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Abstract
The aim of this review was to provide an overview of the main concepts in 
machine learning (ML) and to analyze the ML applications in the imaging of 
pituitary adenomas. After describing the clinical, pathological and imaging 
features of pituitary tumors, we defined the difference between ML and classical 
rule-based algorithms, we illustrated the fundamental ML techniques: supervised, 
unsupervised and reinforcement learning and explained the characteristic of deep 
learning, a ML approach employing networks inspired by brain’s structure. Pre-
treatment assessment and neurosurgical outcome prediction were the potential 
ML applications using magnetic resonance imaging. Regarding pre-treatment 
assessment, ML methods were used to have information about tumor consistency, 
predict cavernous sinus invasion and high proliferative index, discriminate null 
cell adenomas, which respond to neo-adjuvant radiotherapy from other subtypes, 
predict somatostatin analogues response and visual pathway injury. Regarding 
neurosurgical outcome prediction, the following applications were discussed: 
Gross total resection prediction, evaluation of Cushing disease recurrence after 
transsphenoidal surgery and prediction of cerebrospinal fluid fistula’s formation 
after surgery. Although clinical applicability requires more replicability, 
generalizability and validation, results are promising, and ML software can be a 
potential power to facilitate better clinical decision making in pituitary tumor 
patients.

Key Words: Pituitary adenoma; Machine learning; Deep learning; Radiomics; Texture 
analysis; Magnetic resonance imaging

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Machine learning (ML) has seen an explosion of interest in medical imaging 
because of its capability of analyzing large amounts of data. Recent studies applied ML 
techniques to the imaging of pituitary adenomas. The purpose of our review was to 
describe the main concepts in ML and its current and potential applications in imaging 
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INTRODUCTION
Pituitary adenomas are benign tumors accounting for 15%-20% of all intracranial 
neoplasms, with an incidence of 80–90 cases per 100000 population[1,2]. Microadenomas 
are defined as tumors < 10 mm in maximum diameter, whereas larger adenomas are 
considered macroadenomas. Their peak age of presentation is between the fourth and 
seventh decades. Almost two-thirds of pituitary adenomas are hormone-secreting, 
prolactin most commonly, followed by growth hormone, corticotropin and 
thyrotropin, and cause typical hypersecretion syndromes. Non-functioning, small 
intrasellar tumors can be clinically silent and diagnosed only as incidental magnetic 
resonance findings, while bulky pituitary macroadenomas typically present with mass 
effect signs, such as headache, visual disturbances, and hypopituitarism[3,4]. The 2017 
World Health Organization (WHO) classification adopted pituitary adenohypophyseal 
cell lineage as the main principle guiding the classification of adenomas. According to 
this principle we distinguish the acidophilic lineage (in which the involved 
transcription factor is PIT1), the corticotrope lineage (TPIT transcription factor), and 
the gonadotroph lineage (SF1 transcription factor). Null-cell adenomas (NCAs) are 
now defined as tumors that have no immunohistochemical evidence of cell-type-
specific differentiation considering both pituitary hormones and transcription factors. 
Furthermore, in the new WHO classification the term “atypical adenoma” has been 
abandoned and replaced by “high risk adenoma”, in reference to tumors with high 
proliferation index and tendency to invasion. In particular, emphasis is placed on the 
evaluation of tumor proliferation (mitotic count and Ki-67 index), tumor invasion, and 
on special adenomas variants for which clinical behavior has been shown to be more 
aggressive due to their intrinsic histological features: lactotroph adenoma in men, 
sparsely granulated somatotroph adenoma, the silent corticotroph adenoma, the 
Crooke’s cell adenoma and the plurihormonal PIT1-positive adenoma[5]. Magnetic 
resonance imaging (MRI) is the investigation of choice for a complete evaluation of 
pituitary adenomas[6]. Various parameters regarding the extent, consistency, and 
contrast enhancement can be analyzed in order to help neurosurgeons in planning an 
appropriate surgical approach and long-term follow-up[7].

Attempting to predict invasion (cavernous and/or sphenoid sinus involvement) 
based on imaging is an important challenge. The Knosp classification is one of the 
more commonly used systems to determine the likelihood of cavernous sinus invasion 
by pituitary macroadenomas, but the highest accuracy of this grading system is 
observed in extreme cases of overt invasion or non-invasion, while sensitivity and 
specificity are low in intermediate cases[8,9].

Tumor consistency in pituitary macroadenomas has been known to be one of the 
main factors that determine the success rate of the transsphenoidal approach. The role 
of MRI in predicting the consistency of pituitary macroadenomas is controversial. 
Several studies suggested that relative signal intensity or signal intensity ratio on T2-
weighted MRI correlates with the tumor consistency, while some others concluded 
that they have no predictive value[10-12]. A similar controversy has been reported in 
several studies which investigated the usefulness of diffusion-weighted imaging in 
tumor consistency prediction[13-15].

Considering the above, it is still difficult to achieve an early identification of clinical 
and radiological features suggestive of an aggressive behavior, characterized by rapid 
growth, local invasion, and high ki-67 proliferation index.

In this setting, artificial intelligence (AI) has proved promising in recently published 
papers. Machine learning (ML) is a subfield of AI that employs algorithms to allow 
computers to learn directly from the data and subsequently perform predictions 
without explicit prior programming. The potential impact of ML on medicine, and 
particularly medical imaging, is relative to its ability to analyze large datasets 
including gray level textural features that humans do not consciously assess. Unlike 

https://www.wjgnet.com/2644-3260/full/v1/i2/70.htm
https://dx.doi.org/10.35711/aimi.v1.i2.70


Guerriero E et al. AI and pituitary adenomas

AIMI https://www.wjgnet.com 72 August 28, 2020 Volume 1 Issue 2

classical rule-based algorithms, machine learning can take advantage of increased 
exposure to new data and learn over time[16]. ML techniques can be further divided 
into supervised, unsupervised learning and reinforcement learning[17-20]. In supervised 
learning there is a ground truth which is directly used to guide the algorithm training 
process. The goal of the resulting model is usually to learn a general rule that maps 
inputs to outputs and is applicable to new, unseen cases. In unsupervised learning 
there is no preliminary labeling and therefore its goal is to cluster the given inputs 
based solely on the underlying data structure. Finally, reinforcement learning consists 
of a computer program performing an assigned task in a dynamic environment and 
consequently receiving feedback as a positive or negative reinforcement. To improve 
algorithm’s performance, these approaches can be combined, some examples are semi-
supervised, self-supervised and multi-instance learning.

Deep learning (DL) is an ML approach employing networks inspired by brain’s 
structure, with a large number of simple interconnected units performing complicated 
tasks. The DL algorithms most applied to medical imaging are convolutional neural 
networks. Lower level information inputs, derived from imaging data transformed in 
feature vectors, form connections to the next level or “layer” of neurons. Each neuron 
in this second layer can combine the inputs from lower level neurons to form a newer, 
more complex output. As the number of intermediate or hidden layers increases, the 
final output from the highest layer becomes richer and more complex.

ML tasks are not limited to tumor property prediction but include many possible 
applications in other medical imaging and daily workflow fields, such as image 
acquisition, segmentation, image quality analytics, automated dose estimation and 
radiology reporting[21-23]. Despite the high number of recent ML successes, there are still 
many limitations in its clinical use[24-27]. First of all, an obstacle to AI adoption in the 
clinical setting is identifiable in its limited interpretability, especially true for DL. 
Clinicians are consequently reluctant to trust and to adopt something whose decision 
process is not fully understood. Secondly, ML research has to deal with issues due to 
the nature of the health domain, including the lack of large amounts of data, necessary 
during the training phase, the need for algorithm frequent updating and potential 
model overfitting.

This review aims to give an overview of the current applications of ML methods in 
pituitary adenomas evaluation.

PRETREATMENT ASSESSMENT
Tumor consistency is one of the main factors that determine the success-rate of 
transsphenoidal adenomectomy. For this reason, pre-operative information about 
tumor consistency would help neurosurgeons in planning the most appropriate 
surgical approach. Zeynalova et al[28] demonstrated the utility of ML-based histogram 
analysis (from 55 pituitary adenoma patients) to predict tumor consistency and 
compared it with a conventional signal intensity ratio (SIR) evaluation. Histogram 
features were extracted from coronal T2-weighted original, filtered and transformed 
MRI images by manual segmentation. The high dimensionality of the histogram 
texture features was reduced with reproducibility analysis, collinearity analysis and 
wrapper-based feature selection. They employed the artificial neural network (ANN) 
as ML classifier. The reference-standard was consensual evaluations of neurosurgeons 
and pathologists. For histogram analysis, the ANN correctly classified 72.5% of 
pituitary macroadenomas with an area under the receiver operating characteristic 
(ROC) curve (AUC) value of 0.710. As for SIR evaluation, accuracy and AUC values 
were 74.5% and 0.551, respectively. Considering AUC values, ML-based histogram 
analysis performed better than SIR evaluation[28].

Fan et al[29] demonstrated how a radiomics model can assist neurosurgeons in 
predicting tumor consistency in patients with acromegaly before surgery and facilitate 
the determination of an appropriate therapeutic approach. 158 patients (training group 
n = 100, validation group n = 58) were included in this retrospective study, while 30 
were enrolled in a prospective multi-center study for model validation. The 
consistency of the tumor was classified as soft or firm according to the neurosurgeon’s 
evaluation. All patients underwent MRI examination which included T1-, T2- and 
contrast-enhanced T1-weighted sequences in the coronal plane, used for feature 
extraction. The radiomics features were collected based on the regions of interest 
drawn by an expert neuroradiologist and verified by a second expert. Total 1561 
quantitative features were collected for every sequence. The radiomics features were 
determined using the elastic net feature selection algorithm, and the radiomics 
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signature was constructed. Next, a radiomics model was developed using the 
radiomics signature and clinical characteristics, which were further screened according 
to the Akaike information criterion. Then, 30 patients with acromegaly from three 
hospitals were enrolled for multicenter validation of the model. The prediction 
accuracy was then evaluated through ROC analyses and associated classification 
measures. The radiomics model constructed in this study showed an AUC of 0.83 and 
0.81 in the primary and validation cohorts, respectively. In conclusion, this model was 
convenient to use and could accurately predict the tumor consistency in a multicenter 
prospective validation before surgery[29].

The pre-operative prediction of cavernous sinus (CS) invasion by pituitary 
adenomas (Knosp grade 2-3) can help neurosurgeons in planning the surgical 
approach, follow-up, and long-term management. Niu et al[30] used a radiomics method 
to predict CS invasion, enrolling 194 patients with Knosp grade 2-3 (training set n = 97; 
test set n = 97) and extracting 2553 quantitative imaging texture features from contrast-
enhanced T1- and T2-weighted MR images. A linear support vector machine (SVM) 
was used to fit the predictive model, then a nomogram was constructed incorporating 
radiomics signature and clinico-radiological risk factors. Radiomics model yielded an 
AUC of 0.852 and 0.826 for the training and test set, respectively. The nomogram 
yielded an AUC of 0.899 in the training test and 0.871 in the test set[30].

According to the 2017 WHO classification, “high risk” pituitary adenomas are 
tumors with rapid growth, radiological invasion, and high Ki-67 proliferation index. 
MRI had already proved promising in proliferative index prediction, using diffusion-
weighted imaging. Indeed, Tamrazi et al[31] performed a retrospective review of 
diffusion imaging and immunohistochemical characteristics of 17 with pituitary 
macroadenomas and demonstrated an inverse relationship between apparent 
diffusion coeffcient values and Ki-67. In this context, machine learning can be effective 
for the early identification of “high risk” adenomas and could allow making a more 
accurate pre-operative assessment and long-term follow-up. Regarding the last, a 
recent study by Ugga et al[32] employed ML analysis of texture-derived parameters 
from pre-operative coronal T2-weighted MR images. A total of 89 patients that 
underwent endoscopic endonasal procedure were included. Pituitary adenomas were 
classified in high versus low Ki-67 proliferation index according to pathological data. 
Total 1128 features were extracted, and different supervised feature selection methods 
were employed to select the most informative features. A k-nearest neighbors (k-NN) 
classifier was used to predict the proliferative index, then algorithm validation was 
performed with a train-test approach. The accuracy of k-NN in the test group was 
91.67% of correctly classified patients.

Non-functioning pituitary adenomas are a huge group of adenomas and can be 
divided in NCAs, oncocytomas and gonadotrophic adenomas. Patients with NCAs are 
more likely to respond to neo-adjuvant radiotherapy, so radiomics could play a role in 
discriminating preoperatively NCAs from other subtypes. Zhang et al[33] enrolled 112 
patients (training set n = 75; test set n = 37) with non-functioning pituitary adenomas 
who underwent MR examination. In their retrospective study a SVM trained a 
predictive model that was validated using a ROC analysis on an independent test set. 
Then, a nomogram was constructed incorporating clinical characteristics and the 
radiomics signature for a more individualized predictive model. T1-weighted image 
features yielded an AUC value of 0.83 and 0.80 for the training and test sets, 
respectively. The nomogram incorporating sex and the T1 radiomics signature yielded 
good calibration in the training and test sets (concordance index of 0.854 and 0.857, 
respectively)[33].

Somatostatin analogues (SAs) response prediction is an essential information in 
acromegalic patient medical treatment in the presence of GH-secreting pituitary 
adenomas. Indeed, this medical treatment can improve the surgical outcome, but it is 
burdened by high costs. Heck et al[34] showed how quantitative analysis of T2-weighted 
MR images could predict response to SAs in patients with acromegaly. However, they 
verified that conventional visual T2 intensity assessment achieved similar results. This 
retrospective cohort study included 58 newly diagnosed patients. Parameters from the 
T2 histogram analyses (T2 intensity ratio and T2 homogeneity ratio) were correlated to 
visually assessed T2 intensity (hypo-, iso- or hyperintense), baseline characteristics, 
response to SA treatment, and histological granulation pattern (anti-Cam5.2). T2 
intensity ratio was lowest in the hypointense tumors and highest in the hyperintense 
tumors. T2 intensity at baseline correlated with reduction in GH (r = -0.67) and IGF-1 (r 
= -0.36) after primary SA treatment (n = 34). The T2 homogeneity ratio correlated with 
adenoma size reduction (r = -0.45). Sparsely granulated adenomas, which are typically 
associated to resistance to SAs, had a higher T2 intensity than densely or 
intermediately granulated adenomas. In conclusion, using T2 histogram analyses the 
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authors found that high T2 intensity correlated with more aggressive adenoma 
subtypes, larger adenoma size, lower GH and IGF-1 production, and blunted response 
to an octreotide test dose at baseline. Moreover, a better biochemical response to SA 
therapy was observed in adenomas with low T2 intensity. In their retrospective study, 
Kocak et al[35] demonstrated the potential role of ML-based high-dimensional 
quantitative texture analysis (qTA) in predicting SAs response in acromegalic patients 
with a GH-secreting pituitary adenoma. They showed how ML performs better than 
relative signal intensity (rSI) evaluation or immunohistochemical granulation pattern 
evaluation. Coronal T2-weighted images of 47 patients (24 SA responsive and 23 SA 
resistant patients) were used for qTA and quantitative and qualitative rSI evaluation, 
while the immunohistochemical evaluation was based on the granulation pattern of 
the adenomas. ML classifiers were k-NN and C4.5 algorithm. The reference standard 
was the biochemical response status (6 months post-therapy). Predictive performance 
of qTA was compared with that of the quantitative and qualitative rSI and 
immunohistochemical evaluation. For the qTA, k-NN correctly classified 85.1% 
macroadenomas with an AUC of 0.847. The accuracy and AUC ranges of the other 
methods were lower, equal to 57.4/70.2% and 0.575/0.704, respectively[35].

Pituitary tumor growth can lead to compression of the anterior visual pathways, 
leading to visual impairment, which is the most common and earliest symptom in this 
pathology. In their retrospective study Lilja et al[36] demonstrated that diffusion Tensor 
imaging (DTI) and a prediction model may be an additional diagnostic tool that 
provides objective data about visual pathway injury, guiding treatment decisions. 
Total 23 patients with pituitary adenomas and 20 healthy patients underwent a 
complete neuro-ophthalmological examination and an MRI study, which included 3D 
T1-weighted and DTI sequences. A prediction model using logistic regression was 
constructed to test the capability of DTI parameters to correctly classify a subject as a 
patient (before surgery) or a control. Total 12 features quantifying mean DTI 
parameters from the optic tract regions were included. Based on the axial diffusivity 
and fractional anisotropy, the prediction model could separate patients from controls 
with high sensitivity. The prediction model correctly classified all patients with visual 
field defects (sensitivity = 1.0), 9 of 12 patients without visual field defects (sensitivity 
= 0.75), and 17 of 20 controls (specificity = 0.85)[36].

NEUROSURGICAL OUTCOME PREDICTION
Gross total resection (GTR) is the main surgical goal in transsphenoidal surgery for 
most pituitary adenomas. Predictive analytics for GTR may help in surgical decision-
making, especially in intermediate cases (Knops grade 2-3A). In their retrospective 
study, Staartjes et al[37] investigated the potential value of deep neural network for 
predicting GTR in comparison with the Knops classification and logistic regression. 
They enrolled a total of 140 patients who underwent endoscopic transsphenoidal 
surgery and trained a deep neural network to predict GTR from 16 preoperatively 
available neuro-radiological and procedural variables. Their DL model (AUC = 0.96; 
accuracy = 91%; sensitivity = 94%; specificity = 89%) outperformed both the Knosp 
classification (AUC = 0.87; accuracy = 81%; sensitivity = 92%; specificity = 70%) and 
logistic regression (AUC = 0.86; accuracy = 82%; sensitivity = 81%; specificity = 83%)[37].

In their retrospective study, Liu et al[38] aimed to develop machine learning-based 
predictive models to evaluate Cushing disease recurrence after initial transsphenoidal 
surgery and to investigate their performance. Seventeen radiomic features including 
tumor volume computed from pre-operative MRI (contrast-enhanced T1-weighted 
MRI) and other pre/post-operative clinical variables were evaluated. Five supervised 
ML algorithms, including decision tree, gradient boosting decision tree, random forest 
(RF), adaptive boosting, and extreme gradient boost and 2 conventional models 
(Logistic regression, Naïve Bayes) were applied. Models were evaluated based on their 
AUC. The study demonstrated that ML-based predictive models for neurosurgical 
outcomes performed well, better than some conventional models such as logistic 
regression. Using 17 variables, several ML-based predictive models for recurrence 
were developed, and most of them (4/5) maintained high performance, with AUCs 
ranging from 0.694 to 0.781 which were much higher than that of conventional 
statistics. The best performance (AUC = 0.781) was obtained introducing 8 variables to 
RF algorithm, which was much better than that of logistic regression (AUC = 0.684) 
and that of using only postoperative morning serum cortisol (AUC = 0.635). According 
to the feature selection algorithms, the top predictors were age, postoperative serum 
cortisol, and postoperative ACTH[38].
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Cerebrospinal fluid (CSF) fistulas remain a major complication of transnasal 
transsphenoidal surgery for pituitary adenoma. Staartjes et al[39] developed a neural 
network–based model with the aim of classifying pituitary surgeries in having high 
versus low-risk of CSF leak. From a prospective registry, 154 patients who underwent 
endoscopic transnasal transsphenoidal surgery for pituitary adenoma were identified 
and underwent an MRI study. Moreover, risk factors for intraoperative CSF leaks were 
identified using conventional statistical methods. Selected features included both 
imaging features from inter-carotid distances and other clinical pre/post-operative 
variables. The authors built a predictive model for intraoperative CSF leaks based on a 
deep multilayer perceptron with 5 hidden layers. The deep neural network–based 
prediction model could identify patients at high risk for intraoperative CSF leak. It 
correctly classified 88% of patients in the test set, with an AUC of 0.84. Sensitivity and 
specificity were high, of 83% and 89% respectively. The positive predictive value was 
71%, negative predictive value was 94%, and F1 score was 0.77[39].

CONCLUSION
We reviewed a set of articles related to ML applications in pituitary adenomas. These 
studies showed that ML has a certain potential to improve the diagnostic performance 
of MRI in pre-treatment assessment and neurosurgical outcome prediction. In current 
studies there is not a standardized procedure, ML methodologies vary a lot, different 
types of classifiers are applied and only a few models are validated on an external set. 
The major limits of these studies are the replicability and generalizability. Publicly 
available datasets are needed, and clinical applicability still requires more robust 
validation across different sites, scanner vendors and field intensity. However, the 
research in the years is growing rapidly and ML software can be a potential power to 
facilitate better clinical decision making in pituitary tumor patients.
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