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Abstract
Metformin is a first-line medication for type II diabetes. Numerous studies have 
shown that metformin not only has hypoglycemic effects, but also modulates 
many physiological and pathological processes ranging from aging and cancer to 
fracture healing. During these different physiological activities and pathological 
changes, stem cells usually play a core role. Thus, many studies have investigated 
the effects of metformin on stem cells. Metformin affects cell differentiation and 
has promising applications in stem cell medicine. It exerts anti-aging effects and 
can be applied to gerontology and regenerative medicine. The potential anti-
cancer stem cell effect of metformin indicates that it can be an adjuvant therapy 
for cancers. Furthermore, metformin has beneficial effects against many other 
diseases including cardiovascular and autoimmune diseases. In this review, we 
summarize the effects of metformin on stem cells and provide an overview of its 
molecular mechanisms and clinical prospects.

Key Words: Metformin; Stem cells; Differentiation; Anti-aging; Anti-cancer; Mechanism
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Core Tip: The effect of metformin on stem cells is quickly gaining attention, because 
metformin modulates various physiological activities and pathological changes via 
targeting stem cells. Emerging studies suggest that metformin has broad prospects in 
the fields of stem cell medicine, gerontology, regenerative medicine, and cancer 
therapy, etc. In this review, we summarize the effects of metformin on stem cells and 
provide an overview of its molecular mechanisms and clinical prospects.
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INTRODUCTION
Metformin (N,N′-dimethyl metformin), which is widely used in patients with type 2 
diabetes, exerts hypoglycemic effects mainly by inhibiting absorption of glucose in the 
gut, suppressing gluconeogenesis and glycogen synthesis, and facilitating the uptake 
and utilization of glucose, and sensitivity to insulin of peripheral tissues[1]. It is widely 
accepted that metformin reduces diabetic risk factors such as obesity and improves 
diabetic complications such as cardiovascular disease, peripheral neuropathy, and 
higher fracture risk[2-5].

In recent years, studies have shown that metformin modulates many physiological 
and pathological processes ranging from aging and cancer to fracture healing[1,6-8]. In 
2005, Evans et al[9] found that metformin reduces the morbidity of malignant tumors in 
patients with type 2 diabetes, attracting attention to explore the connection between 
metformin and cancer[9]. In 2013, Cabreir’s research on the anti-aging effect of 
metformin was published in the journal Cell. He reported that metformin increases the 
lifespan of Caenorhabditis elegans cocultured with Escherichia coli by altering microbial 
folate and methionine metabolism, demonstrating the anti-aging effect and mechanism 
of metformin[10]. These studies suggest that metformin has regulatory effects on 
various physiological activities and pathological changes. Studies have shown that 
stem cells play a curial role in these processes. Therefore, many scientists have studied 
the effect of metformin on stem cells in recent years.

Previous studies have demonstrated that metformin affects stem cell differentiation, 
enhances their immunomodulatory properties, and exerts anti-aging, anti-oxidative, 
and anti-inflammatory effects in stem cells[11-16]. This review focuses on the multiple 
effects of metformin on stem cells, its molecular mechanisms, and clinical prospects.

EFFECT OF METFORMIN ON DIFFERENTIATION OF STEM CELLS
Cell differentiation refers to the process through which cells from the same source 
gradually produce cell groups with different morphological structures and functional 
characteristics. It is the basis of ontogeny that is conductive to improve the efficiency 
of various physiological functions. Thus, a large number of studies on stem cell 
differentiation have been reported. Studies have shown that metformin affects the 
differentiation of stem cells and progenitor cells[11,17,18]. We have summarized these 
effects and their molecular mechanisms (Table 1).

Osteogenic differentiation
Bone is a complex tissue containing several cell types, which is continuously 
undergoing a process of self-renewal and repair, termed bone remodeling. Many 
studies have indicated that metformin promotes osteogenic differentiation of stem 
cells and osteogenic progenitor cells. The promotive effects manifest as increased cell 
proliferation, cell migration, alkaline phosphatase activity, mineral deposition, and 
upregulated expression of osteoblast marker genes, including osteopontin (OPN), 
osteocalcin, and runt-related transcription factor 2 (Runx2), during osteogenic cell 
differentiation[8,11,19].

Metformin promotes osteogenic differentiation mainly through the adenosine 5′-
monophosphate-activated protein kinase (AMPK) signaling and Runx2-related 
signaling pathways[20-27]. Metformin is an AMPK activator similar to 5-aminoimidazole-
4-carboxamide ribonucleotide[28]. Its primary site of action is direct inhibition of 
complex 1 of the respiratory chain, which decreases production of ATP, leading to an 
increase of the AMP/ATP ratio and then activated AMPK[29]. Sedlinsky et al[21] 
submitted bone marrow progenitor cells (BMPCs) to 15 d osteoblastic induction in the 
presence or absence of metformin and/or compound C (an inhibitor of AMPK 
activation). As a result, metformin increased the P-AMPK/total AMPK ratio and 
production of type 1 collagen (a marker of osteoblastic differentiation) in BMPCs, 
whereas compound C inhibited these increases, demonstrating that metformin 

https://www.wjgnet.com/1948-0210/full/v12/i12/1455.htm
https://dx.doi.org/10.4252/wjsc.v12.i12.1455
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Table 1 Summary of effect of metformin on stem cells and suggested mechanisms

Role of metformin Stem cell type(s) Suggested mechanism(s) Ref.

BMPC; ADSC; UC-MSC; iPSC-
MSC

LBK1/AMPK activation [20-23]

BMSC AMPK activation-Runx2 (serine 118) [26]

MC3T3-E1 AMPK/Gfi1/OPN axis; SIRT-6/NF-κB [12,24]

hBMSC Twist1 inhibition; GSK3β/β-catenin/Wnt 
signaling pathway

[19,25]

PDLSC AKT/Nrf2 [27]

Promoting osteogenic differentiation

ADSC; PDLSC; hDPSC None [8,11,32,33]

NPC aPKC/CBP [35]

hBMSC AMPK activation [36]

NPC AMPK/aPKC/CBP signaling pathway [37]

Promoting neuronal differentiation

hiPSC-NSC None [17]

Satellite cell RPS6-mTOR [14]

C2C12 ERK; AMPK (AMPKα1)/HDAC5 [40,41]

Promoting myogenic differentiation

Muscle progenitor cell AMPK [39]

MC3T3-E1 AMPK/Gfi1/OPN axis [24]

MSC AMPK/mTOR/p70S6K [44]

Inhibiting adipogenic differentiation

ADSC; PDLSC; BMSC; BMPC None [13,27,42,43,46]

Inhibiting chondrogenic differentiation ATDC-5 AMPK [47]

Gastric PC differentiation Gastric EPC AMPK [50]

HMSC Nrf2/GPx7 [59]

ISC AKT/TOR/Atg6-related pathway; AKT/mTOR 
pathway

[62-64]

Satellite cell mTOR /p70S6 [14]

Regulating stem cell aging and 
rejuvenating regeneration

OPC AMPK activation [68]

CSC Hedgehog, Wnt, and TGF-β pathways [72]

Glioblastoma CSC C1CL1 [74]

Colorectal cancer CSC MIF/CD74 axis [77]

Breast CSC MiR708/CD47 axis [81]

Inhibiting CSCs

CSC None [73,76,82]

Improving EPC functions and 
angiogenesis

EPC AMPK/eNOS/NO signaling pathway; 
AMPK/mTOR/autophagy pathway; 
AMPK/mTOR/p70S6K pathway

[89,90]

ADSC, C2C12 ROS&NO reduction/SOD activation [13,40,99]

PDLSC AKT-Nrf2 signaling pathway [27]

HMSC Nrf2/GPX7 [59]

Antioxidant

hNSC AMPK activation [98,100,102]

hNSC AMPK/(IKK/NF-κB) [15]Anti-inflammatory

rabbit AFSC HMGB1 [104]

Immunomodulatory potential ADSCs AMPK/mTOR/STAT-1 signaling pathway [107]

BMPC: Bone marrow progenitor cells; ADSC: Adipose-derived stem cells; UC: Ulcerative colitis; iPSC: Induced pluripotent stem cell; MSC: Mesenchymal 
stem cell; LKB1: Liver kinase B1; AMPK: Adenosine 5′-monophosphate-activated protein kinase; BMSC: Bone marrow stromal cell; Runx2: Runt-related 
transcription factor 2; Gfi1: Growth factor independence-1; OPN: Osteopontin; NF-êB: Nuclear factor kappa-B; GSK3â: Glycogen synthase kinase 3â; 
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PDLSC: Periodontal ligament stem cell; Nrf2: Nuclear factor E2-related factor 2; DPSC: Dental pulp stem cells; NPC: Neural precursor cell; aPKC: Atypical 
protein kinase C; CBP: CREB-binding protein; hiPSC: Human induced pluripotent stem cell; NSC: Neural stem cell; RPS6: Ribosomal protein S6 kinase; 
mTOR: Mammalian target of rapamycin; HDAC5: Histone deacetylase 5; MSC: Mesenchymal stem cell; EPC: Endothelial progenitor cell; HMSC: Human 
mesenchymal stem cell; GPx7: Glutathione peroxidase 7; ISC: Intestinal stem cell; OPC: Procyanidins oligomers; CSC: Cancer stem cell; TGF-β: 
Transforming growth factor-β; MIF: Macrophage migration inhibitory factor; eNOS: Endothelial nitric oxide synthase; IKK: Inhibitory NF-κB kinase; hNSC: 
Human neural stem cell; AFSC: Amniotic fluid or stem cells; HMGB1: High mobility group box 1; STAT-1: Statim-1; SIRT-6: Silent information regulator-6.

promoted osteoblastic differentiation of BMPCs through AMPK activation[21]. 
Similarly, Wang et al[23] treated induced pluripotent stem cell (iPSCs) with metformin, 
demonstrating the same effect via the liver kinase B1 (LKB1)/AMPK signaling 
pathway. LKB1 is a common upstream molecule of AMPK kinase. Inhibiting its 
activity markedly reverses metformin-induced AMPK activation and Runx2 
expression[23]. In addition, metformin exerts a similar effect on MC3T3-E1 cells through 
the AMPK/growth factor independence-1 (Gfi1)/OPN axis. AMPK activation 
downregulates the transcriptional repressor Gfi1 and disassociates it from the OPN 
promoter, ultimately upregulating OPN[24]. Furthermore, metformin may promote 
osteoblastic differentiation through decreased acetyl coenzyme carboxylase activity 
and lipogenic enzyme expression induced by AMPK activation. These decreases 
contribute to inhibited adipogenesis and break the balance between osteogenic and 
adipogenic differentiation[30].

Regulation of the Runx2-related signaling pathway by metformin is the second 
mechanism to promote osteogenic differentiation. Runx2 promotes mesenchymal stem 
cells (MSCs) to differentiate into preosteoblasts and inhibits adipogenic and 
chondrogenic differentiation[31]. Marofi et al[25] treated human bone marrow stromal 
cells (hBMSCs) with metformin and found that metformin promoted osteogenic 
differentiation through the Twist1/Runx2 signaling pathway. Metformin inhibited the 
expression of Twist1 by enhancing its gene promoter methylation slightly and a direct 
physical interaction without Twist1 methylation. Lower Twist1 expression increased 
the mRNA expression of Runx2[25]. In addition, Chava et al[26] extracted BMSCs from 
metformin-treated rats and demonstrated that metformin promoted osteogenic 
differentiation through AMPK directly mediating Runx2 phosphorylation at serine 
118[26].

In addition to the two abovementioned signaling pathways, metformin promotes 
osteogenic differentiation through other mechanisms. Metformin promotes osteogenic 
differentiation through the serine/threonine kinase Akt (also known as protein kinase 
B or PKB) signaling pathway. Jia et al[27] treated periodontal ligament stem cells 
(PDLSCs) with metformin and found that metformin rescued osteogenic 
differentiation of PDLSCs, which was impaired by H2O2-induced oxidative stress by 
activating Akt and downstream nuclear factor E2-related factor 2 (Nrf2), an important 
transcription factor against oxidative stress[27]. Ma et al[19] treated hBMSCs with 
metformin and obtained the similar result. They stated that the Wnt/â-catenin 
signaling pathway probably participated in the osteogenic differentiation of BMSCs 
because metformin inhibited glycogen synthase kinase-3â, resulting in accumulation of 
cytosolic â-catenin and activation of the Wnt signaling pathway[19].

The effect of metformin on osteogenic differentiation may be influenced by the drug 
dose, cell origin, and glucose concentration. Several studies explored the effect of 
metformin on osteogenic differentiation of PDLSCs and found that 50 ìmol/L was the 
optimal concentration to exert effects[11,27,32]. Houshmand and Ma studied the same 
effect on BMSCs and hDPSCs, and found that 100 ìmol/L was the optimal 
concentration to promote cell osteogenic differentiation[19,33]. Moreover, Mu et al[12] 
found that metformin promoted osteogenic differentiation of murine preosteoblasts 
under high glucose conditions. In this study, metformin suppressed the 
phosphorylation of nuclear factor-kB by increasing silent information regulator (SIRT)-
6 expression. High levels of SIRT6 will decrease mature osteoblast functions and delay 
maturation of bone matrix [12,34].

Neuronal differentiation
The nervous system has a complex structure and is the major controlling, regulatory, 
and communicating system in the body. However, unfortunately, when brain cells are 
damaged by trauma or disease, they are unable to automatically regenerate, which 
determines nervous dysfunctions and onset/progression of neurodegenerative 
diseases. Neurodegenerative diseases/neurodegenerative pathologies, including 
Huntington’s disease, multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, and 
amyotrophic lateral sclerosis, represent a group of illnesses characterized by the 
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following features: A decline in neuronal functions, brain atrophy, and often, 
abnormal deposition of proteins. Several studies have shown that metformin promotes 
the proliferation and neural differentiation of stem cells[17,35-37], indicating that 
metformin may be a promising drug for prevention and treatment of these diseases[38].

Ahn et al[36] treated hBMSCs with metformin and demonstrated that metformin may 
promote neuronal differentiation and neurite outgrowth by activating AMPK. 
Neuronal cells were characterized by an increase in the expression of neuron-specific 
genes MAP-2, Tuj-1, NF-M, KCNH1, and KCNH5 [36]. Dadwal et al[35] extracted 
subependymal-derived neural precursor cells (NPCs) and plated them as single cells 
to form neurospheres in the presence of metformin. The results showed that 
metformin expanded the stem cell pools and facilitated neurogenesis in normal mice 
compared with CREB-binding protein (CBP) gene mutant mice, demonstrating that 
metformin directly promoted NSCs to differentiate via the atypical protein kinase C 
(aPKC)-CBP pathway[35]. Fatt et al[37] added metformin to NPCs extracted from the 
adult subventricular zone and found that metformin significantly enhanced neuronal 
differentiation by activating the AMPK-aPKC-CBP pathway[37].

Myogenic differentiation
Skeletal muscle is the largest organ of the body and plays an important role in 
essential life activities such as respiration, metabolism, mediating temperature, and 
movement. When empyrosis, trauma, and other factors cause damage to skeletal 
muscle, skeletal muscle can be regenerated. Skeletal muscle regeneration is dependent 
on a contribution from muscle-resident stem cells, named satellite cells marked by 
paired-box transcription factor 7 (Pax7)[39]. The effects of metformin on satellite cells are 
disputed. Several studies provide evidence that metformin maintains satellite cells in a 
low differentiation state and deplete skeletal muscle regeneration via calorie 
restriction, whereas others have stated that metformin alleviates muscle wasting post-
injury[14,18,39].

A family of myogenic regulatory factors (MRFs), such as myogenic differentiation 
antigen (MyoD), myogenin, Mrf4, and myogenic factor (Myf5), plays an important role 
in myogenic differentiation[18,31]. Pavlidou et al[18] found that metformin (2-10 mmoL/L)-
treated C2C12 cells had a reduced myogenic differentiation potential and significant 
decline in the expression of myogenic regulatory factors MyoD, myogenin, and 
myosin heavy chain[18]. In another study, they treated satellite cells with 2 mmoL/L 
metformin in vitro, resulting in retained expression of Pax7 for a longer time, whose 
delayed downregulation was accompanied by late expression of myogenic 
differentiation markers, indicating delayed differentiation. In vivo, metformin delayed 
regeneration of cardiotoxin-damaged skeletal muscle[14]. Conversely, Yousuf et al[39] 
injected metformin hydrochloride dissolved in phosphate buffered saline into mice 
after burn injury and found that metformin enhanced the proliferative activity of Pax7-
positive satellite cells by activating AMPK. They attributed the contradictory 
conclusion between the results to different mouse mobility and the different nature of 
the injury[39].

The effect of metformin on myogenic differentiation of C2C12 cells is controversial 
and may be related to drug dose. Low doses of metformin (400 and 500 ìmol/L) 
promote myogenic differentiation and myotube formation, increasing the protein 
expression of Myf5 and MyoD, two important markers of early differentiation. Senesi 
et al[40] believed that metformin enhanced C2C12 differentiation by activating ERKs 
and decreasing p70S6 kinase[18,40]. Fu et al[41] inferred that metformin facilitated 
myogenic differentiation of C2C12s by activating AMPK. AMPKá1 phosphorylated 
histone deacetylase 5 (HDAC5) at Ser 259 and 498 in C2C12 cells, which acts as a 
conserved transcriptional repressor through an interaction with myocyte enhancer 
factor-2. Phosphorylated HDAC5 upregulates myogenin transcription and 
myogenesis[41]. Considering the paradoxical effect of metformin on myogenic 
differentiation, more studies in this field are needed.

Adipogenic differentiation
Considering the reciprocal relationship between osteogenic and adipogenic 
differentiation, various reasons, such as diabetic conditions and the use of 
thiazolidinedione, cause active adipogenesis in BMSCs/BMPCs, which consequently 
suppresses osteogenesis and damages bone health[42-44]. Metformin inhibits adipocyte 
differentiation of adipose-derived stem cells (ADSCs), BMSCs, BMPCs, and PDLSCs, 
manifesting as suppressed cell proliferation, lipid droplet generation, and expression 
of adipocyte genes such as peroxi-some proliferator-activated receptor gamma (
PPARγ), CCAAT/enhancer binding protein alpha, and adipocyte lipid-binding 
protein[13,27,42,43,45,46].



Jiang LL et al. Effect of metformin on stem cells

WJSC https://www.wjgnet.com 1460 December 26, 2020 Volume 12 Issue 12

Marycz et al[13] extracted ADSCs from metformin-treated rats to induce adipogenic 
differentiation. A reduction of lipid droplets in ADSCs and decreased proliferation 
potential demonstrated that metformin inhibited adipogenic differentiation[13]. Tolosa 
et al[42] extracted BMPCs from diabetic rats, treated them with/without metformin, and 
found that metformin partially abolished diabetic-related upregulation of PPARã 
expression[42]. Similarly, Molinuevo et al[46] treated BMPCs with both metformin and 
rosiglitazone and found that metformin abolished rosiglitazone-induced 
adipogenesis[46].

Metformin inhibits adipogenic differentiation through the AMPK signaling 
pathway. Wang et al[24] established LV-AMPKá 3T3-L1 cells stably overexpressing 
AMPKá through a lentiviral vector and treated them with puromycin to induce their 
adipogenic differentiation. The results showed that activated AMPK suppressed lipid 
droplet generation and adipocyte gene expression[24]. The other mechanism was 
inhibiting the mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase 
signaling pathway. Chen et al[44] found that metformin suppressed adipogenesis in 
C3H10T1/2 MSCs independently of the AMPK signaling pathway by measuring 
phosphorylation of a known AMPK substrate, Ser 79 of ACC. Lipid accumulation 
associated with adipogenesis in C3H10T1/2 cells was inhibited by incubation with the 
mTOR/p70S6 kinase inhibitor rapamycin[44]. In addition, because of the reciprocal 
relationship between osteoblast and adipocyte differentiation, metformin may inhibit 
adipocyte differentiation indirectly by promoting the expression of osteoblastic 
transcription factors[43].

Chondrogenic differentiation
Downregulation of chondrocytic differentiation has been described in various chronic 
skeletal diseases including osteoarthritis. Metformin appears to inhibit chondroblastic 
differentiation. Bandow et al[47] treated chondrogenic progenitor cells with metformin 
during chondrogenic differentiation. As a result, metformin inhibited chondroblastic 
differentiation by activating AMPK. In primary chondrocyte precursors, metformin 
decreased gene expression of sex determining region Y-box (Sox) 9 and Sox6 along 
with other chondrogenic differentiation markers including collagen, type II, alpha 1 
(col2a1), and aggrecan core protein (ACP). Col2a1 and ACP promoter activities were 
directly repressed by AMPK-activated early growth response-1 (Egr-1), a 
transcriptional repressor in mouse chondrocytes independent of Sox9. Mutation of the 
putative Egr-1-binding site abrogated the inhibitory effects of an AMPK activator[47]. 
Sox9 plays an important role in various stages of chondrogenesis and is essential for 
chondrogenesis. Its gene deletion can lead to achondroplasia[48].

Gastric parietal cell differentiation
Metformin has been reported to reduce the risk of stomach cancer by up to 51% in 
diabetic patients following eradication of Helicobacter pylori[49]. A recent study showed 
that metformin promotes differentiation of gastric epithelial progenitor cells into acid-
secreting PCs through AMPK activation. AMPK activation increased Kruppel-like 
factor 4 (KLF4) expression, facilitating progenitor cells to exit the cell cycle and 
differentiate toward the PC lineage. AMPK appeared to increase maturation of the PC 
lineage largely by peroxisome proliferator-activated receptor-ã coactivator-1á 
activation[50]. Considering that PC damage plays a crucial role in the occurrence and 
development of gastric cancer, metformin may have potential as an anti-gastric cancer 
drug by promoting gastric epithelial progenitor cells to differentiate into acid-secreting 
PCs.

Role of metformin and stem cells in tissue injury healing
Studies showed that metformin and stem cells also play an important role in tissue 
injury healing, which may relate to the effect of metformin on stem cell 
differentiation[51-53]. Stem cells have been demonstrated to promote tissue injury healing 
such as diabetic foot ulcer, burns, gastric ulcer, and ulcerative colitis (UC). They exert 
the repair effect through migrating to tissue injuries, differentiating into specific cells, 
reducing inflammation, and producing paracrine factors to promote angiogenesis[51,52]. 
Deng et al[53] found that bencher muscular dystrophy-endothelial progenitor cells 
(BMD-EPC) contributed to tissue repair in UC. Notably, stromal cell-derived factor-1 
and its receptor CXCR4 also have been demonstrated to play an important role in the 
“homing” of BMD-EPC to injured sites and neovascularization in tissue repair[53]. 
While metformin exerts the repair effect through facilitating the process described 
above, metformin also promotes injury healing through insulin sensitization in 
diabetic foot ulcer[51,52]. The combination of stem cells and metformin appears to be a 
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better synergistic option for the treatment of diabetic wounds (Figure 1).

METFORMIN REGULATES STEM CELL AGING AND REJUVENATING 
REGENERATION
Aging can be considered as a developmental program that is beneficial early in life but 
not switched off upon its completion. From a stem cell-centered perspective, aging 
results in an impaired regenerative capacity to effectively maintain tissues and organs 
as well as depletion of stem cell pools in adult tissue, leading to tissue dysfunction and 
age-associated diseases. For example, the number and proliferation or differentiation 
ability of stem cells gradually decrease with age. Therefore, damaged tissues and 
organs cannot be repaired and regenerate in time, which directly leads to the 
occurrence of human aging and diseases[54]. Both extrinsic (local microenvironment 
and systemic circulation) and intrinsic factors (genomic instability, DNA damage, 
oxidative damage, and deteriorated mitochondrial functions) contribute to stem cell 
dysfunction during aging-related regenerative decline[55-57]. Anti-aging has been a 
research hotspot in recent years. In 2019, Fahy’s research on reversing “biological age” 
became the headline of Nature. He found that systemic treatment with a cocktail of 
growth hormone, dehydroepiandrosterone (DHEA), and metformin partially reverses 
DNA methylation age (DNAma) clocks. DNAma is a prominent biomarker of 
mammalian aging[58,59]. It was the first time that clinical research indicated the anti-
aging effect of metformin. Thus, metformin is currently undergoing repurposing as an 
anti-aging agent[6,58,60,61].

Metformin rescues stem cells from aging by alleviating intrinsic undesirable 
changes. The anti-aging effect of metformin is closely related to its antioxidant effects 
in stem cells. Fang et al[62] demonstrated that chronic low-dose metformin treatment 
increases the lifespan of HMSCs through Nrf2-mediated transcriptional upregulation 
of endoplasmic reticulum-localized glutathione peroxidase 7 (GPx7) whose depletion 
results in premature cellular senescence[62]. Metformin also inhibits mTORC1 activity, 
initiating the process of autophagy[55,63]. Autophagy of stem cells maintains internal 
homeostasis in response to stress conditions and plays a crucial role in stem cell 
rejuvenation[64]. Na et al[65] found that metformin inhibited aging-related phenotypes in 
Drosophila midgut intestinal stem cells (ISCs) through the Atg6 (autophagy related 
gene 6; Beclin 1 in mammals)-related pathway, which was negatively regulated by the 
AKT/TOR pathway[65]. Metformin reduced age and oxidative stress-related 
accumulation of DNA damage marked by drosophila ãH2Ax foci and 8-oxo-dG by 
suppressing the AKT/mTOR pathway in Drosophila midgut ISCs[66,67]. Therefore, 
inhibiting the AKT/mTOR pathway may decrease DNA damage through activation of 
autophagy.

Furthermore, metformin is involved in metabolic-induced rejuvenation by 
mimicking the metabolic effects of calorie restriction. The mechanism may be related 
to stimulating AMPK, the principal energy sensor in cells, to reduce energy-
consuming processes and increase insulin sensitivity[60,64,68,69]. It is commonly accepted 
that the quiescent state of stem cells, which has been linked to their metabolic state, is 
correlated with their regenerative capacity[14,57,70]. Pavlido’s research showed that 
metformin inhibited mTOR activity and reduced p70S6 phosphorylation that induced 
a low metabolic state associated with quiescence of satellite cells[14]. Similarly, 
Neumann et al[71] demonstrated that metformin rejuvenated aging oligodendrocyte 
progenitor cells by activating AMPK[71].

Activation of AMPK by metformin provides an efficient barrier to reprogramming 
somatic cells (mouse or human fibroblasts) to stem cells[72]. Cellular reprogramming is 
inducing somatic cells into a pluripotent cell state by expression of transcription 
factors octamer-binding transcription factor-4 (Oct4), Sox2, Klf4, and c-Myc[73]. 
Reprogramming reverses many aspects of aging by resetting metabolic signatures, 
mitochondrial networks, and other factors to a youthful state[69]. Metformin inhibits the 
reprogramming process by selectively impairing expression of Oct4, but not other 
reprogramming factors[72,74].

EFFECT OF METFORMIN ON CANCER STEM CELLS
Cancer stem cells (CSCs) are cancer cells with the capacity to renew indefinitely, 
resulting in tumor formation. They possess stem cell properties including self-renewal, 
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Figure 1 Effect of metformin and stem cells on tissue injury healing. TNF: Tumor necrosis factor; HMGB1: High mobility group box 1; LKB1: Liver 
kinase B1; AMPK: Adenosine 5′-monophosphate-activated protein kinase; GSK3β: Glycogen synthase kinase 3β; IKK: Inhibitory NF-κB kinase; Runx2: Runt-related 
transcription factor 2; HDAC: Histone deacetylase; mTOR: Mammalian target of rapamycin; MRFs: Myogenic regulatory factors; IL: Interleukin; NF-κB: Nuclear factor 
kappa-B; PEG: Polyethyleneglycol; SDF-1: Stromalcell-derivedfactor1; eNOS: Endothelial nitric oxide synthase; NO: Nitric oxide.

proliferation, and differentiation potential. CSCs are responsible for the clinical failure 
of the majority of currently available oncological therapies because they survive 
treatment with hormones, radiation, chemotherapy, and molecularly targeted 
drugs[75]. Therefore, how to eliminate CSCs has become a research focus in recent 
years. Many studies have explored the effect of metformin on CSCs and the results are 
inspiring. Metformin is expected to become an anti-cancer agent[7,9]. The studies 
showed that metformin inhibits CSCs via inhibition of self-renewal, metastatic, 
metabolic, and chemoresistance pathways.

Metformin inhibits pathways associated with self-renewal and metastasis in various 
CSCs. Saini et al[75] stated that the inhibition mechanism included hedgehog, Wnt, and 
transforming growth factor-â pathways. CSCs self-renew indefinitely, results in tumor 
formation, and has a potential role in tumor metastasis. Courtois et al[76] confirmed the 
anti-proliferative effect of metformin on gastric carcinoma cell lines by regulating the 
expression of genes implicated in cell-cycle regulation (GADD45, p21, E2F1, and 
PCNA)[76]. Zhao et al[77] demonstrated that metformin inhibits the proliferation of 
osteosarcoma stem cells (OSCs) by inducing G0/G1 phase cell cycle arrest[77]. In a 
recent study, Barbieri et al[78] stated that metformin and other biguanides exert anti-
proliferative effects in glioblastoma CSCs by interfering with the activity of the 
extracellular portion of the active transmembrane chloride ion channel. Chloride 
intracellular channel 1 (CLIC1) activity promotes cell cycle progression and cell 
division during G1/S phase transition, leading to accelerated growth in glioblastoma 
CSCs[78].

Metformin also inhibits pathways associated with CSC metabolism. Metabolic 
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reprogramming refers to changes in the metabolic patterns of CSCs compared with 
normal cells, which makes the body provide sufficient resources for CSCs. A classic 
example of metabolic reprogramming is the Warburg effect. CSC-driven 
tumorigenesis through metabolic reprogramming is closely associated with the 
acquisition of stem cell-like properties in iPSCs. Several studies have demonstrated 
that metformin suppresses the expression of reprogramming factor Oct4, providing a 
barrier against malignant CSCs[69,72,79]. Saini et al[75] stated that the metabolic effect of 
metformin on CSCs mainly depends on inhibition of mitochondrial complex I[75]. It is 
generally believed that the therapeutic effect of metformin results from an inability of 
CSCs to turn on glycolysis for ATP production (Warburg effect) upon inhibition of 
oxidative phosphorylation[80]. A recent study highlighted the strong dependence on 
energy-producing pathways of colorectal cancer CSCs, suggesting that modulation of 
AMPK activity is an effective therapeutic approach[81]. Zhao et al[77] showed that 
metformin induced caspase-mediated apoptosis in OSCs by inducing mitochondrial 
dysfunction. In addition, metformin influenced the capacity of OSCs to self-renew via 
enhanced autophagy, which was suppressed by 3-methyladenine, an inhibitor of 
autophagy[77].

Metformin inhibits CSCs by impairing the chemoresistance of CSCs[82-84]. Tan et al[85] 
demonstrated that metformin regulates the miR708/cluster of differentiation 47 
(CD47) axis to eradicate breast cancer stem cells and enhance chemosensitivity because 
of the critical role that CD47 plays in evasion of immunological eradication[85]. Bishnu 
et al[86] showed that continuous metformin treatment impeded acquirement of 
chemoresistance by reducing the CSC proportion through taurine generation and 
removing CSCs from quiescence. Maintaining a more proliferative cellular state also 
contributes to chemosensitivity[86].

CARDIOVASCULAR PROTECTIVE EFFECTS OF METFORMIN RELATED 
TO EPCS
The cardiovascular system is also called the circulatory system, consisting of the heart 
and blood vessels. It transports oxygen and metabolizes waste to maintain steady 
metabolism of the internal environment and normal life activities. Cardiovascular 
diseases are associated with impaired vascular remodeling and a lack of endothelial 
cell reconstructive functions[87]. EPCs, as a kind of precursor cell, have the functions of 
migration, proliferation, adhesion, and differentiation into endothelial cells involved 
in the generation of adult neovascularization[88]. Functionally impaired EPCs manifest 
as decreased EPC numbers in circulation, decreased angiogenic potential, and 
endothelial dysfunction[89-91]. To our knowledge, most studies have reported that 
metformin protects the cardiovascular system by improving EPC functions and 
angiogenesis[92,93].

Metformin improves EPC functions through the AMPK-endothelial nitric oxide 
synthase (eNOS)-nitric oxide (NO) signaling pathway. Li et al[93] treated EPCs from 
normal individuals with metformin and found that metformin promoted EPCs to 
differentiate into ECs. Yu et al[94] treated EPCs from diabetic rats and found that 
metformin increased EPC capacities for immigration and tube formation. In the two 
studies, metformin increased both phosphorylated AMPK and eNOS expression in 
EPCs and enhanced NO production[93,94]. The reduction in NO bioavailability due to 
reduced synthesis from eNOS can cause EPC dysfunction[95]. Li et al[93] also found that 
metformin improved EPC functions through AMPK-mTOR-autophagy-related and 
AMPK-mTOR-p70S6K pathways. The drug activated AMPK and inhibited mTOR[93]. 
Metformin improved palmitic acid (PA)-induced EPC dysfunction by mediating 
microRNA (miR) 130a and phosphatase and tensin homolog (PTEN), which may be 
associated with activation of the phosphatidylinositol-3-kinase/AKT signaling 
pathway. Levels of miR-130a are lower and those of PTEN are higher in EPCs of 
diabetic patients[87].

Some studies have suggested negative effects of metformin on EPCs. Metformin 
attenuates EPC migration through the AMPK/mTOR/autophagy-related pathway. 
Metformin also activates AMPK phosphorylation and inhibits mTOR and Akt 
phosphorylation, decreasing matrix metalloproteinase (MMP)-2 and MMP-9 
expression in EPCs, indicating that decreased activity of gelatinase and fibrinolysis 
may contribute to this phenomenon. However, how AMPK/mTOR-related autophagy 
regulates cell migration is controversial[93,96,97]. The inhibitory effect of metformin on 
EPC angiogenesis is mediated by down-regulating miR-221 expression, which is 
negatively correlated with the concentration of metformin and consequently increased 
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p27 expression and activated autophagy[97]. Asadian et al[98] found that metformin 
inhibited EPC proliferation and angiogenesis following inhibited activation of the 
Tunica internal endothelial cell (Tie2)/AKT signaling pathway, which may be 
associated with the Tie2/Akt/eNOS signaling pathway[98,99]. Similarly, Montazersaheb 
et al[100] found that prolonged incubation with metformin decreased the angiogenic 
potential of hBMSCs by modulating the mTOR-related autophagy signaling 
pathway[100]. Considering the paradoxical effects of metformin on EPCs and 
angiogenesis, one explanation would be that metformin behaves differently according 
to diabetic conditions and drug concentration[92,100]. Hence, the role of metformin is 
debatable in EPC functions and needs to be validated by future studies.

ANTIOXIDANT EFFECTS OF METFORMIN ON STEM CELLS
Various diseases, such as diabetes, Alzheimer’s disease, and cardiovascular disease, 
are associated with oxidative stress, and metformin acts as an antioxidant at the 
cellular level via the mechanisms described below[38,54,101,102]. First, metformin decreases 
free radicals, including reactive oxygen species (ROS) and NO, and upregulates 
activities of antioxidant enzymes in stem cells, such as superoxide dismutase (SOD) 
and ER-located GPx7[13,27,40,62,103,104]. It significantly attenuates ROS production of BM-
derived hematopoietic stem cells after total body ionizing radiation irradiation[105]. 
Low-dose metformin increases the nuclear accumulation of Nrf2 that binds to 
antioxidant response elements in the GPX7 gene promoter to induce its expression[62]. 
Advanced glycation endproducts (AGEs) elevate during certain physiological and 
pathological states including inflammation, aging, diabetes, and neurodegenerative 
diseases. Human neural stem cells (hNSCs) treated with AGEs have decreased cell 
growth, but metformin rescues hNSCs from AGE-induced oxidative stress, normalizes 
ROS levels, and improves SOD activity by decreasing the levels of receptor for 
advanced glycation endproducts that is downstream of AMPK[104]. Furthermore, 
metformin protects mitochondria from oxidative damage. Cytosolic cytochrome c 
activates the caspase protein family, thereby initiating mitochondrion-mediated 
apoptosis.

Chiang et al[102]’s work focused on hNSCs exposed to amyloid-Aâ or AGEs, which 
had reduced expression of mitochondrion-associated gene, mitochondrial deficiency 
(lower displacement loop level, mitochondrial mass, maximal respiratory function, 
cyclooxygenase activity, and mitochondrial membrane potential), as well as increased 
activation of caspase 3/9 activity and cytosolic cytochrome c in common. Metformin 
abrogates these negative effects through the AMPK signaling pathway[102,106].

ANTI-INFLAMMATORY EFFECT OF METFORMIN ON STEM CELLS
The anti-inflammatory effects of metformin in neurodegenerative diseases, EPC 
dysfunction, and aging have also attracted attention in recent years[38,54,107]. Chung 
et al[106] demonstrated that metformin suppressed AGE-induced inflammation in 
hNSCs by activation of AMPK, which inhibited inhibitory nuclear factor kappa-B (NF-
kB) kinase (IKK) activity and normalized expression of inflammatory cytokines 
including interleukin (IL)-1á, IL-1â, IL-2, IL-6, IL-12, and tumor necrosis factor á (TNF-
á). Decreased NF-êB levels caused by inhibited IKK activity alleviated the 
inflammatory response via increased expression of inducible nitric oxide synthase 
(iNOS) and COX-2[15]. Han et al[107] showed that metformin decreases the expression 
levels of proinflammatory cytokines (IL-1b, IL-6, and TNF-á) by preventing high 
mobility group box 1 (HMGB1) release from the nucleus to cytoplasm in rabbit 
annulus fibrosus stem cells. HMGB1 has been proved to play a role in the 
development and maintenance of the inflammatory response[108]. Furthermore, the 
senescent phenotype induced by lipopolysaccharide is inhibited by metformin, 
indicating a correlation between its anti-inflammatory and anti-aging effects[107]. 
Considering the close relationship between oxidative stress and chronic inflammation, 
some researchers have suggested that the antioxidant, anti-inflammatory, and anti-
aging effects of metformin are interactive[54,101].
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METFORMIN ENHANCES IMMUNOMODULATORY POTENTIAL OF STEM 
CELLS
Metformin has also shown potential to treat autoimmune diseases, such as rheumatoid 
arthritis and systemic lupus erythematosus, by regulating metabolism[109,110]. A recent 
study showed that metformin enhanced the immunomodulatory properties of ADSCs 
through the AMPK/mTOR/signal transducer and activator of transcription (STAT)-1 
signaling pathway. Metformin increased AMPK and STAT1 phosphorylation in a 
dose-dependent manner, but decreased the phosphorylation of mTOR[111]. STAT1 plays 
an important role in cell survival and proliferation, whose overexpression strongly 
enhances cord blood-derived MSC-mediated T-cell suppression[112,113]. STAT1 inhibition 
of ADSCs by metformin significantly impairs induction of immunomodulatory 
markers, including indoleamine 2,3-dioxygenase, IL-10, and transforming growth 
factor-â, and inhibits T-cell proliferation in vitro[111].

ADVERSE EFFECTS OF METFORMIN ON STEM CELLS
Various studies show that metformin acts in a dose- and time-dependent 
manner[114-116]. The adverse effects of metformin on stem cells include decreasing 
proliferation activity, cytotoxic effects (morphology and ultrastructure changes), and 
apoptosis when the drug concentration is far more than the therapeutic doses 
administered to diabetic patients whose plasma concentrations of metformin are 
usually < 50 ìM. The levels of metformin that accumulate in tissues might be several 
times higher than that in blood[117]. Œmieszek et al[116] exposed ADSCs and BMSCs to 1, 
5, and 10 mmoL/L metformin and then measured cell proliferation activity and 
characteristic features after 24, 48, and 72 h. They found that metformin inhibited cell 
proliferation in a dose- and time-dependent manner, and that 5 and 10 mmoL/L 
metformin had cytotoxic effects on ADSCs, causing abnormal morphological, 
ultrastructural, and apoptotic changes. The decrease in cell proliferation was 
associated with cytotoxic effects of metformin[115,116]. Consistent with this result, Jia 
et al[27] observed that a high concentration of metformin (2500 µM) slightly inhibited 
cell proliferation of PDLSCs[27]. They suggested that metformin induced hUC-MSC 
apoptosis in an AMPK-mTOR-S6k1-Bad (Bcl-2 family member)-dependent manner, 
which was reversed by compound C. Metformin greatly increased the rate of hUC-
MSC apoptosis in a dose- and time-dependent manner without affecting autophagy or 
proliferation[118]. Compared with BMSCs and ADSCs, lower concentrations of 
metformin (100 ìM, 250 ìM, and 500 ìM) also caused hUC-MSC apoptosis. This 
phenomenon may due to different cell origins. The authors recently found that glucose 
modulates metformin-induced MSC apoptosis via the AMPK-mTOR-S6k1-Bad 
pathway in another study. High glucose (10, 15, and 30 mmoL/L) exerts a protective 
effect on metformin-induced apoptosis, which is inversely proportional to the glucose 
level[119,120]. However, Zafarvahedian et al[114] showed that glucose conditions do not 
affect metformin toxicity and hyperglycemia itself inhibits the proliferation of 
MSCs[114]. More evidence on whether the glucose level influences metformin-induced 
adverse effects in MSC is needed in the future.

OTHER MECHANISMS NOT RELATED TO STEM CELLS’ ACTIONS
Metformin can affect many of these conditions by acting also through other 
mechanisms not related to stem cells’ actions. For example, metformin acts on liver 
cells to reduce liver gluconeogenesis and promote anaerobic glycolysis, on skeletal 
muscle cells to increase glucose uptake, and on intestinal epithelial cell to inhibit or 
delay gastrointestinal glucose absorption, which exerts hypoglycemic effects 
synergistically[1]. Metformin under physiological tolerance concentration can alleviate 
aging-associated inflammation via enhancing autophagy and normalizing 
mitochondrial function in T cells, which is a major source of inflammatory cytokines. 
Autophagy made it possible to prolong normal life via improving inflammation[121]. 
Besides, metformin can directly act on cancer cells. Liu et al[122] found that metformin 
can exert growth-suppressive effects on gallbladder cancer (GBC) cell lines via 
inhibition of p-Akt activity and the Bcl-2 family. Also, inhibition, knockdown, and 
upregulation of the membrane protein CLIC1 can affect GBC resistance in the presence 
of metformin[122]. Totally speaking, metformin exerts different effects by acting various 
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mechanisms.

CLINICAL PERSPECTIVES
Stem cells have become a research hotspot in recent years. Many studies have applied 
stem cells to the fields of regenerative medicine, such as tissue engineering, and stem 
cell medicine such as the treatment of refractory disease stroke, autoimmune disease, 
neurological disease, and cardiovascular disease[16,17,55,92,123,124]. After understanding the 
effects and mechanisms of metformin on stem cells, we can apply metformin with 
stem cells in these fields to improve the therapeutic effect.

Regenerative medicine, which uses stem cell therapies to create tissues and organs 
and repair them, has the potential to address donor organ shortages. The seed cells 
(usually stem and progenitor cells) and scaffolds (biological materials) play important 
roles in tissue engineering. A previous study has shown that metformin in scaffolds 
regulates seed cell differentiation and proliferation. For example, Zhao et al[32] seeded 
hPDLSCs on a calcium phosphate cement scaffold delivering metformin[32]. Shahrezaee 
et al[124] seeded BMSCs on a polylactic acid and polycaprolactone scaffold delivering 
metformin and implanted the construct into calvarial bone defects in a rat model[124]. 
Smieszek et al[22] cocultured ADSCs with sol gel-derived silica/zirconium dioxide 
delivering metformin. All of the above studies found that metformin promoted 
osteogenic differentiation of stem cells, suggesting that metformin has the potential to 
promote bone tissue engineering by affecting stem cell differentiation.

Metformin and stem cells also have broad application prospects for the treatment of 
refractory diseases. Stroke is a public health issue, resulting in neurological disabilities 
in many patients. NSCs and NPCs are expected to be a new treatment for neurological 
disabilities. Ould-Brahim et al[17] treated a rat endothelin-1 focal ischemic stroke model 
with metformin-preconditioned human iPSCs (hiPSC)-NSCs. The results showed that 
metformin preconditioning enhanced the differentiation of hiPSC-NSCs, accelerated 
gross motor recovery, and reduced the infarct volume under ischemic and hypoxic 
conditions[17]. Metformin also can improve endothelial  dysfunction and 
neovascularization by targeting stem and progenitor cells[5,17]. For example, metformin 
directly improves the function of vascular endothelial cells (ECs) and increases blood 
flow[125]. Furthermore, the antioxidant and anti-inflammation effects of metformin on 
stem cells contribute to treatment effects on neurodegenerative and cardiovascular 
diseases[38,54,101,102,107].

Metformin has the potential to be an anti-aging agent associated with stem cells. 
Adult stem cells are affected by the same aging mechanisms that involve somatic cells, 
resulting in an impaired regenerative capacity to effectively maintain tissues and 
organs[55]. For example, skeletal muscle drives human movement, and aging and 
atrophy of muscle are major signs of human aging. In age-related muscle atrophy 
(sarcopenia) and several dystrophies, regeneration cannot compensate for the loss of 
muscle tissue due to depletion of the satellite cell pool or the functional loss of satellite 
cells. Pavlidou et al[14] demonstrated that metformin delayed satellite cell activation and 
differentiation by favoring a quiescent, low metabolic state, thereby alleviating 
depletion of the satellite cell pool and the functional loss of satellite cells[14]. Moreover, 
the antioxidant and anti-inflammatory effects of metformin on stem cells contribute to 
anti-aging.

Metformin also has the potential to be an anti-cancer agent by targeting CSCs. 
Metformin inhibited CSCs from three aspects, including the inhibition of self-renewal 
and metastatic pathways, inhibition of metabolic pathways, and inhibition of 
chemoresistance pathways.

However, there are still some limitations and issues for the application of metformin 
and stem cells. For example, the effect of metformin may be different depending on the 
cell origin. Drug delivery is also an issue. There is still a lack of clinical research on 
these issues. The mechanisms and effects of metformin on myogenic differentiation 
and angiopoiesis of stem cells are controversial. A high glucose environment may 
influence cell differentiation and apoptosis[20,117]. These issues remain to be resolved in 
future studies.

CONCLUSION
In summary, a large number of studies have demonstrated the pleiotropic effects of 
metformin on stem cells. These inspiring results provide new treatment possibilities in 
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many fields including regenerative medicine, stem cell medicine, anti-aging, and anti-
cancer.
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