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Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease caused by the 
specific destruction of pancreatic islet β cells and is characterized as the absolute 
insufficiency of insulin secretion. Current insulin replacement therapy supplies 
insulin in a non-physiological way and is associated with devastating 
complications. Experimental islet transplantation therapy has been proven to 
restore glucose homeostasis in people with severe T1DM. However, it is restricted 
by many factors such as severe shortage of donor sources, progressive loss of 
donor cells, high cost, etc. As pluripotent stem cells have the potential to give rise 
to all cells including islet β cells in the body, stem cell therapy for diabetes has 
attracted great attention in the academic community and the general public. 
Transplantation of islet β-like cells differentiated from human pluripotent stem 
cells (hPSCs) has the potential to be an excellent alternative to islet 
transplantation. In stem cell therapy, obtaining β cells with complete insulin 
secretion in vitro is crucial. However, after much research, it has been found that 
the β-like cells obtained by in vitro differentiation still have many defects, 
including lack of adult-type glucose stimulated insulin secretion, and multi-
hormonal secretion, suggesting that in vitro culture does not allows for obtaining 
fully mature β-like cells for transplantation. A large number of studies have found 
that many transcription factors play important roles in the process of 
transforming immature to mature human islet β cells. Furthermore, PDX1, 
NKX6.1, SOX9, NGN3, PAX4, etc., are important in inducing hPSC differentiation 
in vitro. The absent or deficient expression of any of these key factors may lead to 
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the islet development defect in vivo and the failure of stem cells to differentiate 
into genuine functional β-like cells in vitro. This article reviews β cell maturation 
in vivo and in vitro and the vital roles of key molecules in this process, in order to 
explore the current problems in stem cell therapy for diabetes.
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Core Tip: Type 1 diabetes is a metabolic disease characterized by absolute lack of 
insulin. Current insulin replacement therapy supplies insulin in a non-physiological 
way and is associated with devastating complications. Diabetes stem cell therapy with 
insulin-producing β-like cells differentiated in vitro from human pluripotent stem cells 
has recently attracted great interest in the academic community and the general public. 
Although great progress has been made, the β-like cells differentiated in vitro still have 
many defects. Here we summarize the latest knowledge on β-cell maturation in vivo 
and in vitro and the vital roles of key molecules in this process, in order to explore the 
current problems in diabetes stem cell therapy.

Citation: Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A 
roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13(3): 193-207
URL: https://www.wjgnet.com/1948-0210/full/v13/i3/193.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i3.193

INTRODUCTION
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by the 
absolute deficiency of β-cell function. Disorders of the immune system cause 
destruction of β-cells, resulting in the absolute lack of insulin secretion and the 
inability to properly regulate blood glucose homeostasis[1,2]. This process is mediated 
by autoimmunity, with the participation of both innate and adaptive immunity[3,4]. Due 
to insufficient insulin secretion, blood glucose rises rapidly in the short term. This can 
cause life-threatening conditions such as hypoglycemia unawareness, diabetic 
ketoacidosis, or diabetic hyperosmolar coma. Long-term hyperglycemia will damage 
the cardiovascular and cerebrovascular systems and microcirculation in varying 
degrees[5], resulting in complications including eye disease, nephropathy, peripheral 
neuropathy, and coronary atherosclerotic heart disease. Significantly, T1DM is also 
associated with some other chronic autoimmune diseases, such as celiac disease[6,7]. 
Finally, as most patients with T1DM have had the condition since childhood, long-
term insulin use is not only an inconvenience to daily life, but also an economic 
burden on society. Therefore, research on new treatment methods for T1DM is crucial.

Since several decades ago, T1DM has been experimentally treated by whole 
pancreas and then islet transplantation[8,9]. However, due to its unfeasibly high costs 
and insufficient donor sources for the increasing number of T1DM patients, this 
treatment cannot be widely implemented in practice. To resolve this problem, the 
ultimate goal is to develop a stem cell therapy for diabetes, namely, differentiate islet 
β-like cells from human pluripotent stem cells (hPSCs) capable of glucose stimulated 
insulin secretion (GSIS) similar to mature β cells, and effectively regulating blood 
glucose homeostasis in the body after transplantation. Great efforts have thus been 
concentrated on discovering technologies in how to effectively differentiate hPSCs into 
genuine β-like cells that could maintain the long-term survival and functional stability 
if transplanted. This review article summarizes the latest progresses on the β-cell 
development and functional maturity in vivo and on the differentiation of insulin-
secreting β-like cells in vitro from human pluripotent or multiple stem cells.
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BRIEF SUMMARY OF AUTOIMMUNITY IN T1DM
The etiology and pathogenesis of T1DM are not fully understood, but they are 
generally believed to be related to genetic and environmental factors. Although most 
patients do not have a family history of T1DM, genetic susceptibility is an important 
factor. A combination of epigenetics such as DNA methylation and histone 
modification, altered microRNA profiles, and other pathological mechanisms may also 
be related to the development of T1DM and affects the immune reaction on islet β 
cells. Studies have shown that the main genetic risk factors for T1DM are located in the 
major histocompatibility complex class II human leukocyte antigen (HLA) region, and 
the genetic polymorphism in this region largely determines the genetic risk of 
T1DM[10-12].

The autoimmunity in T1DM patients is manifested by the presence of circulating 
islet autoantibodies and autoreactive T cells. The human body temporally establishes 
an immune balance after birth and the pancreatic islet self-reactive T cells are 
regulated and suppressed from becoming active[13,14]. CD4+ helper cells and CD8+ 
cytotoxic T lymphocytes play an important role in the pathogenesis of T1DM by 
producing autoantibodies and recognizing β-cell proteins as autoantigens[15]. HLA 
molecules induce the proliferation of pathogenic T cells by presenting self-antigens to 
naive T cells, and producing self-reactive CD4+ T cells. These activated CD4+ T cells 
then produce cytokines, which in turn activate β cell-specific cytotoxic CD8+ T cells. 
Subsequently, these activated T cells are recruited to pancreatic islets and stimulate 
macrophages and other T cells. This leads to the destruction of pancreatic β cells[16,17].

DEFECTS OF CURRENT T1DM TREATMENT
Patients with T1DM need lifelong insulin replacement therapy. Exogenous insulin 
supplementation is not only a cumbersome process but is also associated with acute 
hypoglycemia unawareness episodes. It can lead to chronic devastating complications 
such as heart and kidney failures, blindness, foot necrosis, and cancers. Although islet 
transplantation can replace destroyed β cells and exert insulin secretion function in the 
human body, this method has many limitations, such as a shortage of donors, high 
costs, strong immune system rejection after transplantation, and long-term use of anti-
rejection drugs[18,19]. Immunotherapy includes non-self-antigen-specific and self-antigen 
specific therapies. The former involves regulatory T cell replacement therapy that aims 
to self-reactivate T cells, B cells, and inflammatory cytokines, while the latter mainly 
targets the regulation and inactivation of self-antigen. Unfortunately, a T1DM 
immunotherapy that can totally replace the standard insulin replacement therapy has 
not yet been developed[20]. Researchers have also tested the possibility of mysenchymal 
stem cells (MSCs) as an innovative treatment for autoimmune diseases. MSCs are a 
class of multipotent stem cells with the ability to self-replicate. Their inherent self-
renewal potential and immune regulation ability are considered to be an exciting 
starting point for the treatment of autoimmune diseases[21]. For example, MSCs may 
have the ability to prevent the autoimmune destruction of β cells in T1DM animal 
models and generate functional β cells to maintain blood glucose homeostasis[22,23].

At present, there are several issues in the clinical application of stem cell therapy, 
including selection of appropriate encapsulation materials and transplantation site, 
and the need for further research on improving immune regulation and new blood 
vessel formation methods. However, the most pressing issue is how to obtain fully 
functional and mature β cells through in vitro culture. In order to solve these problems, 
it is critical that the maturation process of islet β cells in vivo and in vitro, and major 
functioning transcription factors and other critical molecules are better understood.

MATURATION PROCESS OF β CELLS IN VIVO
The pancreas consists largely of exocrine glands and in a smaller proportion, 
endocrine glands[24]. The exocrine glands are composed of pancreatic acinar tissues and 
pancreatic ducts, and the endocrine glands are composed of cell clusters of different 
sizes, known as the islets of Langerhans[25]. The islet is an endocrine micro-organ, 
consisting of at least five types of endocrine cells: α cells (15%-20%), β cells (60%-80%), 
δ cells (5%-10%), ε cells (< 1%), and pancreatic polypeptide-secreting (PP) cells (2%)[26]. 
Observed by optical projection tomography, there are about 1000 islets in the pancreas 
of 8-wk-old mice, with each islet containing an average of 800 β cells. There are about 
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1000000 islets in the human pancreas, each containing about 400-600 β cells. The β cells 
as polygonal cells have a diameter of 13-18 μm, and each contains about 100000 insulin 
secretory vesicles[27,28]. Insulin is stored in a crystallized form in these vesicles that are 
ultimately released through exocytosis[29]. The exocytosis of insulin granules is 
controlled by the ATP-sensitive K (KATP) channel and requires calcium ions to flow into 
the cells through the cell membrane calcium channel. When the blood glucose 
concentration rises, the glucose uptake and metabolism in β cells also increase, which 
leads to an increase in ATP production. These changes in adenine nucleotide 
concentrations cause the KATP channel to close, triggering calcium influx and insulin 
secretion[30].

Embryonic pancreatic development begins with ventral and dorsal pancreatic buds. 
In mice, the dorsal bud appears on day 9.0 of the embryo development (E9) and the 
ventral bud appears on E9.5 along the dorsal and ventral surfaces of the posterior 
foregut endoderm (Figure 1). The first transformation of mouse pancreatic 
morphology begins from E9.5 to E12.5, during which time pancreatic progenitor cells 
rapidly proliferate to form the pancreatic endoderm. At E12 to E13, the ventral and 
dorsal buds contact and fuse together. At E13, pancreatic endodermal cells proliferate, 
and pancreatic progenitor cells give rise to neurogenin 3 (NGN3) positive progenitor 
cells, which then form mature endocrine cells[31-33]. By E14.5, the developing islets 
consist of many insulin-producing β and glucagon-producing α cells, and δ cells that 
secrete somatostatin appear for the first time. PP cells begin to appear before birth. At 
birth, β cells in mice do not have adult-type insulin secretion function, but gradually 
mature within 2-3 wk after birth[34].

During human embryonic development, dorsal pancreatic buds appear around the 
fourth week of gestation, followed by abdominal buds. In contrast to the early 
presence of glucagon-expressing cells in mouse pancreatic buds, human endocrine-
expressing cells are not detected until G7.5–8w after the dorsal buds grow for 3 wk in 
early embryonic pancreas. These endocrine cells are derived from NGN3+ endocrine 
progenitor cells, and among them, the first to appear are insulin-producing β cells. The 
transcription factors PAX6, PAX4, NKX2.2, NKX6.1, HLXB9, etc. are involved in the 
process of differentiation from endocrine progenitor to insulin-producing β cells[35]. β-
cell replication is easily detectable at G9w and peaks around G14-16w[36-38]. At this time, 
embryonic β cells are multi-hormonal cells that produce insulin, glucagon, and growth 
hormone, as they are still in an immature state. Immature β cells have strong 
proliferative ability, but they do not have the functions of mature β cells.

The hallmark feature of functional β cells is mature GSIS, which means when 
postprandial blood glucose increases, pancreatic β cells secrete a sufficient amount of 
insulin to prevent hyperglycemia, and inhibit insulin secretion under fasting 
conditions to prevent hypoglycemia. This is also known as the biphasic model that is 
established after β-cell maturation. Human studies have shown that neonatal β cells do 
not have this biphasic secretion function, because these β cells are not fully mature at 
this stage. After birth, pancreatic islet cells gradually lose their proliferative capacity 
and develop highly sensitive and powerful GSIS capacity under the control of 
transcription factors such as MafA[39]. There is no definite conclusion about the time 
point at which β cells fully mature in humans, but it is closely aligned to the time 
when a newborn begins to take food supplements. According to the experiment of 
Otonkoski et al[40], human islet β cells obtain mature insulin secretion function at about 
26-44 wk of age. However, further studies are required to confirm the stage of β-cell 
maturation.

KEY MARKERS IN THE PROCESS OF β CELL MATURATION
At present, due to the limitations on human studies, most of the understanding of β-
cell maturation comes from rodent studies. In mice, the β cells in the fetal stage are 
immature and highly proliferative. At this time, the β cells can already generate 
insulin granules and show high basal insulin levels, but the regulated mechanism of 
insulin secretion remains to be established. After birth, the β cells have not yet 
obtained a mature phenotype to respond to the stimulation of changing glucose 
concentration to properly secrete insulin[41,42]. The first mature wave in mice appears 2 
wk after birth. At this time, β cells are still proliferative, but this characteristic is 
gradually lost since β cells follow the biphasic maturation model and need to adapt to 
the dietary changes of the newborn. The second maturation wave occurs in the third 
week after birth, which coincides with the weaning period. This is also true for the 
human newborn[43-45]. During this period, the proliferative property of β cells gradually 
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Figure 1 β-cell development and maturation in vivo. Important stages of β cell development and maturation in vivo, which mainly include distal foregut 
endoderm, pancreatic endoderm, endocrine progenitor, immature β cells, and mature β cells, and key transcription factors involved are described. GSIS: Glucose 
stimulated insulin secretion.

disappears, and is replaced by an adult GSIS feature. The GSIS contains a variety of 
cellular processes, in which β cells sense changes in glucose concentration through 
specific glucose transporters (GLUT1 & GLUT2)[46,47]. Subsequently, glucose 
stimulation causes the mitochondria to actively participate in the control and 
enhancement of insulin secretion in the mature GSIS process. Finally, the insulin 
granules fuse with the cytoplasmic membrane and secrete insulin via the exocytosis[48].

There are many key transcription factors involved in the process of β cell 
maturation. For example, the transcription factors MAFA and MAFB play important 
roles in the development and maturation of β cells, respectively. MAFB is expressed 
earlier than MAFA, and appears in mouse pancreatic epithelial cells at E10.5[49], while 
MAFA is originally expressed in insulin+ cells at E13.5[50]. At E15.5, 50% and 90% of 
cells with insulin secretion ability express MAFA and MAFB, respectively. However, 
in adult mice, MAFA is only expressed in β cells while MAFB is in α cells[51], 
suggesting the transformation from MAFB to MAFA signals β cell maturation. Critical 
for the development of immature insulin+ cells, MAFB is expressed in most insulin+ 
cells at E15.5 and E18.5. However, it is only expressed in a small amount of P14 mouse 
β cells, and by P28, MAFB expression is completely absent[52]. In contrast, the level of 
MAFA in islet β cells in immature P2 mice is only 7% of that in adult mice, in which 
the GSIS properties of these β cells are also poor. MAFA overexpression in P2 β cells 
can substantially enhance the GSIS ability[53]. Other experiments indicate that the 
expression level of MAFA in mature β cells is significantly higher than that in 
immature cells and is positively related to insulin secretion capacity[54]. Taken together, 
the increased expression of MAFA and the disappearance of MAFB signal the 
maturation of β cell function and are important links for β cells to obtain adult GSIS.

Many other transcription factors are not direct markers of β-cell transformation 
from immaturity to maturity, but play important roles in the process of β-cells 
achieving functional maturity. During endocrine cell formation, NGN3 regulate the 
early differentiation of islet cells and formation of endocrine cells during 
development[55]. All pancreatic endocrine cells are derived from NGN3 expressing 
endocrine progenitor cells. Individuals lacking NGN3 will not be able to produce any 
functional pancreatic endocrine cells and will subsequently die from diabetes[56,57]. 
Individuals lacking NGN3 expression can still produce embryonic β cells and produce 
insulin, however, they cannot respond to glucose stimulation and eventually obtain 
functionally mature β cells[58], suggesting that NGN3 expression is essential for β-cell 
maturation. The transcription factor PDX1 is activated in the mouse foregut endoderm 
at E8.5 and expressed in multipotent pancreatic progenitor cells of early pancreatic 
buds[59]. In 5-wk-old male mice, the lack of PDX1 expression results in changes in the 
expression of genes that control β-cell function and proliferation status (such as MAFA 
and GLUT2), leading to decreased insulin secretion levels[60]. The β cell glucose 
tolerance of PDX1-deficient mice is impaired, plasma insulin levels are reduced, and 
the adult-type GSIS is impaired[61].

In addition to the above, the transcription factors NEUROD, MNX1, PAX4, NKX6.1, 
etc. also play important roles in the process of β-cells becoming functionally 
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mature[62-65].
UCN3 can be used as a marker of β cell maturity[66]. UCN3 is a member of the CRF 

(corticoltropin release-factor) family[67,68]. As an endogenous ligand of the CRF receptor 
2, it is closely related to the regulation of energy balance and/or glucose metabolism in 
the body[69]. It is also expressed as a secreted protein in local areas of the brain and the 
pancreas. In mouse islets, UCN3 first appears in β cells at E17.5 and is expressed as a 
characteristic marker of β cells from P7 to the entirety of the adult period. Given that in 
P14, UCN3 and insulin expression completely overlap, Blum et al[70] used Western blot 
and immunohistochemistry to analyze the protein expression levels and found that 
UCN3 expression in mature β cells is 7 times higher than in immature cells. 
Immunofluorescence staining indicates that UCN3 expression is high in all adult β 
cells; however, this was not detected in embryonic islets at E18.5[70].

The functional maturation of β cells involves the switching of cell signals from 
mTORC1 to AMPK (5' adenosine monophosphate activated protein kinase)[71-73] 
(Figure 2). mTOR is a nutrition-sensitive kinase and essential for regulating the 
proliferation and growth of postnatal pancreatic β cells[74,75]. Studies have shown that 
mTORC1 promotes β-cell proliferation in embryonic and neonatal stages by regulating 
cyclins D2 and D3 and CDK4. The specific loss of mTORC1 in mouse β-cells can lead 
to severe glucose intolerance, which is related to an insufficient number of β-cells[76,77]. 
AMPK is an effective inhibitor of mTORC1, and its kinase activity is regulated by the 
intracellular ratio of ATP to AMP/ADP[78]. Loss of LKB1 (AMPK upstream activator) 
can increase β-cell proliferation and mass by inducing mTORC1, resulting in increased 
insulin output[79,80]. Helman et al[81] found that the function of β-cells after birth is 
closely related to changes in the nutritional environment, which is mainly due to 
amino acid-stimulated insulin secretion and GSIS and through the mTORC1 signaling 
pathway. These researchers found that under two nutritional conditions, there was no 
difference in the expression of PDX1, NKX6.1, UCN3, MAFA, and other transcription 
factors in β cells, indicating that the switch to adult-type GSIS is not affected by the 
expression of these markers. Instead, changes in glucose reactivity are related to the 
activation of mTORC1 after changes in nutritional conditions, and there is a positive 
correlation between insulin secretion and mTORC1 activation. Disrupting the 
nutritional sensitivity of mTORC1 in mature β cells will cause their insulin secretion to 
return to a functional immature state[82].

Synaptotagmin 4 (Syt4) may play an important role in the maturation of β cells[83]. 
As a non-Ca2+ binding paralog of the β cell Ca2+ sensor Syt7, it increases approximately 
8-fold during β-cell maturation, and the absence of Syt4 will increase the secretion of 
basal insulin in newborn mice. The role of this protein is to reduce the sensitivity of 
immature β cells to calcium ions that directly regulate the exocytosis of insulin 
granules and influence the normal secretory process of insulin[84].

Recently, a Wnt/Plane cell polarity effector protein Flattop (Fltp) was found to 
distinguish immature (Fltp-) and terminally mature (Fltp+) β cells[85]. Fltp+ cells have 
higher expression levels of β-cell functional genes (i.e., SLC2A2, NKX6.1, UCN3, 
MAFA, etc.), and it can be observed that the number of mature secreted granules is 
significantly increased, the mitochondrial physiological function is enhanced, and the 
static GSIS is higher[86].

Other studies showed that the microenvironment is also important for obtaining 
mature β cells[87,88]. Freshly isolated β cells in suspension culture release much less 
insulin than scattered β cells that re-aggregate into islets, suggesting that the 
composition of pancreatic islets, cell polarity, contact between homotype cells, contact 
between heterotype cells, and interaction with the surrounding tissues and 
environment can all lead to differences in glucose reactivity and insulin secretion.

Among them, paracrine regulation plays an important role in β cell function 
(Figure 3). Even if the islets are dispersed to the cellular level, most β cells still retain 
the link with α cells[89,90], which suggests the co-evolution of the two types of endocrine 
cells is necessary for the pancreatic islet development, and may be of great significance 
to the pancreatic islet maturation. Islet paracrine signals from one cell type can 
regulate others in the same pancreatic islet by spreading through the gap or circulating 
through intra-islet blood vessels[91]. For example, glucagon secreted from α cells 
inhibits insulin secretion from β cells (Figure 3B). Insulin receptors are found on both α 
and β cell membranes, which further confirms the existence of the paracrine effect of 
islet cells[92]. Insulin secreted from β cells activates the GABAA receptor on the α cell 
membrane, leading to a large influx of Cl- and inhibiting the secretion of glucagon[93]. β 
cells can electrically couple to surrounding α and δ cells through the gap, to secrete 
synchronously, thereby generating insulin secretion pulse[94]. Moreover, secretory 
molecules of pancreatic islet pericytes and local macrophages have nutritional effects 
on β cells[95,96].
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Figure 2 Relationship between mTORC1 and AMPK in the process of β cell transformation from immature to mature. Immediately after birth, 
the nutritional substrates are mainly amino acids, which activate the nutritionally sensitive mTORC1 and promote cell proliferation. mTORC1 is inhibited by AMPK and 
upstream regulatory factors TSC1/TSC2. When the nutritional substrate changes from amino acids to glucose, AMPK activity is stimulated. AMPK is activated by the 
upstream factor LKB1 under the regulation of intracellular ratio of ATP vs AMP/ADP, inhibits β cell proliferation, and promotes maturation, resulting in the 
establishment of adult-type glucose stimulated insulin secretion.

At low glucose concentrations, the islet α cells secrete glucagon that activates the 
glucagon receptor on the β cell membrane in a paracrine manner and inhibits insulin 
secretion[97]. Additionally, ghrelin locally released by ε cells in pancreatic islets can 
inhibit GSIS. This process may involve the activation of GHSR-coupled Gi, the opening 
of voltage-dependent K+ channels, and the inhibition of Ca2+ influx[98]. Finally, 
enteroendocrine hormones released after food ingesting participate in the GSIS. The 
most important hormones are glucagon-like peptide 1 (GLP-1) and glucose-dependent 
insulinotropic polypeptide (GIP)[99]. Studies have confirmed the expression of GLP-1 
and GIP receptors in pancreatic β cells. After activation, these two hormones bind to 
the receptor coupled to the heterotrimeric Gs protein, thereby activating adenylyl 
cyclase, increasing intracellular cAMP, and enhancing GSIS[97].

INDUCTION OF β CELLS IN VITRO AND CURRENT PROBLEMS
Due to the increasing demand for in vitro differentiation of hPSCs into β cells to treat 
T1DM, researchers have actively explored ways to obtain functionally β cells in vitro. 
hPSCs include human embryonic stem cells (ESCs) and induced pluripotent stem cells 
(hiPSCs). These cells are considered a reliable source for β-cell replacement due to 
their ability to self-renew and differentiate into all major somatic lineages[100,101]. After 
experimenting many methods, researchers found that the induction of genuine β cells 
in vitro must follow the same differentiation process in vivo. Using Matrigel or low-
density mouse embryonic fibroblasts as the culture platform, hPSCs can finally 
differentiate to β-like cells following the sequence of definitive endoderm, primitive 
intestinal canal pancreatic progenitor cells, endocrine progenitor cells, and hormone-
expressing endocrine cells, when regulated by specific doses and sequences of growth 
factors and signaling molecules (such as retinoic acid, BMP pathway inhibitors, FGF10, 
and FGF7)[102]. However, β-like cells produced in vitro by this method are mainly 
insulin positive multi-hormonal cells. They will only exhibit limited GSIS in vitro due 
to their lack of expression of key transcription factors of β-cells. Once transplanted into 
mice, they lose the ability to respond to glucose concentration stimuli[103].

Pagliuca et al[104] used a scalable suspension-based culture system to generate and 
cultivate hPSCs, and cell clusters (about 100-200 mm in diameter, each cluster contains 
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Figure 3 Paracrine regulations within the pancreatic islets. A: There are at least 5 paracrine regulatory circuits within the islets, among which α and β 
cells are two important cells that fine-tune the secretion of islet hormones that regulate blood glucose homeostasis. At the same time, δ and ε cells can also regulate 
the secretion of insulin and glucagon through the paracrine interactions. Meanwhile, the enteroendocrine hormones GLP1 and GIP secreted from the intestinal 
endocrine cells can also regulate β-cell insulin secretion by binding to receptors on the cell membrane; B: More detailed interactions between α and β cells.

hundreds of cells) from hESC line (HUES8) or hiPSC line (hiPSC-1 and hiPSC-2) were 
induced to transform into definitive endoderm (> 95% SOX17+ cells, DE), and 
subsequently differentiated into early pancreatic progenitor cells (> 85% PDX1+ cells, 
PP1). Culturing PP1 for 5 d under KGF or FGF7, retinoic acid, and SANT1 (sonic 
hedgehog signaling pathway antagonists) conditions can lead to forming pancreatic 
progenitor cells (PP2) expressing PDX1+/NKX6.1+, and producing functional β cells 
3-4 mo after transplantation into mice. After testing the insulin secretion of these β-like 
cells, researchers found that their function is similar to that of adult β cells.

These stem cell (SC)-derived β-like cells are known as SC-β cells[104] that are arguably 
the most advanced β-like cells induced in vitro from hPSCs. The increased level of 
UCN3 expression was found to coincide with the functional maturation of the SC-β 
cells[105,106]. In SC-β cells, the nutritional regulation of mTORC1 activity is mainly 
determined by the amount of amino acids, not glucose, which is very similar to fetal β 
cells in the body[107]. This is consistent with the fact that SC-β cells are not mature at 
this time. After reducing the amount of amino acids in the culture medium, the SC-β 
cells can be induced to be more mature[108]. In adults, the supply of nutrients is 
periodic, so the activity of mTORC is also dynamic, which requires the participation of 
AMPK, TSC1, TSC2 (the upstream inhibitors of mTOR), etc.

Davis et al[109] found that SC-β cells have lower GSIS levels than cadaver islet β cells. 
They found that glucose metabolism is a restricting factor that inhibits the formation of 
mature GSIS in SC-β cells. Abnormal mitochondrial metabolism is also associated with 
the immature GSIS in SC-β cells that can be used to explore the metabolic processes 
and quantify their ability to transport glucose. Furthermore SC-β cells can sense and 
respond to changes in metabolic flux, but the metabolism of glyceraldehyde 3-
phosphate is the key "defect" or "bottleneck". The activities of the enzymes GAPDH 
and PGK1 are significantly lower in SC-β cells than in cadaver islets, and these two 
enzymes can catalyze the enzymatic conversion of 3-phosphoglyceraldehyde to 3-
phosphoglycerate. When the enzyme concentrations are reduced, the slow glycolysis 
flux in SC-β cells inhibits the production of phosphoenolpyruvate in mitochondria, 
resulting in restrictions on GSIS promoted by downstream mitochondrial 
phosphoenolpyruvate carboxykinase. Therefore, bypassing the above-mentioned 
defect in the glycolysis process that is unique to the in vitro culture process can 
drastically increase the intracellular PEP and make the cells have mature islet-like 
insulin secretion characteristics[110,111]. The researchers proposed that treating 
differentiated SC-β cells with metabolized, cell-permeable intermediates that skip 
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these enzymatic steps in glycolysis can result in islet-like insulin secretion and acts 
through the same mechanisms that underlie glucose sensing in functional islets. Taken 
together, these data suggest that the in vitro functional maturation of SC-β cells can be 
achieved by improving the nutritional conditions in the culture medium. However, 
further exploration is required as to how this bottleneck is formed in the 
differentiation process in vitro.

In the process of differentiation of β cells in vitro, it is necessary to ensure the 
generation of other islet cells. Indeed, other cells may also be differentiated in addition 
to SC-β cells. Veres et al[112] showed that in SC-islets derived from hPSCs, there are also 
α-like cells expressing GCG, ARX, IRX2, and INS and enterochromaffin cells that 
express CHGA, TPH1, LMX1A, and SLC18A1. These cells are multi-hormonal cells 
and when transplanted, they can improve the function of β cells through local 
interactions or autocrine signaling in SC islets. Furthermore, CD49a was found as a 
surface marker of SC-β cells, and it was showed that pure SC-β cell clusters can be 
obtained by magnetic separation.

Protein transduction technology for delivering targeted transcription factors is also 
used to obtain insulin-producing cells from stem cells in vitro[113]. Protein transduction 
domains (PTD) or cell penetrating peptides can be directly internalized into cells when 
the protein is synthesized as a recombinant fusion molecule or covalently crosslinked 
to the PTDs, the mechanism of PTD-mediated protein transduction through 
endocytosis as a vesicle into the cytoplasm[114]. Thus, PTD may provide a new strategy 
of generating insulin-secreting cells from stem/progenitor cells without transferring 
foreign transcription factor genes such as PDX-1, B2/NEUROD, NGN3, and ISL-1[115,116].

In addition to hPSCs, multipotent stem cells including hematopoietic stem cells, 
mesenchymal stromal cells/MSCs, and adipose-derived stem cells are also possible 
sources for generation of insulin-producing cells[117]. MSCs from various tissues and 
organs and the umbilical cord blood can be differentiated into islet-like cells or insulin-
producing cells (IPC) that express key transcription factors such as PAX6 and ISL1[118]. 
Besides IPC differentiation, MSCs may also secrete various cytokines and growth 
factors to help regenerate endogenous islet β cells[119]. Si et al[120] found that injection of 
MSCs into diabetic rats can lead to significant endogenous β-cell regeneration. 
Meanwhile, Ianus et al[121] found that approximately 1.7% to 3% of regenerated islet β 
cells originated from transplanted MSCs.

CONCLUSION
T1DM is an autoimmune disease, which is generally early onset and is characterized 
by an absolute lack of insulin secretion. Therefore, the current treatment is to 
supplement the required insulin from an external source. However, there are many 
problems with this treatment method, including cumbersome procedures and 
associated devastating complications. If patients forget to take their medicine, acute 
complications are immediately developed, such as diabetic ketoacidosis. Therefore, in 
recent years, researchers have proposed other treatments for T1DM, such as islet 
transplantation, immunotherapy, and stem cell therapy. Among them, stem cell 
therapy is the most promising treatment method, but it still faces many obstacles such 
as generation of matured β-like cells in achieving the clinical application. First, the 
changes in the nutritional conditions, the surrounding microenvironment, and the 
related molecular mechanisms may all play a part in the maturation of β-like cells. 
Second, abnormal mitochondrial function in glucose metabolism is closely related to 
immature GSIS of β-like cells. Developing normal mitochondrial function in SC-β cells 
must be achieved in the next few years to generate mature β-like cells. Third, the 
microenvironment for in vitro differentiation also appears to be crucial for the 
functional maturation of β cells as isolated β cells cannot have adult-type GSIS, which 
is related to the paracrine effects among pancreatic islet cells as described above. This 
suggests that the reconstruction of islet-like structures, for example 3D bioprinting 
with in vitro differentiated SC-β and other endocrine cells, is necessary for generating 
mature SC-β cells. Finally, critical molecules/compounds to mature the reconstructed 
islet-like structures need to be discovered. It is hoped that in the near future, stem cell 
therapy can ultimately become a viable curative treatment for most T1DM patients.
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