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Abstract
Gastrointestinal stromal tumors (GISTs) are considered the model solid 
malignancies of targeted therapy after the discovery of imatinib effectiveness 
against their tyrosine kinase inhibitors. Non-coding RNAs are molecules with no 
protein coding capacity that play crucial role to several biological steps of normal 
cell proliferation and differentiation. When the expression of these molecules 
found to be altered it seems that they affect the process of carcinogenesis in 
multiple ways, such as proliferation, apoptosis, differentiation, metastasis, and 
drug resistance. This review aims to provide an overview of the latest research 
papers and summarize the current evidence about the role of non-coding RNAs in 
pathogenesis of GISTs, including their potential clinical applications.

Key words: Gastrointestinal stromal tumors; Non-coding RNA; MicroRNA; 
Transcriptomics; Biomarker; Long non-coding RNAs
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Core tip: There are several excellent reviews at the last decade contributed the role of non-
coding RNAs in gastrointestinal stromal tumors (GISTs) carcinogenesis. However, until 
now, most of them focused only on the microRNAs characteristics. Recently there has 
been a substantial motion in understanding the role of other non-coding RNAs in GIST 
progress, like the long non-coding RNAs. This review provides an overview of both 
microRNAs and long non-coding RNAs role in GIST progression, their potential 
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therapeutic use, their ability to predict drug sensitivity and many other aspects concerning 
GIST development.
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INTRODUCTION
Non-coding RNAs
The discovery of transfer RNA (tRNA), and ribosomal RNA (rRNA), in the 1950s is the 
beginning of the history of the non-coding RNAs (ncRNAs) that play functional roles 
in the eukaryotic cells[1]. James Watson imagined the one gene, one ribosome and one 
protein hypothesis (central dogma). Therefore, RNA changed from being a just 
information carrying molecule, to having three flavors. rRNA, tRNA and everything 
else was assumed to be mRNA[2]. Later on, in the 70s Stark et al[3] published the 
existence of other functional RNAs like ribonuclease P and snRNAs[4]. One of the 
prominent examples about how huge was the surprise at this period of time, was the 
eventual renaming of signal recognition protein to signal recognition particle (SRP-
RNA). That happened after the discovery, that it contains a 7S RNA (by Walter et al[5]). 
In the early 90s, other long intergenic non coding RNAs were discovered, like XIST, by 
Brockdorff et al[6] Nowadays, it is generally known, according to the encyclopedia of 
DNA elements (published by the ENCODE Project[7]) consortium that the 80% of the 
human genome is transcripted for RNA molecules that have no protein coding 
capacity[8]. In the past, it was believed that this huge amount of RNA molecules was a 
transcriptional noise. Contrariwise, they appear to have direct function as regulators in 
several endocytic molecular paths. They seem to play crucial role in differentiation, 
development, and apoptosis of normal cells[9], so even in the era of complete genome 
sequences, non-coding RNAs gene have been eventually invisible. These features of 
non-coding RNAs have turned them into one of the most promising fields of scientific 
research.

ncRNAs are classified into two big subgroups according to their size[10].

Short ncRNAs, with < 200 nucleotides (nts) in length and include: MicroRNAs 
(miRNAs) usually bind to a specific molecular locum at the mRNA to induce 
degradation or block the prosses of translation. In addition, this may be done in the 
context of a feedback mechanism that involves chromosome methylation.

Small interfering RNAs (siRNAs) have a similar function as miRNAs with the 
additional feature of inducing heterochromatin formation through RNA 
transcriptional silencing complex which, when bound to siRNA, promotes H3K9 
methylation and chromatin condensation.

Piwi-interacting RNAs seem to interact with the piwi family proteins. They involve 
in chromatin regulation and suppression of transposon activity in germline and 
somatic cells[11].

Long ncRNAs (lncRNAs) are longer than 200nt and may comprise thousands of 
nucleotides[12]: This group includes the long intergenic ncRNAs (lincRNAs), the natural 
antisense transcript, the transcripted ultraconserved regions and non-coding 
pseudogenes[13]. It seems to be transcribed mostly by RNA polymerase 2 as the mRNA 
does but they do not undergo the standard processing steps[14]. The mechanism of their 
function is generally unknown, but it is suggesting that it is similar to that of HOX 
antisense intergenic RNA (HOTAIR) which is the most studied lncRNA. It regulates 
chromatin methylation of the HOXD locus through polycomb repressive complex 2. 
HOTAIR was recently reported to play a crucial role in metastatic disease and may be 
a good prognostic marker in patients with breast cancer[15].

Post-transcriptional modifications that occur in RNA molecules started being 
explored at the recent years and therefore led to a new field of research called 
epitranscriptomics. Equivalent to epigenetics, which analyzes the post-transcriptional 
events occurring in DNA, epitranscriptomics investigates modifications resulting from 
all RNA processing events, such as RNA splicing, RNA editing, or methylation[16].

https://www.wjgnet.com/2308-3840/full/v8/i3/233.htm
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Gastrointestinal stromal tumors
Gastrointestinal stromal tumors (GISTs) are specific, generally c-Kit (CD117)-positive, 
mesenchymal tumors of the gastrointestinal tract, encompassing a majority of tumors 
previously considered gastrointestinal smooth muscle tumors[17]. They are believed to 
originate from interstitial cells of Cajal or related stem cells. Interstitial cells of Cajal 
and GIST cells express the hematopoietic progenitor cell marker CD34 and the growth 
factor receptor c-Kit. Expression of the c-Kit gene protein product, CD117, has 
emerged as an important defining feature of GISTs[18,19]. Using these criteria, the 
incidence of GISTs has been estimated to be 6 to 15 cases per million individuals per 
year[20]. They constitute a significant percentage ranging from 1%-2% of all the 
gastrointestinal neoplasms. The most common genetic alterations found in GISTs 
include mutations of growth factors genes such as c-Kit (70–80%) and PDGFRA 
(platelet-derived growth factor A, 5%-8%). Several features of GISTs have been 
postulated in the past to predict their clinical behavior. Nowadays, much is known 
about the histological, immunohistochemical and molecular aspects of GISTs 
especially in diagnostic purposes[21,22]. However, little is known about the 
clinicopathological features that can predict the biological behavior of these tumors.

At the recent years, plenty of studies have revealed the specific molecular 
characteristics of GISTs. Nowadays, these tumors are considered among the best 
genetically understood human cancers[23].

Especially after the discovery of their sensitivity to tyrosine kinase inhibitors, GISTs 
tend to be referred as ideal tumor for novel molecular targeted therapies. Apart from 
that, the fact that many studies have been published specific chromosomal changes (
e.g. loss of 14q), genetic mutations (e.g. KIT, PDGFRA), gene expression profiles (
e.g. ETV1, fascin1) and miRNA expression profiles, have contributed to make them one 
of the well-recognized tumors[24]. It is important to mention that KIT and PDGFRA 
mutations are almost exclusive in GISTs, which makes them specific biomarkers of 
these tumors. The gold standard therapy in primary localized GISTs is a R0 surgical 
resection[25]. First line therapy for the advanced disease is Imatinib that offers a 
dramatic response, in most of the cases, for about 2-3 years[26]. After long term 
treatment, resistance is quite common. Sunitinib and regorafenib are the second line 
agents in imatinib resistant GISTs with also unsatisfactory outcomes in progressive 
disease[27]. Therefore, further fundamental clinical studies are being conducted in order 
to provide improved diagnostic modalities to increase the possibility for the patients to 
be diagnosed in early disease, and furthermore provide novel therapeutic options for 
the advanced disease cases.

NcRNAs in GISTs
At the present, a clear relationship with GISTs has been reported for only a few 
ncRNA classes, especially miRNAs and some lncRNAs such as the ultra-conserved 
genes, HOTAIR, H19, MALAT1 and CCDC26[28,29]. The other types of ncRNAs it seems 
to participate in the genetic puzzle that gives rise to carcinogenic phenotype[13].

miRNAs are the most widely studied class of ncRNAs in GISTs and generally in 
human cancer. These small ncRNAs of approximately 22 nucleotides, mediate post-
transcriptional gene silencing by controlling the translation of mRNA into proteins. 
miRNAs are estimated to regulate the translation of more than 60% of protein-coding 
genes[30]. They are involved in regulating many processes, including proliferation, 
development, differentiation, and apoptosis. Alterations of miRNAs expression profile 
has been reported in GISTs, and is associated with tumor location, mutation status, 
tumor risk, and chromosomal changes[31]. Two excellent reviews by Nannini et al[32], 
and Kupcinskas et al[33] have perfectly analyzed relevant miRNA profiling studies. 
Since then several papers came out concerning ncRNA and GISTs.

STUDIES SELECTION
This review included all studies published in PubMed database related to the role of 
ncRNAs in GIST published from 2008 to 2020. The keywords we used to retrieve the 
papers were GIST, ncRNAs, miRNAs and lncRNAs. 82 papers selected using these 
keywords. According the selection criteria, only 52 of them were relevant to the topic, 
32 profiling studies, 9 reviews, 11 other studies (Figure 1).
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Figure 1  Studies selection.

CHROMOSOMAL LOSS OF 14q AND MIRNA EXPRESSION
Chromosomal deletions have been reported as frequent and characteristic aberrations 
and are related to the carcinogenesis of the GISTs[34]. The most common described are 
in 14q, 22q, and 1p. Among them, partial or entire chromosomal loss of 14q is the most 
frequently found (60%–70%) and represents the majority of gastric GISTs, while 1p 
loss is usually present in small bowel GISTs[35] and its characterized by poor clinical 
outcome[36]. None of the other common chromosome eliminations[37] (22q, 1p) seems to 
affect the miRNAs expression profile. Table 1 summarizes the studies related to 
chromosomal loss of 14q and miRNAs expression. miRNAs seem to form two distinct 
clusters on the 14q chromosome. A study by Choi et al[38] published in 2010, identified a 
clear correlation between the 14q loss and deregulation of miRNA expression profile 
in 20 tumors. They noticed that, 6 GISTs that did not have 14q loss, formed a separate 
cluster. Furthermore, they found 73 deregulated miRNAs at a significant level 
according to 14q loss status. Among the 73 miRNAs, 38 were encoded on 14q. Kelly 
et al[39] studied a cluster of miRNAs on 14q32 region and revealed similar 
downregulated miRNAs according to 14q loss statue, in both adult and pediatric 
patients, but distinguish miRNA expression pattern between the adult and pediatric 
GISTs. They suggest that this happens due to the different methylation state of the 
maternal and paternal allele during the aging. Another study by Haller et al[40] 
identified 44 miRNAs located at 14q32.31 chromosomal region. Moreover, in a qRT-
PCR analysis of additional 49 GIST, the authors observed a significant lower 
expression of miRNA-134 and miRNA-370 in GIST with 14q loss. As mentioned above 
these miRNAs found to affect the mutational status of KIT and PDGRFA, and some of 
them including miRNA-494 are experimentally confirmed to target KIT or PDGFRA. 
Deregulation of these miRNAs were associated with tumor progression and shorter 
disease-free survival, suggesting that GIST with low expression of miRNAs located at 
the 14q32.31 chromosomal loss might represent o group with higher risk of tumor 
progression[36].

POTENTIAL DIAGNOSTIC AND PROGNOSTIC BIOMARKERS
GISTs are considered among the best recognized tumors, regarding their specific 
phenotypic and molecular characteristics. The diagnosis relies on the specific 
morphology and the unique immunohistochemistry (CD117, CD34 and/or DOG1). 
Although, despite the high specific value of these biomarkers, in many cases, the 
diagnosis may be difficult. Table 2 summarizes the studies concerning ncRNAs as new 
emerging novel biomarkers, highly specific to GISTs. First of all, Subramanian et al[41] 
founded 16 upregulated and 10 downregulated miRNAs specifically in GISTs. In this 
study, they compared 84 miRNAs (that met the filtering criteria) expression status of 
27 mesenchymal tumors (including GISTs), 5 normal smooth muscle and 2 normal 
skeletal muscle. Remarkably, the miRNA expression patterns suggested that two of 
the mesenchymal tumors had been misdiagnosed and this was confirmed by 
reevaluation of the tumors using immunohistology and molecular analyses. These 
findings demonstrated that miRNA expression profiling is unique for each tumor type, 
suggesting the potential use of miRNAs as diagnostic biomarkers.
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Table 1 Chromosomal loss of 14q and miRNA expression studies

Ref. Samples miRNAs 
studied Results

Choi et al[38], 2010 20 GISTs (15 gastric, 5 intestinal) 73 38 miRNAs encoded at 14q region

Haller et al[40], 
2010

12 GISTs for microarray analysis and then 49 GISTs for qRT-PCR 
analysis

miR-370; miR-
134

Downregulated in GISTs with 14q loss

Kelly et al[39], 
2013

73 GISTs 47 adult and 18 pediatric 667 74 downregulated miRNAs in GISTs with 14q 
loss

GISTs: Gastrointestinal stromal tumors.

Koelz et al[42] were the first who found significant depressed the 220/221 miRNAs 
compared to peripheral healthy tissue and blood samples. Niinuma et al[43], after the 
examination of 56 GISTs founded that, overexpression of miRNA-196a and HOTAIR 
was associated with high-risk grade, metastasis, and poor survival among GISTs. 
Yamamoto et al[44] later in 2013 published a clear correlation between fachin-1 
overexpression and miRNA-133b downregulation in the progression of 
gastrointestinal stromal tumor, making fascin-1 as a useful potential biomarker to 
predict the aggressive behavior. Another two studies by Haller et al[40] and Gits et al[45] 
are coming to confirm the downregulation of these two miRNAs 220/221 specific in 
GIST. However, according to the findings of all the previously mentioned studies the 
220/221 miRNAs may not have had any impact on routine diagnostics because KIT-
positive and KIT-negative GIST exhibited a completely inverse expression pattern. 
One recent study by Gyvyte et al[46] 2017, the first one which used the next generation 
sequencing kit in order to reveal deregulated miRNAs in GISTs and their possible 
associations with oncogenes. They found 19 deregulated miRNAs, 13 of which were 
not previously reported. They also proposed miRNA-215-5p to be negatively 
correlated with the risk grade, while miRNA-509-3p to be associated with epithelioid 
and mixed histological subtypes. The same research team, one year later (2018)[47], 
found a significant correlation between a lincRNA H19 and GIST oncogene ETV1, and 
between H19 and miRNA-455-3p. A Polish study, by Kosela-Paterczyk et al[48], aimed 
to identify the miRNA expression profiles in four common soft tissue tumors. They 
also founded different miRNA signatures in serum samples in each soft tissue tumor, 
included GISTs. At the recent years, many studies came out regarding the lncRNAs 
and their task in GIST progression. A Chinese study by Hu et al[49], questioned for the 
first time about the role of lncRNA AOC4P in GIST development. They identified that 
AOC4P regulate the epithelial mesenchymal transition (EMT) related proteins, which 
is important step for the metastatic ability of the tumor cells. One year later 
Badalamenti et al[50], questioned about the role of H19 and MALAT1 in GISTs. They 
found high expression levels of both lncRNAs in tumor samples which could be 
associated with prognosis and clinical response to IM. Yan et al[51] in a latest study 
through a microarray analysis, compared 3 metastatic GISTs with 3 normal tissue and 
3 low grade GISTs and found significant expression of certain lncRNAs, including lnc-
DNAJC6-2 in high risk tumors.

THE ROLE OF NON-CODING RNAS IN IMATINIB RESISTANCE
Numerus studies (Table 3) have been released about the imatinib resistance GISTs and 
their potential prognostic biomarkers. Overexpression of miRNA-196a in GIST tissues 
was associated with high-risk grade, metastasis, and poor survival. Akçakaya et al[52] 
highlighted a novel functional role of miRNA-125a-5p on imatinib response. They 
experimentally showed that overexpression of miRNA-125a-5p suppressed PTPN18 
expression and furthermore this eventually increased the GIST cells viability upon 
imatinib treatment. Almost the same research team (Huang et al[53] 2018) evaluated 
phosphorylated FAK (pFAK) as a candidate target of PTPN18. They revealed a 
downstream regulation of pFAK and direct association with imatinib resistance. Fan 
et al[54] explored the role of miRNA-218 on imatinib resistance GIST cells and they 
found a clear correlation between the downregulation of miRNA-218 and imatinib 
resistance. They also proposed that, miRNA-218 overexpression can improve the 
sensitivity of GIST cells to imatinib mesylate, with PI3K/AKT signaling pathway 
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Table 2 Non-coding RNAs as potential prognostic biomarkers of gastrointestinal stromal tumors

Ref. Compared groups ncRNAs studied Results and potential prognostic biomarkers

Subramanian 
et al[41], 2008

8 GISTs compared to 19 mesenchymal tumors 84 miRNAs 16 upregulated miRNAs: miRNA-10, miRNA-22, miRNA-29a, miRNA-29b, miRNA-29c, miRNA-30a-5p, miRNA-30e-5 miRNA-30c, 
miRNA-30d miRNA-99b miRNA-125a miRNA-140, miRNA-143, miRNA-145 miRNA-368 ABI-13268 let-7b, miRNA-1; 10 downregulated 
miRNAs: miRNA-1 miR-92 miRNA-133a, miRNA-133b miRNA-200b miRNA-221, miRNA-222 miRNA-368, miRNA-376a ABI-13232

Haller et al[40], 
2010

4 gastric PDGFRAmut, 4 gastric KITmut and 4 
intestinal KITmut. 49 GISTs further analyzed 
by qRT-PCR

734 miRNAs Downregulated miRNA-221 and miR-222 in in KIT-mutant GIST compared with KIT/PDGFRA wild type GIST

Koelz et al[42], 2011 54 GISTs compared to healthy blood samples miRNAs-22/-222 Depressed miRNA-221 and 222 in kit positive tumor samples, whereas Kit-negative GISTs exhibited a completely inverse expression 
pattern

Niinuma et al[43], 
2012

56 GISTs 939 miRNAs Association of miR-196a and HOTAIR with high risk tumors, metastasis, and overall survival

Yamamoto 
et al[44], 2013

4 low grade vs 4 intermediate vs 11 high grade 
GISTs

904 miRNAs Downregulation of miR-133b in high grade tumors and correlation with Fachin-1 overexpression

Gits et al[45], 2013 50 GISTs compared to 10 gastrointestinal 
leiomyosarcomas

725 miRNAs Downregulated miR-17-92 and miRNAs 221/222 in tumor samples

Gyvyte et al[46], 
2017

15 GISTs compared to 15 samples of adjacent 
tissue

1672 miRNAs 15 downregulated and 4 upregulated miRNAs; miRNA-215-5p negative correlation with the grade; miRNA-509-3p association with 
epithelioid and mixed subtypes

Gyvyte et al[48], 
2018

15 gastric GISTs vs 15 adjacent tissue through 
next generation seq and then validation 
analysis of 22 more GISTs

7250 lincRNAs 6 upregulated lincRNAs, 3 downregulated lincRNAs; Strong correlation between expression of lincRNA H19 with both ETV1 and miR-
455-3p

Hu et al[49], 2018 79 GISTs vs 79 paracancerous normal tissues LncRNA AOC4P Increased in GIST vs normal tissue, Higher expression in high risk vs low/medium risk. AOC4P regulate EMT thus increase the metastatic 
ability of the tumor

Yan et al[51], 2019 3 primary GISTs (A) vs 3 GISTs secondarily 
resistance to IM (B) vs 3 normal gastric tissue 
(C)

63,542 lncRNAs 27,134 
miRNAs

2250 deregulated lncRNAs on group B vs group A; 2209 deregulated lncRNAs on group C vs group A; 922 deregulated lncRNAs on group 
C vs group B

Badalamenti 
et al[50], 2019

40 GISTs (25 localized disease vs 15 advanced 
disease)

H19, MALAT1 H19 and MALAT1 higher expression levels in advanced disease samples

Kosela-Paterczyk 
et al[48], 2020

31 high grade GISTs treated with IM, 16 high 
grade OS, 26 high grade SS, 8 high grade ES, 30 
healthy controls

156 dysregulated miRNAs 
in sarcomas vs control 
group

10 microRNAs were commonly deregulated in SS, OS and GISTs; 99, 42, 36 and 24 differentiated controls from GISTs, ES, SS and OS, 
respectively

GISTs: Gastrointestinal stromal tumors; OS: Osteosarcoma; SS: Synovial sarcoma; ES: Ewing sarcoma.

possibly involved mechanism. Lee et al[55] revealed that HOTAIR is upregulated is 
GISTs and can promote GIST cell metastatic status in vitro. HOTAIR found to regulate 
promoter methylation of protocadherin 10 (PCDH10) and promote tumor invasion 
status. Bure et al[56] come to confirm the correlation of HOTAIR and tumor 
aggressiveness and propose specific methylation patterns caused by the upregulation 
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Table 3 Studies about the role of non-coding RNAs expression profile and imatinib resistance

Ref. Compared groups and samples NcRNAs studied Results

Akçakaya 
et al[52], 2014

7 IM resistant vs 10 IM sensitive 
(profiling analysis) 10 IM resistant vs 14 
IM sensitive (validation analysis)

903 miRNAs in profiling analysis 
(microarray) 10 miRs for 
validation analysis (RT-PCR)

27 overexpressed miRNAs and 17 underexpressed miRNAs 
in IM resistant group compared to IM sensitive. Mir-125a-5p 
as a key modulator to IM resistance

Huang 
et al[53], 2018

28 tumor samples (all patients received 
neoadjuvant IM)

miRNA-125a-5p RNU6B Phosphorylation of FAK is regulated by PTPB18 and miR-
125a-5p. Pfak plays crucial role in IM resistance

Fan et al[54], 
2015

IM sensitive GIST cells (GIST882) vs IM 
resistance cell line (GIST430)

miRNA-218 MiR-218 is down-regulated in IM-resistant GIST430 cells; 
MiR-218 over-expression may improve the IM sensitivity 
through PI3K/AKT signaling pathway

Lee et al[55], 
2016

9 low vs 1 intermediate vs 7 high risk 
tumors.

HOTAIR HOTAIR higher expression in high risk GISTs. HOTAIR also 
found to regulate promoter methylation of PCDH10 through 
in vitro investigation of high-risk GIST cell lines

Bure et al[56], 
2018

67 primary GIST samples subdivided 
according the tumor grade and the cell 
line.

HOTAIR HOTAIR higher expression in high risk GISTs. Distinct 
methylation patterns through upregulation of HOTAIR 
during the different stages of carcinogenesis

Yan et al[51], 
2019

3 primary GISTs (A) vs 3 GISTs 
secondarily resistance to IM (B) vs 3 
normal gastric tissue (C)

63542 lncRNAs 27134 miRNAs They found lnc-DNAJC6-2 to be associated with the HIF-1 
pathway

Yan et al[58], 
2019

IM sensitive cell lines (GIST-882) vs IM 
resistance cell lines (GIST-T1)

LncRNA CCDC26 LncRNA CCDC26 regulate IM resistance and interact with 
IGF-1R

GISTs: Gastrointestinal stromal tumors; IM: Imatinib.

of HOTAIR during the progression of carcinogenesis. Zhang et al[57] proposed Hsa-
miRNA-28-5p and hsa-miRNA-125a-5p to be involved in the development and 
progression of GIST and therefore may be able to serve as prognostic markers for 
imatinib-response in GIST patients. Yan et al[58] In their study they found that lncRNA 
CCDC26 induced imatinib resistance and decreased imatinib induced apoptosis. These 
results introduced lncRNA CCDC26 to be a possible target to reverse IM resistance. 
The same author[51] also proposed lnc-DNAJC6-2 to be associated with the HIF-1 
pathway. HIF-1 is responsive for the modulation of over 200 genes that are associated 
with proliferation, cycle arrest, apoptosis, and drug efflux. Therefore, investigating 
molecules that target the HIF-1 pathway may identify a novel treatment strategy.

There have been observations that miRNAs constantly export from cells and 
circulate in body fluids as a part of a lipoprotein complexes called exosomes, 
containing miRNAs and proteins[59]. Furthermore, to date, there is no study looking at 
the role of circulating miRNAs in GIST patients, which is essential for the potential 
clinical use.

GENE REGULATING NON-CODING RNAS AND THEIR ROLE IN GIST 
CARCINOGENESIS
miRNAs are thought to act as regulators in gene expression. Although KIT gene 
mutations and KIT protein overexpression are the main genetic characteristics of 
GISTs, little is known about the mechanism of KIT overexpression. It is essential to 
identify molecules that regulate c-KIT and other relative genes as they could be 
excellent candidates for future clinical trials on GIST treatment. Plenty of recent 
studies suggesting that miRNAs directly regulate KIT protein expression levels and 
inhibit cell proliferation in GISTs. Felli et al[60] reported, in 2005, the downregulation of 
KIT receptor by miRNA-221/miRNA-222 in erythroleukemic cells. MiRNA-221 and 
miRNA-222 are highly homologous miRNAs, whose upregulation has been recently 
described in several types of human tumors. Later studies have been proposed them as 
oncomirs, acting by targeting tumor suppressor genes such as PTEN, TIMP3 p57, 
p27Kip1 and BIM[61]. MiRNA-221/222 overexpression induces cell proliferation through 
the activation of cell cycle and the Akt pathway and blocks TRAIL-induced apoptosis. 
Koelz et al[42] was the first to show that miRNA-221 and miRNA 222 act as regulators of 
Kit protein expression in GISTs and hence reveals a new aspect in the molecular 
pathogenesis of these tumors. They found a completely inverse expression among KIT 
positive and KIT negative tumors. Further studies came to correspond this by the 
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observation that miRNA-222 and miRNA -17/20a directly target KIT and ETV1 in 
GISTs. MiRNA-494 is proposed as a potential KIT targeting miRNA by Kim et al[62]. 
This study showed that miRNA-494 is a negative regulator of KIT in GISTs and an 
overexpressing miRNA-494 may be a promising approach to GIST treatment. Gits 
et al[45] published that miRNA-17, miRNA-20a directly target KIT. They also showed 
that overexpression of these two miRNAs induced apoptosis and significantly 
inhibited cell proliferation. Interestingly they did not found correlation of miRNA494 
and KIT expression like Kim et al[62] did! Lu et al[63] founded at their study, that miRNA-
152 induced cell apoptosis, prevents cell proliferation and migration by repressing 
cathepsin L, suggesting miRNA-152 an attractive anti-tumor agent. In a latest study, 
Badalamenti et al[50] founded that the expression levels of MALAT1 lncRNA seem to 
affect the c-KIT mutational status. A recent Chinese study by Long et al[64], indicated 
that miRNA-374b inhibits apoptosis promotes viability of GIST cells by targeting 
PTEN gene through the PI3K/Akt signaling pathway. Another similar study[65] 
focused on the effects of neferine, an alkaloid derivative of lotus plant, in GIST 
development. They interestingly founded that neferine possibly upregulate miRNA-
449a and then inactivate the PI3K/AKT and Notch pathways and by this mean 
suppress growth and migration of GIST cells. A latest paper came out from Chen 
et al[66]. Their results suggested that miR-4510 downregulation could promote GIST 
development, including growth, metastasis and invasion, through increasing APOC2 
expression. Needless to say that much more scientific effort is needed in order to 
clarify the exact role of non-coding RNAs in GIST carcinogenesis and their interaction 
with tumor related genes and the respectively molecular endocytic paths.

POTENTIAL ROLE OF NON-CODING RNAS IN GIST TREATMENT
The potential role of ncRNAs as treatment tools against cancer has been explored 
through many studies during the recent years. The main treatment strategies aim to 
inhibit cell proliferation by importing exogenous ncRNAs through viral vectors 
(adenoviral, lentiviral and rectoviral vectors), which are mainly tumor suppressor 
miRNAs[67]. A recent study by Tu et al[68] suggested miR-218 loaded nanoparticle as 
tumor suppressor miRNA in GIST. Another study by Durso et al[69] proposed modified 
miRNAs 221/222 as effective inhibitors of KIT. Nowadays it is generally accepted that 
miRNAs can act as oncogenes or tumor suppressor genes. For this reason, it seems 
reasonable to manipulate those molecules against the carcinogenetic process. For 
example, synthesized miRNAs mimics imports into the cells and enhance endogenous 
miRNA function (antagomirs)[70]. Another strategy is proposed for the inhibition of 
over-expressed oncogenic miRNAs (oncomirs), by the use of antisense 
oligonucleotides[71]. This strategy includes inhibition or replacement of miRNAs 
through anti-miRNA oligonucleotides, antagomirs, miRNA sponges and 
nanoparticles. Only a few of the investigated miRNAs are currently in phase 2 
stage[72]. But it must be pointed out that, up to now, although they have been shown 
remarkable success in in vitro models, none of these particles have been tested in GIST 
clinical trials.

CONCLUSION
A huge amount of preclinical data introduces non-coding RNAs as a new weapon 
against cancer in biomedical sciences armamentarium, although many efforts need to 
be done in order to understand the role of epitranscriptomics in GISTs. Especially for 
GISTs, numerus studies identified association patterns among specific ncRNAs with 
subsequent phenotypic characteristics. NcRNAs related to the tumor progression, 
grade, site, chromosomal eliminations, and imatinib sensitivity could probably be of 
importance as diagnostic or prognostic tumor biomarkers. In vitro studies revealed 
some of the mechanisms of action of these molecules. The endocytic paths could be 
served as guidance for future targeted drugs, acting as interfering or enhancing 
molecules. In addition, published data concerning GISTs and ncRNAs is based mainly 
on in vitro cell lines and fresh frozen paraffin-embedded tumor tissue blocks, thus 
necessitating high quality, randomized, multicentric clinical studies at a large scale of 
patients.
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