased by H. muridarum infection, even in the absence of DSS treatment (Figure 5).

DISCUSSION
Effects of H. muridarum on susceptibility to DSS-induced colitis and treatment with 
I3C
Several models of inflammation and inflammatory bowel disease suggest that bacteria 
are necessary, but insufficient triggers of IBD[47] and several studies have reported that 
EHH species modulate IBD. As an example, H. macacae has been connected with 
chronic idiopathic colitis in young rhesus macaques and a study of children with CD 
reported PCR evidence for Helicobacter infection in 59% of patients vs 9% of healthy 
controls[11,48]. Similarly, Laharie et al[10] found that H. pullorum or H. canadensis infection 
was considerably related to CD in adults[10]. Finally, H. canis, another EHH species, has 
been detected in duodenal ulcerations associated with CD[49]. Therefore, certain 
Helicobacter species are almost certainly involved in IBD pathogenesis; however, the 
exact mechanism of EHH involvement remains undiscovered.

Th17 cells have a crucial role in colitis development in both humans and mouse 
models[50,51]. H. pylori is known to induce a Th17 response in the gastric mucosa[52-54], yet 
H. pylori infection is associated with a decreased risk of IBD[55]. H. pylori only colonizes 
the gastric mucosa, meaning that any effects of H. pylori on the colon are likely due to 
systemic effects of infection. Furthermore, EHH species lack the major H. pylori 
virulence factors cagA and vacA. Thus, one cannot assume that mucosal or immune 
effects of H. pylori infection will match those caused by EHH species. It is therefore 
necessary to use infection with EHH species to investigate potential mechanisms of 
EHH-mediated contributions to IBD.

The present study extends existing knowledge on H. muridarum pathogenesis. H. 
muridarum infection has been previously shown to induce colitis in C57BL/6 mice 
treated with DSS and in monoassociated severe combined immunodeficiency mice 
following the transfer of certain T cell populations[13,35,56]. We found increased weight 
loss and stool blood in H. muridarum-infected mice treated with DSS compared with 
DSS treatment alone, but diarrhea was actually lessened. Increased stool blood 
suggests damage to the mucosal barrier, potentially increasing exposure to other 
members of the gut microbiota. Though H. muridarum alone did not cause appreciable 
colitis symptoms, it caused modest colon shortening and inflammatory infiltrates.

https://f6publishing.blob.core.windows.net/957b25b1-005e-4de6-8f83-0b3ca1138803/WJG-26-4763-supplementary-material.pdf
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Figure 5  Plasma cytokine and inflammatory protein markers. Protein levels were determined by ELISA using plasma collected at the time of euthanasia (
n = 5-7). aP ≤ 0.05; bP ≤ 0.01; cP ≤ 0.001. Ctrl: Control; Hm: Helicobacter muridarum; Hm/DSS: Helicobacter muridarum plus DSS; Hm/DSS/I3C: Helicobacter 
muridarum plus DSS plus I3C; DSS/I3C: DSS plus I3C.

Effects of H. muridarum, DSS, and I3C on microRNA expression
There is increasing interest in the use of miRNAs to diagnose and treat a wide variety 
of diseases and cancers. We examined mesenteric lymph node miRNA expression to 
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determine whether miRNA signatures explained the effects of H. muridarum and I3C. 
Many studies show that miRNAs participate in the regulation of crucial lymphocyte 
functions such as lymphocyte development, maturation, activation, and 
differentiation[19,28,57,58]. When considering the roles of miRNAs in Treg and Th17 
function, it is necessary to distinguish between miRNAs involved in T cell 
differentiation and miRNAs involved in function. For example, miRNAs binding to 
the Treg transcriptional regulator gene FOXP3 prevent differentiation of Tregs and 
must be downregulated to allow Treg differentiation. Some miRNAs promote FoxP3 
expression by downregulating expression of other genes, while others are induced by 
FoxP3 and influence Treg function. Still other miRNAs act in an autocrine manner, 
being both induced by FoxP3 and inducing FOXP3 expression[59]. Therefore, miRNA 
expression patterns can differ between naïve and mature T cells and between highly 
active and anergic T cells. A further complication of miRNA interpretation is that the 
same miRNA can have different effects depending on the cell type in which it is 
expressed. For example, miR-155 reportedly induces both Treg and Th17 cell 
differentiation[60] making it impossible to predict whether increased miR-155 in the 
lymph node, or even within the T cell population, favors a Treg or Th17 phenotype. 
Relative concentrations of miRNAs within each cell most likely dictate the cell 
phenotype.

These nuances explain the often disparate and contradictory results published in the 
literature. For example, Iborra et al[43] sought to compare serum and mucosal miRNAs 
profiles in human ulcerative colitis and Crohn’s disease[43]. They found little overlap 
between serum and tissue miRNAs and many differences between their results and 
those published by others. Each miRNA has hundreds or thousands of targets[61] and 
each gene is likely controlled by dozens of miRNAs. In the context of IBD and colon 
cancer, miR-15b/16 is reported to regulate Tregs, macrophages, TP53, aquaporin 8, 
and the adenosine A2a receptor[41,62-65]. Surprisingly, miR-16 has even been suggested as 
a stable reference miRNA[66]. The multiple targets of miR-15b/16 may then explain 
why treatment of mice with miR-16 precursors ameliorates colitis, yet elevated miR-16 
in human blood samples is associated with more severe IBD[62,67,68].

Interpretation of miRNA data in our study proved similarly challenging; however, 
there was remarkable overlap between the responses to H. muridarum, DSS, and I3C. 
Nonetheless, the direction of regulation was not always as expected. For example, 
when looking at a set of colitis-associated miRNAs, expression dropped following 
treatment with either H. muridarum or DSS, whereas human studies found increases in 
these miRNAs in IBD patients vs controls[43-45]. The human studies used either 
peripheral blood or colon biopsies as a source of miRNAs, whereas we used 
mesenteric lymph nodes. Lymph nodes differ in cellular composition compared to 
peripheral blood[69] and since the cell subsets change following H. muridarum infection 
or DSS treatment, the ratios of T cells to dendritic or other cell populations may change 
as well. Because colitis-associated miRNAs are likely expressed in multiple cell types, 
the meaning of a miRNA increase or decrease cannot be deciphered without knowing 
whether they rise or fall in each cell subtype. Presorting cells by flow cytometry would 
provide better data for understanding the effects of miRNA expression changes, but 
would not be feasible for most clinical samples due to the limited amounts of tissue 
available.

One would think that if DSS or H. muridarum decreases miRNA expression, then I3C 
treatment should increase it back to the control value. This was not necessarily the case 
for the same reasons mentioned above. I3C increased the number of cells found in 
MLN, and likely the ratios of cell types. The fact that I3C altered roughly the same 
subset of miRNAs as DSS or H. muridarum is consistent with its known anti-
inflammatory effects, but does not shed light on the mechanism of I3C activity. Rather, 
the results are consistent with the hypothesis that miRNA changes due to I3C result 
from, rather than cause, immune response normalization.

We did not find measurable effects of H. muridarum infection alone on cytokine 
expression in the lymph nodes or on plasma cytokine levels; however, there were clear 
pro-inflammatory changes in the colon, which were further exacerbated by DSS 
administration. The cytokines induced by H. muridarum (TNFα, IL-1β, IL-6, and IFNγ) 
are typical of those induced by DSS treatment[17]. It is therefore not surprising that H. 
muridarum further increased production of inflammatory cytokines and worsened 
pathology following DSS treatment. In humans with IBD, increases in mucosal TNFα, 
IL-1β, IL-6, IL-23 and IFNγ are due to lamina propria monocytes or macrophages[70-72]. 
IFNγ is also produced by Th1 cells or potentially a new intraepithelial lymphocyte 
subtype, IL-17+ IFNγ+ T cells[73]. Regardless of cell source, IFNγ plays an important role 
in IBD pathology in humans and mice[74,75]. Thus, the effects of H. muridarum in our 
mouse model will likely be relevant to humans infected with enterohepatic species. In 
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general, H. muridarum infection more strongly influenced production of 
monocyte/dendritic cell-associated cytokines (TNFα, IL-1β, IL-6 , IL-23) compared to T 
cell-associated cytokines (IFNγ, IL-4, IL-10, IL-17, IL-21, IL-22), although IFNγ was 
increased by H. muridarum alone.

Cytokines secreted by monocytes or dendritic cells can drive T cell differentiation. 
TGFβ and IL-6 can drive several differentiation pathways depending upon which 
other cytokines are present[76]. The combination TGFβ, IL-6, and IL-23 efficiently 
induce Th17 differentiation[77]. In spite of local cytokine responses suggestive of a 
Th17-promoting milieu, we did not find evidence of a substantial T cell shift in mice 
infected with H. muridarum alone. DSS treatment was required for enhanced 
expression of RORC and IL17 in lymph nodes or increased plasma IL-17. In contrast, 
there was no apparent difference in Treg markers in lymph nodes or plasma between 
infected and uninfected mice. These data suggest that local effects of H. muridarum are 
conducive to, but not sufficient for Th17 polarization. This is consistent with a “two 
hit” hypothesis, although in this case, the two hits are H. muridarum and an irritant 
rather than host genetics and the microbiome.

I3C shifts the immune balance
The use of alternative medicine to treat inflammatory disorders is appealing to many 
patients. Numerous studies demonstrate that dietary indoles possess anti-cancer 
properties such as anti-oxidant activity, regulation of cell cycle and apoptosis, and 
control of endocrine metabolism[78-83]. DIM is sold over the counter as BioResponse 
DIM® with claims that it promotes breast health, prostate health, and weight 
management. Before such products can be confidently recommended, their 
mechanisms of action must be uncovered. In the case of IBD, it is prudent to 
investigate the effect of gut microbiota on response to treatment.

Several natural compounds, including I3C, are AhR ligands[84]. AhR is now known 
to govern differentiation and function of both T cells and macrophages[85-87]. Several 
studies have shown that AhR plays a vital role in regulation of immune responses 
specifically promoting the generation of Tregs while suppressing Th17 cells[88,89]. 
Previous studies have provided convincing proof that Foxp3-positive Treg cells are 
essential for gastrointestinal immune homeostasis[90] and that increased Th17 
differentiation promotes colitis[50,51]. Consistent with other reports from various disease 
models, we found that I3C increases the Treg population and decreases the Th17 
population[91-93]. The shift from Th17 to Treg was not inhibited by H. muridarum 
infection. Additionally, we found that I3C reduced production of every other pro-
inflammatory cytokine tested, except for IL-22, which was not affected in any 
treatment group. Though we did not specifically analyze macrophages, others have 
shown that I3C or DIM suppresses IL-6, TNFα, IL-1β, IL-23 and IFNγ[94-96]. Therefore, 
I3C most likely inhibits colitis development via effects on both T cells and 
macrophages.

In summary, our studies suggest that H. muridarum increases susceptibility to DSS-
induced colitis by inducing macrophage-associated cytokines and creating a mucosal 
milieu conducive to Th17 polarization. I3C ameliorates colitis via induction of Tregs, 
suppression of Th17 cells, and suppression of macrophage-associated pro-
inflammatory cytokines. While no mouse model perfectly replicates human IBD, the 
identities of miRNAs altered by H. muridarum and DSS were similar to colitis studies 
in both mice and humans, although the direction of change was not always consistent. 
I3C is equally effective in the presence and absence of H. muridarum. Further research 
is warranted on the roles of EHH species in human IBD and the use of I3C or similar 
AhR agonists for the treatment of inflammatory bowel disease.

ARTICLE HIGHLIGHTS
Research background
Enterohepatic Helicobacter (EHH) species can infect humans and many animal species. 
Some of these species are known to cause disease in animals, while others have been 
described as commensal. In humans, epidemiological evidence suggests that EHH 
species are associated with inflammatory bowel disease (IBD), but the specific species 
involved and mechanisms of action are unknown. New treatments being tested for 
IBD include natural compounds and microRNA (miRNA)-based therapies. MiRNA is 
also being investigated as a diagnostic tool.
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Research motivation
Given the limitations of performing IBD research in humans, an animal model of 
EHH-mediated pathology is needed. Such a model should reflect the biological 
changes seen during human IBD. Helicobacter muridarum (H. muridarum) has been 
referred to as a commensal in mice, yet we previously determined that H. muridarum 
worsens colitis resulting from dextran sodium sulfate (DSS). This suggested that EHH 
species could represent environmental factors that cause or worsen IBD in genetically 
susceptible individuals. It is also important to determine whether phytochemicals 
being investigated as IBD treatments are influenced by infection with EHH species 
because there are no commercially available tests for EHH infection in humans.

Research objectives
We sought to determine how the immune and miRNA profiles of H. muridarum-
infected wild-type mice compared with DSS-treated mice and with published immune 
and miRNA profiles of IBD patients. We also determined whether efficacy of a 
broccoli-derived anti-inflammatory compound, indole-3-carbinol (I3C), was reduced 
by H. muridarum infection.

Research methods
We measured changes in body weight, stool consistency, and stool blood following H. 
muridarum infection, DSS treatment, and/or I3C treatment. We then measured 
cytokine responses in the colon and plasma and histopathological changes in the 
colon. MiRNA changes and T cell population changes were measured in mesenteric 
lymph nodes.

Research results
While H. muridarum infection alone did not cause clinical symptoms, it did cause 
colonic inflammation and induced proinflammatory cytokines. As expected, H. 
muridarum worsened colitis caused by DSS treatment, but it did not prevent 
amelioration of colitis by I3C treatment. Both the miRNA changes and cytokine 
responses to H. muridarum infection were similar to those seen in human IBD and due 
to DSS treatment. Changes in cytokines and miRNA were consistent with a Th17 
response.

Research conclusions
H. muridarum causes subclinical colitis that increases vulnerability to DSS treatment. 
Since I3C is an aryl hydrocarbon receptor agonist, the efficacy of I3C in the presence of 
H. muridarum suggests that H. muridarum does not influence the aryl hydrocarbon 
receptor agonist pathway. The strong similarities between cytokine and miRNA 
profiles induced by DSS and those induced by H. muridarum suggest that similar 
mechanisms could be at play and that the mouse model is suitable for studying host 
interactions with EHH species.

Research perspectives
This research supports the hypothesis that EHH species could contribute to human 
IBD by exacerbating the response to other inflammatory stimuli. More research is 
needed on the prevalence of EHH species in humans and the mechanisms underlying 
EHH-mediated colonic damage.
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