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Abstract
The mechanisms that regulate disease progression dur-
ing hepatitis C virus (HCV) infection and the response 
to treatment are not clearly identified. Numerous stud-
ies have demonstrated that a strong host immune re-
sponse against HCV favors HCV clearance. In addition, 
genetic factors and metabolic machinery, particularly 
cholesterol modulation, are involved in HCV infection. It 
is likely that the interplay between all of these factors 
contributes to the outcome of HCV infection. In recent 
years, the world has experienced its largest epi-
demic of obesity. Mexico and the United States are 
the leading sufferers from this epidemic at the global 
level. Obesity is associated with the development of 
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numerous pathologies including hypercholesterol-
emia which is one of the eight most important risk 
factors for mortality in Mexico. This may be related 
to the course of HCV infection in this population. 
Here, we focus on the urgent need to study the pro-
gression of HCV infection in relation to ethnic char-
acteristics. Discoveries are discussed that hold promise 
in identifying immune, metabolic and genetic factors 
that, in conjunction, could be therapeutic targets or 
predictors of the progression of HCV infection. 

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Immunologic, metabolic and genetic factors 
are involved in the progression of hepatitis C virus (HCV) 
infection and the response to treatment. The signifi-
cant increase in obesity worldwide, including in Mexico, 
imposes a new metabolic stress factor in patients with 
HCV infection. Given that the lipid components as-
sociated with HCV infection are finely modulated, it is 
possible that the progression of HCV infection may be 
regulated by the characteristics of the population’s lipid 
composition.
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INTRODUCTION
Hepatitis C infection is caused by the hepatitis C virus 



(HCV), a positive-stranded ribonucleic acid (RNA) virus 
of  the Flaviviridae family with a hepatotropic lifecycle. 
HCV infection is an important cause of  chronic liver 
disease and the third-leading cause of  all death from cir-
rhosis and hepatocellular carcinoma (HCC) worldwide. 
Approximately 3% of  the world’s population (160 million 
people) are currently infected with HCV, which in most 
cases establishes a lifelong chronic infection[1]. However, 
25%-30% of  infected individuals spontaneously clear 
the virus during acute infection. Because HCV is a non-
cytopathic virus, it is accepted that the interplay between 
the virus and the host immune response may influence 
the outcome of  infection[2]. In addition, host genetic fac-
tors, such as polymorphisms in cytokine and chemokine 
receptor genes promoters[3,4], are thought to be important 
contributors to the modulation of  HCV outcome. 

A key role for the low-density lipoprotein receptor 
(LDL-R) has been demonstrated during the first steps 
of  HCV attachment to the cell surface[5]. LDL is respon-
sible for transporting most of  the cholesterol in plasma[6] 

and cholesterol levels are tightly modulated during HCV 
infection. Virus entry into the cell is also mediated by other 
lipoprotein receptors including scavenger receptor class B 
type Ⅰ (SRB-Ⅰ). In addition to providing a docking site 
for HCV particles, SRB-Ⅰ facilitates entry of  the virus 
into the hepatocyte[6,7]. The E2 envelope protein deter-
mines viral attachment to SRB-Ⅰ. 

Currently, Latinos represent the fastest growing ethnic 
group in the United States and are the most overweight. 
Mexico and the United States are experiencing the larg-
est obesity epidemic in the world. In conjunction, genetic 
and cultural components, lifestyle and environmental fac-
tors are all associated with the development of  obesity. 
In addition to representing a public health problem by 
itself, obesity is also associated with the development of  
numerous pathologies, including hypercholesterolemia. A 
recent analysis of  the burden of  disease revealed that hy-
percholesterolemia was among the eight most important 
risk factors for mortality in Mexico[8]. Thus, the specific 
characteristics of  the lipid components already described 
suggest a unique mechanism of  regulation of  metabolic 
machinery among the Mexican people that could impact 
the progression of  HCV infection.

Crosstalk between metabolic and immune compo-
nents in conjunction with viral and genetic host factors 
may occur and predict HCV disease outcome. To date, 
the exact mechanisms responsible for HCV clearance 
and recovery are unknown. An understanding of  these 
mechanisms will contribute to the development of  novel, 
individualized, preventive strategies and an urgently 
needed vaccine. This review summarizes recent advances 
in understanding the crosstalk between the immune re-
sponse, metabolism and genetics in HCV viral clearance 
and emphasizes characteristics of  the Mexican popula-
tion and their association with this process.

IMMUNE RESPONSE TO HCV INFECTION 
Innate and adaptive immune response to HCV 
A robust innate immune response is activated when HCV 
infects the liver. This response includes the induction 
of  several interferon-stimulated genes (ISGs)[9,10] and is 
mediated by the specific production of  inflammatory and 
antiviral cytokines by macrophages, natural killer (NK) 
cells and neutrophils, which release perforin, granzyme 
B, interferon-gamma (IFN-γ) and tumor necrosis factor-
beta. Immune cells also express Fas ligand which cause 
cell death in infected hepatocytes[11].

Animal models have enabled the precise description 
of  the kinetics of  viremia throughout infection. In par-
ticular, chimpanzee models have revealed that HCV RNA 
levels increase rapidly upon initial infection[12]. Thereafter, 
a slow decrease in viremia is observed. It is accepted that 
the innate immune response in hepatocytes contributes 
to the second phase of  slowed viral replication[13]. This 
response includes type Ⅰ interferon responses and the 
antiviral activity of  plasmacytoid dendritic cells and NK 
cells. Thus, an ineffective innate immune response can 
result in disease progression.

The adaptive immune response to HCV is mediated by 
the humoral and cellular immune systems. HCV-specific T 
lymphocytes are detectable five to nine weeks after infec-
tion[14,15], which coincides with the onset of  hepatitis. Both 
CD4+ and CD8+ T cells have been shown to play major 
roles in the outcome of  HCV infection. CD8+ T cells in-
hibit HCV replication by cytolytic and non-cytolytic effec-
tor mechanisms[16] that are highly dependent on CD4+ T 
cell activation. CD4+ T cells are critical for the elimination 
of  viruses through tightly regulated mechanisms. CD4+ 
T-helper cells are divided into four subsets (Th1, Th2, 
T regulatory, Th17) based on their expression profile of  
transcription factors and secreted cytokines. An effective 
Th1 cellular function is crucial for an adequate immune 
response against HCV, given the specific production of  
IFN-γ by this cellular subtype. Unbalanced Th1/Th2 
T-cell responses in the liver are a characteristic of  hepatic 
inflammation and subsequent liver fibrosis as a result of  
HCV infection[17]. Clinical data reveals increased interleu-
kin-17 levels in HCV-infected patients who had increased 
alanine transaminase (ALT) values, suggesting that Th17 
cells in chronic hepatitis C infection might be associated 
with control of  liver injury. However, these observations 
are preliminary and not fully conclusive[18,19]. Indeed, vig-
orous peripheral and intrahepatic virus-specific T cell re-
sponses that target multiple epitopes have been described 
in patients who recover from HCV infection[13], while a 
weak and functionally impaired T cell response has been 
reported in patients who fail to clear the virus. Consistent 
with these findings, the role of  T regulatory cells in HCV 
seems to range from suppressing T-cell responses directed 
against HCV to down-regulating the immune responses 
causing liver damage[20]. In addition, animal models have 
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indicated that early expression of  memory precursor 
markers on HCV-specific T cells or the expression of  li-
gands for these memory markers in the liver predicts the 
outcome of  acute infection[17] (Figure 1).

Neutralizing antibodies 
The generation of  neutralizing antibodies represents a 
protective strategy in host immunity. Neutralizing anti-
HCV antibodies (nAbs) were originally described in 
chimpanzees. These antibodies target epitopes within the 
hypervariable region 1 (HVR1) of  envelope glycoprotein 
E2[21]. In humans, nAbs were identified in a cohort study 

of  transplant recipients in which the incidence of  HCV 
viremia was lower in patients receiving immunotherapy 
(anti-HBV immunoglobulins contaminated with anti-
HCV immunoglobulins) compared to patients whose 
therapy did not include anti-HCV antibodies[22], indicat-
ing the potential contribution of  neutralizing antibodies 
to viral control. Functional analysis and neutralization ex-
periments using sera from chronically HCV-infected pa-
tients have demonstrated that host neutralizing responses 
target viral entry at a step after initial HCV binding. Ini-
tial HCV attachment to the cell surface is likely facilitated 
by interactions with attachment factors that include the 
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tributed in high-density fractions[43]. In addition, HCV is 
able to infect B-lymphocytes and induce hypermutations 
in the heavy chains of  immunoglobulins. These hypermu-
tations may decrease the affinity and specificity of  anti-
HCV antibodies and may allow the virus to escape from 
the immune system[44]. HCV dissemination by cell-to-
cell transmission may also contribute to viral persistence 
by avoiding surveillance of  nAbs present in the serum[45] 

(Figure 1).

HCV VIRUS AND LIPID METABOLISM
HCV entry 
After its discovery, HCV was found to be associated 
with lipoproteins. Thomssen et al[46] demonstrated the 
existence of  distinct HCV particles categorized as high 
and low density particles. These particles, also recog-
nized as lipo viro particles (LVP), are rich in triglycerides 
(TG) and can be almost completely precipitated by anti-
Apo lipoprotein B and E. LVPs contain HCV RNA and 
structural viral proteins, mainly E1 and E2 that attach 
the virus to the hepatocyte surface through specific re-
ceptors[6,47]. 

Attachment and internalization of  HCV into the cell 
represent the first steps in the viral replication cycle. The 
LDL receptor is likely the mediator of  viral entry through 
Apolipoprotein E (ApoE), the major structural agent 
of  infectious LVP and the natural ligand of  LDL-R[48]. 
ApoE exists in three common isoforms (E2, E3 and 
E4) that affect LDL receptor binding[49]. Allele 4 is as-
sociated with clearance of  HCV and protection against 
severe liver damage[50]. Allele 2 is associated with clear-
ance and binds poorly to LDL-R; it is plausible that this 
defective binding could result in poor uptake of  HCV 
LVP into hepatocytes, thus altering the balance between 
virus replication and the immune response by decreasing 
viral replication and favoring clearance. In contrast, allele 
3 is associated with persistence[51]. Recently, an associa-
tion between levels of  ApoE and interferon sensitivity 
was found, and ApoE was shown to induce a higher 
LDL concentration, potentially inhibiting the binding 
of  HCV to LDL-R. The association between ApoE and 
the peg-interferon treatment response suggests that lipid 
modulation is a potential target for modifying interferon 
sensitivity, favoring the clearance of  HCV and avoiding 
progression to chronic infection[52] (Figure 2).

HCV replication, virion assembly and secretion: Role of 
apolipoprotein B and microsomal triglyceride transfer 
protein
HCV RNA replication is strongly influenced by the intra-
cellular levels and composition of  fatty acids, including 
cholesterol. Recent studies have demonstrated that the 
expression of  genes involved in biosynthesis, degradation 
and intracellular transport of  lipids is altered during HCV 
infection[53,54]. The positive RNA strand of  HCV induces 
remodeling of  the intracellular membranes to gener-
ate compartments where RNA replication takes place. 

LDL receptor[5]. Upon initial attachment, at least six host 
entry factors including scavenger SRB-Ⅰ, CD81, the 
tight junction proteins claudin 1 and occludin[23], receptor 
tyrosine kinases[24] and the Niemann-Pick C1-like 1 cho-
lesterol absorption receptor[25] are important for particle 
internalization. Indeed, several E2 domains have been 
shown to play pivotal roles in viral entry and neutraliza-
tion. Two regions in the E2 viral envelope glycoprotein 
have increased genetic variability within quasispecies and 
among genotypes and have been identified as hypervari-
able regions. Antibodies that demonstrate broadly neu-
tralizing activity tend to be directed against conserved 
and conformational epitopes within E2, which inhibit the 
interaction between CD81 and E2[26-30].

Mechanisms of immune evasion by HCV 
The strategies of  HCV persistence and evasion of  the 
immune response involve multiple mechanisms. The 
high genetic variability of  HCV is a major contributor to 
the development of  chronic HCV infection. It has been 
shown that HCV constantly circulates in the patient and 
rapidly evolves into genetically distinct but closely related 
variants within quasispecies. The simultaneous presence 
of  different variants has been postulated to allow for 
the rapid selection of  mutants that are best adapted to 
changes in the host environment. Genetic analysis reveals 
a positive correlation between distinct HCV quasispecies, 
viral clearance and a slowly adapting viral population, 
whereas distinct patterns of  progression to chronicity are 
related to selective pressure on the HVR1 region of  HCV 
E2. Moreover, chronic progression is associated with the 
rapid evolution of  quasispecies[31], and single point muta-
tions that result in glycosylation site modifications during 
viral genetic and conformational changes have been sug-
gested to be responsible for masking the envelope glyco-
protein binding sites[32-36]. The result is viral persistence in 
the body despite the presence of  an immune response. 

During the innate immune response, HCV interferes 
with innate signaling pathways using its structural and 
non-structural proteins to interact with factors that regu-
late ISGs, thus attenuating innate responses[37-39]. In addi-
tion, patients who fail to clear the virus show a weak and 
functionally impaired T cell response. This result strongly 
suggests that HCV also employs strategies to escape host 
adaptive immunity.

The action of  nAbs may be blocked by the presence 
of  interfering HCV-induced Abs[32,40,41]. There are two 
proposed mechanisms through which lipoproteins may 
provide HCV with protection from nAbs: masking viral 
epitopes by associating with LDL and very-low density 
lipoprotein (VLDL) or accelerating viral entry by interac-
tions with high-density lipoprotein (HDL). In both cases, 
HCV lipoprotein-dependent protection results in limit-
ing the exposure of  viral epitopes to nAbs[42]. Recently, it 
has been suggested that in HCV genotype 2a, the viruses 
that combine with LDL and VLDL and are consequently 
distributed in low-density fractions are more capable of  
escaping neutralizing antibodies compared to viruses dis-
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The NS5B viral protein is responsible for generating the 
membranous web required for RNA replication through 
diverse mechanisms[55]. Transcription of  genes related 
to lipid metabolism is augmented during HCV infec-
tion. Sterol regulatory element-binding protein (SREBP) 
expression, which controls the transcription of  specific 
genes required for cholesterol biosynthesis, is increased 
by the NS2 and NS4B HCV proteins. However, the exact 
mechanism responsible for disruption of  host lipid me-
tabolism by HCV infection is not yet clear. Understand-
ing the components involved in this process will allow 
the possible design of  specific therapeutic targets. 

Some authors have reported that 30% of  the to-
tal protein in complexes associated with HCV RNA is 
functionally involved in lipid metabolism[56]. Many lipids 
are crucial for the viral lifecycle, and inhibitors of  cho-
lesterol/fatty acid biosynthetic pathways inhibit viral 
replication, maturation and secretion[57]. In humans, apo-
lipoprotein B (ApoB)-100 and ApoB-48 are obligatory 
proteins for the assembly of  hepatic VLDL and intestinal 
chylomicron, respectively. VLDL assembly occurs via a 
two-step mechanism involving the formation of  ApoB-
containing VLDL precursor particles in the lumen of  the 
endoplasmic reticulum, a step that requires microsomal 
triglyceride transfer protein (MTP)[58]. Hepatic VLDL as-
sembly and secretion are also profoundly influenced by 

alterations in the de novo biosynthesis of  phospholipids, 
such as phosphatidylethanolamine and phosphatidyl-
choline. Increased VLDL-TG concentration is a central 
feature of  diabetic dyslipidemia and is largely caused by 
increased VLDL-TG secretion[59]. According to clinical 
data and experimental models, the HCV core protein has 
been shown to inhibit the MTP protein[60]. This enzyme 
plays a rate-limiting role in VLDL assembly and ApoB 
secretion[61].

Inhibition of  VLDL assembly and secretion also af-
fects virion morphogenesis and secretion, leading to the 
notion that HCV may hijack the VLDL secretion path-
way for virion maturation and secretion. The reliance of  
HCV on host lipid metabolic pathways for its replication, 
morphogenesis and release requires the modulation of  
host lipid pathways by HCV to create a lipid-rich intra-
cellular environment favorable for replication. HCV as-
sembly and maturation in hepatocytes depend on MTP 
and ApoB in a manner that parallels the formation of  
VLDL[56,62]. Inhibitors of  MTP and reduction of  the ex-
pression of  ApoB lowers virion production[56,63]. 

Mechanism of HCV-associated steatosis
Steatosis, or the accumulation of  hepatocellular lipid 
droplets, and altered serum lipid profiles are common 
consequences of  HCV infection. The presence of  ste-
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atosis in infected patients with HCV varies from 30% to 
70% depending on ethnic and other factors, such as alco-
hol consumption, being overweight, obesity and factors 
that are also risk factors for non-alcoholic steatohepati-
tis[64]. In patients with chronic HCV, serum cholesterol 
is significantly reduced when compared to appropriately 
matched controls. This has been specifically analyzed in 
HCV genotype 3 infections in specific populations[65], 
and this metabolic effect can be reversed after successful 
HCV eradication. However, large-scale studies including 
samples from distinct populations and different geno-
types are necessary to determine the roles of  viral geno-
types and host genetic factors in this process. 

HCV modulates lipid metabolism to create an envi-
ronment rich in lipids favorable for viral replication. Con-
sistent with this lipid modification, each step of  the viral 
replication cycle appears related to lipid metabolism[66]. 
The interaction of  HCV proteins with hepatic cellular 
components contributes to the interference with lipid and 
carbohydrate metabolism, resulting in the release of  cy-
tokines, insulin resistance, inflammation, oxidative stress 
and steatosis[67,68]. The mechanism of  triglyceride accu-
mulation induced by HCV infection is multifactorial. de 
Gottardi et al[69] reported that host lipid metabolism may 
be modulated by HCV at three levels: impaired lipopro-
tein secretion, enhanced lipogenesis, and impaired fatty 
acid degradation. These detrimental alterations incurred 
during HCV infection then manifest as the pathological 
basis for some HCV-associated diseases, most notably 
steatosis and metabolic syndromes such as insulin re-
sistance, obesity, and HCC[70-72]. MicroRNAs (miRNAs) 
exert regulatory control through modulation of  many 
targets. In the liver, miRNA-122 is important for regulat-
ing lipid metabolism[73,74] and aberrant expression of  miR-
NAs is linked to HCV infection[75]. It has recently been 

reported that HCV replication induces the expression of  
miR-27 in vitro and in vivo. This results in larger and more 
abundant lipid droplets and coincides with the repression 
of  regulators of  triglyceride homeostasis including per-
oxisome proliferator-activated receptor alpha (PPARα), 
identifying HCV’s up-regulation of  miR-27 as a novel 
mechanism that may contribute to the development of  
steatosis[76]. 

In conjunction, the main lipid alterations in HCV are 
enhanced lipogenesis, reduced secretion and β-oxidation 
of  lipids regulated by transcription factors, hormones and 
key enzymes that are briefly described below (Figure 3).

PPARs: PPARs are ligand-dependent transcription 
factors. The three subtypes of  PPARs (PPARalpha, 
PPARdelta, and PPARgamma) are differentially expressed 
in tissues, and play pivotal roles in lipid, lipoprotein and 
glucose homeostasis[77]. PPARalpha, PPARdelta, and 
PPARgamma are differentially involved in HCV infec-
tion. A clear effect of  PPARα in HCV RNA replication 
has been described and a recent report has shown that 
PPARα-selective antagonists inhibit HCV replication, 
while PPARα is not involved in this process[78]. PPARα 
is a transcription factor in the nuclear hormone recep-
tor superfamily; it is involved in the differentiation of  
normal adipocytes, and its major function is to control 
fatty acid oxidation and activation. PPARα participates 
in enhancing the expression of  adiponectin messenger 
RNA (mRNA) and serum adiponectin levels. PPARα de-
ficiency causes defective hepatic fatty acid oxidation[79,80], 
while persistent activation of  PPARα is essential for the 
pathogenesis of  hepatic steatosis and HCC induced by 
HCV infection[81]. Dharancy et al[82] reported that PPARα 
mRNA expression was significantly reduced in the liver 
of  chronic HCV patients infected with HCV genotype 
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3 when compared with HCV genotype 1 infections. A 
better understanding of  the role of  PPARα and its inter-
action with HCV proteins may help in developing novel 
therapies against HCV-induced steatosis and HCC.

Adiponectin and leptin: Adiponectin is an insulin-
sensitizing protein that is abundantly expressed in white 
adipose tissue[83] and is a member of  the adipocytokine 
family. Adiponectin improves hepatic insulin sensitivity, 
decreases lipid accumulation in macrophages and has an-
ti-inflammatory properties[84-86]. Serum adiponectin levels 
in humans depend upon metabolic activity; it is present 
as a low molecular weight trimer and a high molecular 
weight (HMW) hexamer. HMW adiponectin is the biolog-
ically active form[87]. Adiponectin exerts its effect via two 
receptors, the adiponectin receptor 1 (AdipoR1) and adi-
ponectin receptor 2 (AdipoR2). AdipoR1 is expressed in 
skeletal muscles, and AdipoR2 is expressed in the liver[88]. 
AdipoR1 is associated with AMP-activated protein kinase 
(AMPK) activation, while AdipoR2 is associated with 
PPARα activity. Some insights regarding the pathways of  
steatohepatitis have been identified by impaired lipid ac-
cumulation due to hepatic loss of  adiponectin receptors, 
which play an important role in fatty acid accumulation 
by up-regulating the expression of  enzymes during HCV 
infection, including AMPK, fatty acid synthase (FAS), 
acetyl-CoA carboxylase, liver gluconeogenic enzyme and 
phosphoenolpyruvate-carboxykinase[79,80]. Adiponectin is 
assumed to protect hepatocytes from triglyceride accu-
mulation by increasing the β-oxidation of  free fatty acids 
or decreasing de novo production of  free fatty acid in he-
patocytes[89]. In contrast to the anti-inflammatory role of  
adiponectin, leptin is a pro-inflammatory adipocytokine 
identified as one of  the best markers of  total body fat; its 
elevated expression can result in stimulation of  cellular 
lipolysis and fatty oxidation, promoting a negative energy 
balance. Both adiponectin and leptin are crucial for he-
patic steatosis[90]. However, data concerning the roles of  
adiponectin and leptin on HCV-related steatosis remain 
divergent. This is mainly due to the multiple functions in-
volving adipocytokines. By using a HCV core-transgenic 
mouse model, a recent report reveals that HCV core-
induced, non-obese hepatic steatosis is associated with 
down regulation of  the leptin gene in visceral fat and 
hypoadiponectinemia[91]. A better understanding of  this 
process may be valuable in the design of  new therapeutic 
interventions, particularly in the cases of  non-obese he-
patic steatosis involving HCV infection.

AMPK: AMPK is a heterotrimeric protein with serine/
threonine protein kinase activity that works as a sensor 
of  cellular energy status and enables metabolic adapta-
tion to the environment, such as in nutritional stress[92-94]. 
AMPK plays a key role in the regulation of  both lipid 
and glucose metabolism. Activated AMPK inhibits ener-
gy-consuming biosynthetic pathways such as lipogenesis 
and activates ATP-producing catabolic pathways such as 
β-oxidation. A study demonstrated that phosphorylation 

of  AMPK at threonine 172 causes dramatically reduced 
AMPK activity in cells infected with HCV or harbor-
ing an HCV subgenomic replicon. Thus, inhibition of  
AMPK is required for HCV replication and restoration 
of  AMPK activity may represent a target for anti-HCV 
therapies[95,96]. The anti-HCV activity of  2-octynoic acid 
(2-OA), a compound used in perfumes, lipstick, and 
many food flavorings, has recently been revealed in vitro. 
This activity seems to be associated with the activation of  
AMPK by 2-OA, which regulates ISGs and suppresses 
miRNA-122 expression, inhibiting HCV infection. This 
represents a novel mechanism to explain inhibition of  
infection by AMPK[97].

SREBP: SREBP plays an important role in the regu-
lation of  lipid synthesis and cholesterol metabolism. 
The SREBP gene encodes three isoforms (SREBP-1a, 
SREBP-1c and SREBP-2[98] that regulate genes involved 
in cholesterol synthesis. SERBP-1a is an activator of  cho-
lesterol and fatty acid synthesis, while SERBP-1c regu-
lates genes involved in lipid synthesis[99-102]. SREBP-1c 
activates the lipogenesis pathway in response to insulin. 
HCV infection and the HCV core protein up-regulate the 
expression of  SREBP-1c and cause the development of  
fatty liver[103]. In non-alcoholic fatty liver disease, SERBP-
1c is expressed at a level up to five-fold higher than ob-
served in controls[104]. 

It has been demonstrated that HCV infection en-
hances the proteolytic cleavage of  SREBP precursors in 
hepatic cells. The HCV NS2 and NS4B proteins can up-
regulate SERBP-1c and consequently promote enhanced 
transcriptional activity of  fatty acid synthase[105,106].

Animal models have been used to investigate the ef-
fect of  the HCV core and NS proteins on SREBP gene 
regulation, and these models have indicated that HCV 
proteins that interfere with SREBP lead to steatosis[105,106]. 
The host subtilisin/kexin/isozyme/1 (SKI-1) or site 1 
(S1P) plays a crucial role in the proteolytic activation 
of  SREBP. The use of  a SKI-1/S1P-specific protein-
based inhibitor recently demonstrated that SKI-1/S1P 
inhibition blocks HCV infection in hepatoma cells by a 
mechanism that is associated with dramatic reduction in 
the number of  lipid droplets and adipose differentiation-
related protein/perilipin 2. The inhibition of  virus as-
sembly from infected cells identifies SKI-1/S1P as both 
a regulator of  the HCV lifecycle and a potential host-
directed therapeutic target against HCV infection[107].

Retinoid X receptor alpha: The retinoid X receptor 
(RXR) family is a family of  nuclear receptors that target 
and regulate multiple signaling pathways. RXRs control 
gene expression by binding cooperatively as a dimer to 
hormone responsive elements[108,109]. RXRs form homodi-
mers and are involved in 9-cis retinoic acid-mediated gene 
activation. RXRs exist as three isoforms, namely RXRα, 
RXRβ and RXRγ; the RXRα isoform is abundantly ex-
pressed in the liver and regulates cell proliferation and 
differentiation.
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Some reports have suggested an interaction between 
HCV core proteins with RXRα and shown that the 
HCV core protein binds to the DNA-binding domain 
of  RXRα, leading to an increase in binding of  RXRα to 
its DNA response element[110,111]. In addition, RXRα is 
activated in cells expressing the HCV core protein and 
in the livers of  HCV core-transgenic mice that develop 
hepatic steatosis and HCC. The HCV core protein may 
compete with p50- and p65-nuclear factor kappa-light-
chain-enhancer of  activated B cells (NF-κB) subunits 
for direct interaction with RXRα. This competition may 
influence signaling via NF-κB, a regulator of  many cel-
lular functions and lipid synthesis, and up-regulate the 
enzymes acyl CoA oxidase and retinol binding protein Ⅱ, 
exacerbating steatosis by increasing oxidative stress and 
decreasing β-oxidation[111,112]. These reports indicate that 
modulation of  RXRα controls gene expression by inter-
acting with the core protein and contributes to pathogen-
esis of  HCV infection[112].

FAS: FAS is a protein that is directly linked to intracellular 

lipid synthesis and plays a central role in triglyceride accu-
mulation in the liver. FAS catalyzes the conversion of  ace-
tyl CoA and malonyl CoA to saturated fatty acids, which 
are then converted to TG after etherification[106,113]. Yang 
et al[114] have demonstrated that HCV infection directly 
induces FAS expression, while Jackel-Cram et al[115] have 
reported that HCV-3a is a stronger teratogenic factor than 
HCV-1b. These authors reported that a single amino acid 
substitution at position 164 (phenylalanine) of  the HCV-
3a core protein can up-regulate FAS activity. Therefore, the 
short sequence YATG in HCV-1b and FATG in HCV-3a 
is responsible for FAS up-regulation at the transcriptional 
level[114]. However, further studies are required to under-
stand the molecular mechanism of  FAS activation. 

GENETICS AND HCV INFECTION
Recent progress in the field of  molecular genetics has 
revealed that the clinical outcome and response to treat-
ment for HCV may be predetermined by genetic poly-
morphisms. Genes related to lipids, metabolism and the 
immune response have been studied (Table 1). Large-
scale genetic epidemiological studies are required to attain 
adequate statistical power. Identifying the relationship 
between specific genes and the progression of  HCV in-
fection is a crucial step toward understanding the patho-
genesis of  infection.

DYSLIPIDEMIAS AND HCV INFECTION
The lipid profile in chronic HCV-infected patients pres-
ents low levels of  total cholesterol, HDL and LDL re-
garding non-infected individuals. In addition, these levels 
are significantly lower in patients who present with fatty 
liver. HCV-genotype 3-infected patients show a higher 
incidence of  fatty liver development. The relationship of  
these lipid alterations with HCV infection is important 
for the lifecycle of  the virus, and it is positively correlated 
with the response to antiviral treatment, especially in the 
setting of  genotype 3 infections[57].

Studies have demonstrated the presence of  hypo-
betalipoproteinemia in patients infected with HCV[116]. 
The pathogenesis of  hypobetalipoproteinemia in HCV 
patients is unclear. Recently, hepatic steatosis has been 
correlated with this type of  dyslipidemia. However, the 
influence of  viral infection on these parameters has not 
been thoroughly investigated. It has been demonstrated 
that hepatic fibrosis is increased as serum levels of  ApoB 
decrease. Thus, there is a strong negative correlation be-
tween fibrosis and ApoB levels[117].

Studies report that serum triglyceride levels are de-
creased in patients with HCV; however, in these stud-
ies, more than 50% of  patients had liver cirrhosis and 
HCC[118]. Thus, the decrease in TG cannot be attributed to 
the presence of  virus alone. In more recent studies, where 
HCV patients without cirrhosis or HCC were analyzed, 
the prevalence of  TG was similar to control patients with-
out HCV. However, TGs in the fasting state, transported 
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Table 1  Genes and hepatitis C infection

Lipid metabolism genes altered by HCV
Gene Protein Effect
   SREBP Sterol regulatory 

element-binding 
protein

Core protein increases the gene 
expression[110]

   PPARα Peroxisome 
proliferators-

activated receptor 
alpha

HCV infection led to reduction in 
gene expression[126]

   MTP Microsomal 
triacylglycerol 

transfer protein

Core protein led to reduction 
in MTP activity and lower gene 

expression[127,128]

   PEPCK Phosphoenolpyruvate 
carboxykinase

NS5A increases gene expression 
and development of steatosis[129]

   FAS Fatty acid synthase Core protein induces FAS 
promoter activity and severity of 

steatosis[115]

   RXRα Retinoid X receptor-
alpha

Core protein enhances the 
transcriptional activity and 

contributes to the pathogenesis of 
infection[112]

   APOE Apolipoprotein E HCV forms lipoviroparticles 
and hijacks ApoE for entry into 

hepatocyte[48]

Genes associated with spontaneous clearance of HCV
Gene Protein Allele
   IL28B Interleukin 28B rs12979860 CC[130]

   IL28B Interleukin 28B rs8099917 TT[131]

   IL28B Interleukin 28B ss469415590DG[132]

   KIR Natural killer cell 
immunoglobulin-like 

receptor

KIR3DS1[133]

   TNFα Tumor necrosis 
factor-α

-863CC[134]

   APOB Apolipoprotein B rs934197 TT[135]

MTP: Microsomal triacylglycerol transfer protein; FAS: Fatty acid syn-
thase; HCV: Hepatitis C virus; SREBP: Sterol regulatory element-binding 
protein; PPARα: Peroxisome proliferator-activated receptor alpha; RXRα: 
Retinoid X receptor alpha.
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only by VLDL, are found at significantly lower levels in 
HCV-infected patients compared to individuals without 
HCV infection. The levels of  TGs in different stages of  
fibrosis in patients with HCV have been compared and 
no differences were found. Differences were only found 
in patients with cirrhosis. In contrast, the levels of  TGs 
transported by VLDL declined with progression of  liver 
damage until cirrhosis was reached. These data indicate 
that hypertriglyceridemia in HCV patients is not of  viral 
origin. In contrast, the decreased serum levels of  TG can 
be explained by the interference in maturation and excre-
tion of  VLDL caused by the viral lifecycle[119].

Dyslipidemias in Mexico
Chronic diseases associated with diet and lifestyles, includ-
ing obesity and dyslipidemias, have genetic components. 
Currently, Mexico and the United States are experiencing 
the largest obesity epidemic in the world. The significant 
increase in prevalence of  these diseases in recent years 
strongly suggests the influence of  environmental fac-
tors in their development. High levels of  cholesterol and 
lipid disorders are important risk factors for developing 
diseases including hepatic and cardiovascular diseases. 
Pathologies associated with high levels of  cholesterol rep-
resent one of  the eight main risk factors for mortality in 
Mexico[8,120]. Hypercholesterolemia has been described as 
a public health problem in Mexico since 1988 when the 
Secretariat of  Health conducted the first national survey 
related to serum cholesterol levels among the Mexican 
population. In 1993, a new study was performed (National 
Survey of  Chronic Diseases) revealing that the preva-
lence of  hypercholesterolemia had risen to 35.5%, a 10% 
increase compared to the previous study. This trend con-
tinued during the coming years, resulting in an increase 
in prevalence of  hypercholesterolemia from 35.3% to 
42.6%[121]. Additionally, serum TGs are higher and HDL 
is lower among Mexicans when compared to other popu-
lations worldwide. In 2000, data from the Secretariat of  
Health revealed that fasting serum samples from 2351 
adults had a mean total cholesterol of  197.5 mg/dL, HDL 
cholesterol of  38.4 mg/dL and TGs of  181.7 mg/dL. 
Only 6.1% of  the study population was diagnosed with 
dyslipidemia and 85.88% did not know that they were 
ill[121]. Detailed analysis of  the data revealed that the most 
frequent dyslipidemia was hypobetalipoproteinemia (low 
HDL), followed by hypertriglyceridemia and hypercho-
lesterolemia. The most common combinations were high 
levels of  TGs and low HDL cholesterol, and high levels 
of  TGs with high total cholesterol (mixed dyslipidemia). 

It is currently accepted that there is an important as-
sociation between being overweight, obesity and various 
types of  dyslipidemia[121]. As in the United States, the 
obesity epidemic in Mexico has dramatically increased 
in children and adults. In 2000, the Secretariat of  Health 
in Mexico revealed an association between obesity and 
hypertriglyceridemia. Obese adults compared with indi-
viduals of  normal weight were four times more at risk 
for a diagnosis of  high cholesterol, low cholesterol HDL, 

high TGs or any combination of  these conditions[121]. 
Currently, even children have been detected with high 
blood levels of  cholesterol and triglycerides, most likely 
due to the marketing of  processed foods with high sugar 
or fat content, changes in dietary patterns and the abuse 
of  food rich in animal fat. It has been described that 100 
mg of  dietary cholesterol for each 1000 kcal results in 12 
mg/dL increase in the concentration of  blood cholester-
ol, and that children and adolescents with high levels of  
cholesterol are more likely to continue having high levels 
into adult stage[122].

Mexico has been reported to be a low endemic area 
for HCV[123,124]. Moreover, a low association between 
HCV infection and HCC has been reported in the coun-
try[125]. Given that lipid components associated with HCV 
infection are finely modulated in the Mexican popula-
tion, it is plausible to hypothesize that the progression of  
infection may be regulated by the characteristics of  this 
population’s lipid composition.

FINAL REMARKS 
Ineffective viral escape from the immune response and 
effective T cell activity, together with the absence of  inter-
fering HCV-induced Abs, are factors that may contribute 
in combination to the spontaneous clearance of  HCV. In 
contrast, exhausted T cell responses resulting in impaired 
T cell activity and viral adaptation to the host immune 
response may result in chronicity. In addition to the rec-
ognized role of  lipoproteins during the initial steps of  
HCV infection, lipoproteins can also provide HCV with 
protection from nAbs, either by masking viral epitopes by 
associating with LDL and VLDL or by accelerating viral 
entry via HDL and thus limiting the exposure of  viral epi-
topes to nAbs. ApoE alleles 2 and 4 are associated with 
HCV clearance and protection against severe liver dam-
age. Furthermore, association between ApoE levels and 
IFN sensitivity suggest that lipid modulation is a potential 
target for preventing HCV disease progression. 

When comparing serum lipid concentrations with 
those of  other populations of  the world, it is notable 
that Mexicans have higher concentrations of  TGs and 
lower HDL cholesterol. Hypercholesterolemia is among 
the eight most important risk factors for mortality in the 
country. Moreover, in Mexico, as in the United States and 
other developed countries, obesity has significantly in-
creased in recent years. Analysis of  the 2000 Mexican Na-
tional Health Survey significantly associated obesity with 
hypertriglyceridemia, followed by hypercholesterolemia. 
This reveals a unique lipid profile in the Mexican popula-
tion that, in conjunction with genetics and lifestyle, might 
be responsible for the immune response during chronic 
diseases, including HCV infection. 

CONCLUSION
Advances in understanding HCV disease outcome sug-
gest that individualized therapies that account for fac-
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tors, such as lipid modulation, lifestyle and genetics, in 
conjunction with immune-based therapies are required to 
establish better strategies for controlling infection with 
HCV.
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