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Abstract
BACKGROUND 
Multipotent bone marrow stromal cells (BMSCs) are adult stem cells that form 
functional osteoblasts and play a critical role in bone remodeling. During aging, 
an increase in bone loss and reduction in structural integrity lead to osteoporosis 
and result in an increased risk of fracture. We examined age-dependent 
histological changes in murine vertebrae and uncovered that bone loss begins as 
early as the age of 1 mo.

AIM 
To identify the functional alterations and transcriptomic dynamics of BMSCs 
during early bone loss.

METHODS 
We collected BMSCs from mice at early to middle ages and compared their self-
renewal and differentiation potential. Subsequently, we obtained the 
transcriptomic profiles of BMSCs at 1 mo, 3 mo, and 7 mo.

RESULTS 
The colony-forming and osteogenic commitment capacity showed a comparable 
finding that decreased at the age of 1 mo. The transcriptomic analysis showed the 
enrichment of osteoblastic regulation genes at 1 mo and loss of osteogenic features 
at 3 mo. The BMSCs at 7 mo showed enrichment of adipogenic and DNA repair 
features. Moreover, we demonstrated that the WNT and MAPK signaling 
pathways were upregulated at 1 mo, followed by increased pro-inflammatory and 
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apoptotic features.

CONCLUSION 
Our study uncovered the cellular and molecular dynamics of bone aging in mice 
and demonstrated the contribution of BMSCs to the early stage of age-related 
bone loss.

Key Words: Bone marrow stromal cell; Mesenchymal stem cell; Mesenchymal stromal 
cell; Aging; Bone modeling and remodeling; Transcriptome

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Multipotent bone marrow stromal cells (BMSCs) are adult stem cells that 
form functional osteoblasts and play a critical role in bone remodeling. During aging, 
an increase in bone loss and reduction in structural integrity lead to osteoporosis and 
result in an increased risk of fracture. In this study, we examined age-dependent 
histological changes in murine vertebrae and uncovered that bone loss begins as early 
as the age of 1 mo. The BMSCs isolated at different ages revealed a consistent 
decreasing trend in both colony-forming and osteogenic commitment capacity. 
Moreover, we obtained the transcriptomic profiles of BMSCs at 1 mo, 3 mo, and 7 mo 
to investigate the distinct molecular and regulatory features that underpin the early loss 
of osteogenic potential. We showed the enrichment of osteoblastic regulation genes at 
1 mo and loss of osteogenic features at 3 mo. The adipogenic and DNA repair features 
were enriched in the later age at 7 mo. Moreover, we demonstrated that the WNT and 
MAPK signaling pathways were upregulated at 1 mo, followed by increased pro-
inflammatory and apoptotic features.

Citation: Cheng YH, Liu SF, Dong JC, Bian Q. Transcriptomic alterations underline aging of 
osteogenic bone marrow stromal cells. World J Stem Cells 2021; 13(1): 128-138
URL: https://www.wjgnet.com/1948-0210/full/v13/i1/128.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i1.128

INTRODUCTION
Multipotent bone marrow stromal cells (BMSCs) are adult stem cells that can be 
isolated through plastic adherence and differentiate into three distinct lineages, 
including adipocytes, osteoblasts, and chondrocytes in vitro. BMSCs are responsible for 
constant renewal and generate functional osteoblasts in vivo that work with bone-
resorbing osteoclasts to remodel bone structure[1]. It is well-known that an increase in 
bone loss with age leads to a more fragile skeletal integrity and causes osteoporosis[2,3]. 
In mice, the size of cortical bone, trabecular bone volume, and bone strength reach the 
peak at 3 mo followed by a constant decline[4,5]. In humans, bone mineral density peaks 
at the age of early 20 s and declines with age advancing[6,7]. Despite much scrutiny in 
age-dependent bone loss, the causal relationship between BMSCs and age-dependent 
bone loss is inferred mainly from the osteogenic features of BMSCs. There are limited 
studies about the role of multipotent BMSCs in bone aging. A study examined age-
dependent changes in the number and lineage potential of multipotent BMSCs 
between the age of 3 mo and 24 mo and revealed that the self-renewal and osteogenic 
potential of BMSCs reached peaks at 3 mo and then decreased, which is consistent 
with the phenotypic features observed[8].

With the recent advances in microarray and sequencing technology, identification of 
the molecular features and dynamics of multipotent BMSCs in an unbiased manner 
has become possible. From the global transcriptome analysis, BMSCs showed an 
upregulation of genes that encode extracellular matrix components compared with 
other stem cells and mature cell types. Besides, BMSCs also present distinct 
transcriptomic signatures of mobility, proliferation, and oxidative stress response[9]. 
Aside from functional molecular features, the transcriptome comparison across time of 
human BMSCs identified 155 genes associated with BMSCs aging in vitro[10]. A recent 
study isolated two distinct BMSC populations, the CXCL12-abundant reticular cells 
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and the platelet-derived growth factor receptor-a+Sca1+ cells. The comparison of 
transcriptomes between BMSCs isolated at 2 wk, 2 mo, and 2 years revealed the 
upregulation of pro-inflammatory gene expression that is  associated 
with aging in vivo[11]. 

To identify the detailed dynamics of bone loss, we conducted a temporal 
observation of murine vertebrae at different time points, focusing on the early to 
middle age, and subsequently uncovered the molecular dynamics that underpin 
BMSC aging by global transcriptome analysis.

MATERIALS AND METHODS
Animals
Male imprinting control region mice (n = 10 per time point) were obtained from the 
Shanghai Laboratory Animal Center (SCXK 2007-0005, Science and Technology 
Commission of Shanghai Municipality). The study was approved by the Shanghai 
Animal Ethics Committee.

Micro-computed tomography 
Lumbar spine specimens were fixed in 4% paraformaldehyde for 24 h, washed for 2 h, 
and examined. L4 vertebrae in each group were subjected to a 3D model without 
adnexa, the transverse, and the spinous processes. The images were captured using 
µCT 80 radiograph microtomography (Scanco Medical AG, Switzerland), and further 
processed with 3DCalc, cone reconstruction, and AVG model building software (HP, 
Japan). The bitmap data set was employed to reconstruct the 3D model. Scores for the 
bone mass density (BMD), the ratio of bone volume to tissue volume (BV/TV), the 
connectivity density of trabeculae (Conn.D.), the trabecular number (Tb.N), the 
trabecular thickness (Tb.Th), and the trabecular spaces (Tb.Sp) were measured from 
the 3D model.

Histological and histomorphometric analyses
Lumbar spines from the mice were fixed in 4% paraformaldehyde for 24 h, decalcified 
in 10% EDTA for 4 wk, and embedded in paraffin wax. The sections were stained with 
hematoxylin and eosin or underwent the following tartrate-resistant acid phosphatase 
staining (Sigma-Aldrich). The morphometric analysis was performed with an image 
auto-analysis system (Olympus BX50; Japan). The static parameters, including 
trabecular bone area (T.Ar) and the bone perimeter (B.Pm), were collected from the L4 
lumbar spine and applied to compute the bone remodeling parameters, which include 
the osteoblast formation (N.ob/T.Ar, N.ob/B.pm) and the number of the osteoclast 
(N.oc/B.pm).

BMSC culture and treatment and colony-forming unit-fibroblast assay
BMSCs were obtained from the bone marrow aspiration of the bilateral tibia and 
femur. The cells were further subjected to either colony-forming assay, differentiation 
assay, or microarray detection. The marrow cavity was flushed with α-MEM (Gibco, 
United States) containing 10% fetal bovine serum (FBS, Gibco, United States) and 1% 
penicillin-streptomycin (Gibco, United States). The cells were cultured and expanded 
in 10 cm dishes (2 mice per dish) for 7 d for microarray detection. The number of 
colony-forming unit-fibroblasts (CFU-F) was counted under an inverted light 
microscope on the 3rd day of culture. For alkaline phosphatase (ALP) staining, the 
cells were fixed with 4% paraformaldehyde and stained with nitro blue tetrazolium 
and 5-bromo-4-chloro-3-indolyl phosphate (Pierce, United States) for 30 min.

NimbleGen gene expression profiling
The transcriptomic profiles were captured using NimbleGen gene expression profiling 
(No. PXH100525) containing 26991 genes (3 pieces per group, n = 9). Total RNA was 
isolated using TRIzol (Invitrogen) and the RNeasy kit (Qiagen) per the manufacturer’s 
instructions, including the DNase digestion step. After quality control via RNA 
measurement on the Nanodrop ND-1000 and denaturing gel electrophoresis, the 
samples were amplified and labeled using a NimbleGen one-color DNA labeling kit 
and hybridized in the NimbleGen hybridization system. Subsequently, the chip 
underwent steps of washing and scanned with the Axon GenePix 4000B microarray 
scanner. Raw data were obtained with NimbleScan software (version 2.5). NimbleScan 
software’s implementation of RMA offers quantile normalization and background 
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correction. The gene summary files were imported into Agilent GeneSpring software 
(version11.0) for further analysis. Differentially expressed genes were identified 
through fold-change and t-test screening and visualized via the heatmap function of 
the Seurat package in R[12].

Gene set enrichment analysis
We used the R package enrichR to complete the gene set enrichment analysis (GSEA). 
The top enriched markers of each group were extracted and subjected to enrichR 
function. The mouse cell atlas database was used to characterize the cell typing 
features of samples, and the Wikipathway 2019 Mouse database was used to analyze 
the most enriched pathways features.

Statistical analysis
The data are expressed as the mean ± SE, and statistical significance was calculated 
using one-way ANOVA followed by the Tukey’s test (heterogeneity of variance) using 
aov and TukeyHSD function in R. The significance level was defined at P < 0.05.

RESULTS
We applied µCT imaging to quantitatively measure the densitometry and capture the 
structural dynamics in lumbar spines at multiple time points. We combined the 
imaging findings with histological features to quantitatively analyze the dynamic 
changes of osteoblasts and osteoclasts in bone tissue. Subsequently, we isolated 
BMSCs and characterized their self-renewal and osteogenic potential to support the 
imaging and histological findings. Finally, we identified the molecular signatures that 
underpin the bone loss by obtaining the gene expression profile near the initiation 
time point when BMSCs lose self-renewal and differentiation potential.

Skeletal remodeling dynamics during aging
We obtained the µCT three-dimensional images of the L4 lumbar spine from mice at 
the age of 1 mo, 3 mo, 7 mo, 12 mo, 15 mo, and 18 mo. The loss of bone volume and 
decrease in connectedness in the cancellous compartment with age were apparent 
(Figure 1A). The quantitative analysis revealed the changes in the cancellous bone 
integrity with age. The BMD continuously increased and plateaued at 15 mo with a 
45% increase, and later remained constant. The BV/TV varied across the time and 
peaked at 12 mo with a 75% increase, followed by a dramatic decrease at 18 mo. For 
trabecular bone, the Tb.N decreased over time, but the difference between 7 and 18 mo 
was not significant. Between 1 and 18 mo, Tb.N decreased by 36%. The Tb.Th 
continuously increased and reached the plateau at 12 mo. The Tb.Sp increased from 1 
to 18 mo by 60%. The Conn.D. decreased from 1 to 12 mo, while beyond the age of 12 
mo, the Conn.D. remained constant. The degree of anisotropy in trabecular bone 
orientation stayed the same with age (Figure 1B). The finding that the trabeculae 
number decreased along with the increase in BMD with age indicated the 
enhancement of mineral deposit and active bone remodeling. The decrease in 
cancellous bone volume and trabecular thickness from 12 mo suggested that bone 
remodeling reached the equilibrium of formation and resorption at 12 mo and later 
skewed to the resorption.

Bone remodeling and BMSC osteogenic capacity during aging 
To investigate the cellular composition with age, we performed histological analysis 
on the L4 lumbar trabecular bone at 1 mo, 3 mo, 7 mo, 12 mo, 15 mo, and 18 mo. In the 
aged 18-mo-old mice, we observed bone structure reduction and a lower density of 
osteoblasts. Across the age followed, the number of osteoblasts per trabecular area 
(T.Ar) maintained at a relatively high level until 3 mo, followed by a drop, and then 
remained constant with advancing age. The difference was similar to the results 
normalized by bone perimeter (B.pm). On the bone resorption side, the osteoclast 
number per vertebra peaked at 1 mo with a sharp drop and gradually returned to a 
similar level at the age of 18 mo (Figure 2A).

To determine the self-renewal and differentiation features of BMSCs, we flushed 
bone marrow cells from 1 mo, 3 mo, 7 mo, 12 mo, 15 mo, and 18-mo-old mice and 
performed CFU-F and ALP staining assays. The number of colonies decreased at 3 mo 
and began to increase from the age of 12 mo. The self-renewal capacity reached a peak 
at 15 mo, followed by a sharp decrease at 18 mo. To study whether aging alters the 
osteogenic potential of BMSCs, we examined the ALP activity via staining. The results 
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Figure 1 Quantitative measurement of skeletal features. A: Micro-computed tomography images of L4 lumbar spine at 1 mo, 3 mo, 7 mo, 12 mo, 15 mo, 
and 18 mo; B: Quantitative measurement of the densitometry and structural parameters of cancellous bone, including the ratio of bone volume to tissue volume 
(BV/TV), the connectivity density of trabeculae (Conn.D.), the trabecular number (Tb.N), the trabecular thickness (Tb.Th), and the trabecular spaces (Tb.Sp). Bone 
mass density, Tb.Th, and Tb.Sp increased with age while Tb.N and Conn.D. decreased constantly. The BV/TV increased and reached the plateau at the age of 12 
mo. The degree of anisotropy did not change over time between the window of 1 mo and 18 mo. BMD: Bone mass density; BV/TV: Bone volume to tissue volume; 
Tb.N: Trabecular number; Tb.Th: Trabecular thickness; Tb.Sp: Trabecular spaces; Conn.D.: Connectivity density of trabeculae; DA: Degree of anisotropy.

showed that ALP activity reached two peaks at 1 and 15 mo, which represented the 
modeling and the remodeling phase during development and aging (Figure 2B). The 
results suggested that the self-renewal and differentiation potential of BMSCs dropped 
during the modeling phase, followed by an increase at the middle age between 12 and 
15 mo. After that, the capacity again dropped sharply at 18 mo.

Transcriptome profile of BMSCs at modeling phase
We collected the transcriptome profiles of BMSCs via microarray at the age of 1 mo, 3 
mo, and 7 mo to uncover the molecular regulation contributing to the drop of self-
renewal and differentiation potential observed in 1-mo-old mice. The feature 
signatures at 1 mo included genes associated with mesenchymal migration, such as 
Coro1c, and telomere regulation, such as Terf1. Some critical osteoblastic regulation 
genes, such as Tnpo1, Dock7, and Apoa2 were also enriched at an early age. Multiple 
Hox genes were relatively enriched at the age of 1 mo, suggesting the involvement of 
patterning of the bone tissue. At 3 mo, the BMSCs did not show the osteogenic 
regulation and distinct aging-preventing features that enriched in 1 mo but showed 
enrichment of chondrogenic regulators Sox9 and Snai1. BMSCs also gained the 
osteoblastic inhibition and osteoclast promoting feature gene Efna1. The BMSCs at 7 
mo showed enrichment of the bone remodeling regulators Hey1 and Hey2. We also 
observed enhanced expression of DNA repair gene Neil3 (Figure 3A).

Subsequently, we subjected the differential genes to the GSEA analysis. Using the 
cell atlas database, we uncovered that 1-mo and 7-mo samples were relatively 
enriched in osteoblasts and bone features, but lost of the osteogenic features at 3 mo 
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Figure 2 Histological assessment of bone properties and osteogenic bone marrow stromal cells during bone aging. A: Mouse lumbar spine at 
different ages was sectioned and stained with hematoxylin and eosin for osteoblast detection, or underwent tartrate-resistant acid phosphatase staining for 
quantifying the number of osteoclasts. The quantitative analysis measured the osteoblast number per trabecular surface area or perimeter, and osteoclast number 
per vertebra; B: Self-renewal and differentiation capacity of bone marrow stromal cells assessed via colony-forming assay and alkaline phosphatase staining. Two 
peaks at 1 mo and 15 mo were detected, suggested the modeling and remodeling phase during development and aging. H&E: Hematoxylin and eosin; TRAP: 
Tartrate-resistant acid phosphatase; ALP: Alkaline phosphatase; N.ob: Number of osteoblasts; T.Ar: Trabecular bone area; B.pm: Bone perimeter; N.oc: Number of 
the osteoclast.

(Figure 3B). When we applied the pathway analysis database as a reference, we 
uncovered the underlying signaling pathways that were involved in gaining distinct 
features. At 1 mo, the MAPK and WNT signaling pathways were highly enriched. The 
3-mo sample presented pathways related to apoptosis, stress features, and more pro-
inflammatory signaling pathways, including IL-1 and IFNg signaling pathways. At the 
age of 7 mo, the pathway related to adipogenesis began to appear, and also present 
features of DNA repair. High enrichment of both ossification and matrix 
metalloproteinase resorption pathways suggested active bone remodeling (Figure 3C).

DISCUSSION
Bone loss is a specific feature during aging that is partially caused by the impaired 
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Figure 3 Transcriptomic profile of bone marrow stromal cells in young mice. A: The heatmap demonstrated the signature genes and the transcription 
regulators differentially expressed at different ages that were computed from the microarray data; B: The gene set enrichment analysis taking mouse cell atlas as 
reference revealed the fate tendency of bone marrow stromal cells (BMSCs); C: The signaling pathway analysis uncovered the associated signaling pathways 
enriched at different ages in BMSCs.

osteogenic capacity of BMSCs. In this study, we characterized bone and BMSC features 
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in mice at different ages and uncovered the underlying transcriptomic changes. The 
µCT results revealed the dynamic alteration in murine vertebrae during aging. The 
finding was similar to the previous study that observed the age-related changes in the 
long bone tibia[13]. Although both vertebrae and long bone showed a constantly 
decreased trabecular number, the bone volume and trabecular thickness in vertebrae 
fluctuated, which increased at an early age followed by constant downward trend. The 
pattern of changes in mouse vertebrae was also similar to that observed in humans. In 
both species, the BV/TV and Tb.N in lumbar vertebrae increased at an early age 
during growth and development followed by a downward trend with age[14,15]. 
However, there was a difference between the trabecular bone of humans and mice. In 
humans, Tb.Th presents finer alterations that showed both thinner trabecula and 
thickening remaining trabecula, which did lead to overall significant changes with 
age[16]. In mice, the thinness of trabecular bones was significantly increased at an early 
age and remained constant after the age of 7 mo. The temporal changes in bone with 
age were surprisingly similar between mice and humans. The total bone mass peaks at 
midlife around 30 and 40 years of age in humans while the bone mass in mice also 
peaks at the middle age of 15 mo[17].

The cellular components in the bone remodeling of mouse vertebrae changed with 
age. The decreasing density of bone-forming osteoblasts and the increasing number of 
osteoclasts were consistent with the previous reports that the activity of bone 
formation decreased while bone resorption increased with age[18,19]. However, we 
noticed a peak in the number of osteoclasts at an early age, which suggested the early 
activation of bone modeling. Unlike osteoblasts, the stem and progenitor populations 
BMSCs that are responsible for bone repopulation showed a different pattern of 
changes with age. Considering both self-renewal colony-forming assay and osteogenic 
assessment, a similar peak presented at the early life at 1 mo, which was consistent 
with the high osteoblast density as we observed; however, we observed a significant 
increase in the amount of colony formation with high osteoblastic features at 15 mo. 
The previous study assessed the number and differentiation potential of BMSCs 
between the ages of 3 mo and 18 mo also reported a similar pattern[8]. The discrepancy 
between a high osteogenic capacity and a low number of osteoblasts could be related 
to the high bone remodeling at the age of 15 mo and exertion of the BMSC 
populations. However, the other study isolated BMSCs from rats of 1 mo and 16 mo of 
age did not uncover a similar pattern. The BMSCs from the 16-mo-old rats had 
significantly decreased colony number, size, and ALP expression compared with the 3-
wk-old rats[20]. The difference suggested that the transient recovering capacity of 
BMSCs might vary across species and require a finer follow-up interval to uncover.

We obtained the transcriptomic profile of BMSCs at the early time points to 
investigate the underlying molecular regulation that underpins the early decrease in 
BMSC capacity. At the age of 1 mo, the BMSCs showed multiple feature genes related 
to osteogenic regulation, including Tnpo1, Dock7, and Apoa2. A previous study showed 
that knockdown of Tnpo1 via siRNA abrogated the osteoblast differentiation of 
BMSCs[21]. The other study reported that Dock7 was responsible for trabecular 
maintenance. Loss of Dock7 in the mice resulted in an impairment of periosteal and 
endocortical envelope expansion and lower trabecular bone mass[22]. A recent study 
uncovered that Apoa2 knockout mice derived BMSCs had a less osteogenic 
commitment and an increased tendency to form adipocytes[23]. Aside from osteogenic 
regulation, the top differential genes also uncovered general features that were distinct 
in early life. Terf1 is the gene that was correlated to telomere maintenance in stem cell 
populations and was highly associated with aging[24,25]. Terf1 was also highly enriched 
at the age of 1 mo compared with the other two time points. The finding was 
consistent with the fact that the sample was the youngest among the others. Unlike the 
osteogenic related features, the 3-mo data revealed more differential genes that are 
related to chondrogenic commitment including Snai1 and Sox9. Sox9 is a well-known 
master regulator that governs chondrogenic commitment[26]. A previous study of Snai1 
knockout showed a substantial defect in the long bones[27]. The chondrogenic features 
along with the endochondral ossification features in the following time point 
suggested a temporal progression of bone growth and development. The BMSCs of the 
later age of 7 mo revealed features of aging and bone resorption. Neil3, one of the top 
differential genes, is involved in DNA repair, which is one of the critical factors related 
to genome stability and cellular aging[28,29]. The other feature gene Efna1 was reported 
to promote osteoclastogenesis and inhibit osteoblast formation, suggesting the 
tendency of enhanced bone resorption[30,31].

The following GSEA of the differential genes allowed us to have a broader picture 
of the feature genes at different ages. When we applied the cell atlas database to be the 
reference, BMSCs from mice aged 1 mo or 7 mo revealed the enrichment of osteoblast 
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features, while BMSCs from mice at the age of 3 mo showed a more diverse cell type 
feature. The loss of the osteogenic features at 3 mo was temporally consistent with our 
findings of a drastic decrease in the osteogenic capacity of BMSCs. The GSEA using 
the signaling-pathway database as a reference also supported the findings. The 
pathways involved at 1 mo were largely related to osteogenic regulation, including 
WNT and MAPK pathways[32,33]. At 3 mo, the signaling pathways revealed more pro-
inflammatory features, including IL-1 and IFNg signaling pathways. The most 
significant apoptotic pathways suggested the bone loss as we observed at an early 
stage, which was probably caused by the activation of apoptosis in BMSCs, and 
ultimately contributed to the remodeling of the bone architecture. The pathways 
involved in BMSCs at the later age of 7 mo were related to DNA mismatch repair and 
bone remodeling, which included ossification and MMP enzymes. The finding was 
consistent with the top enriched genes discovered at a later age.

CONCLUSION
In summary, our study showed the histological and cellular dynamics of bone aging in 
mice and demonstrated the temporal changes of the osteogenic BMSCs. Moreover, we 
uncovered the temporal features via transcriptomic analysis, which suggested the 
contribution of BMSCs to the early stage of age-related bone loss.

ARTICLE HIGHLIGHTS
Research background
Multipotent bone marrow stromal cells (BMSCs) form functional osteoblasts and are 
involved in bone formation. During aging, significant bone loss leads to osteoporosis 
and results in an increased risk of fracture.

Research motivation
We discovered that an early bone loss occurs as early as 1 mo in mice, and we would 
like to investigate the role of BMSCs during early bone loss.

Research objectives
To understand the functional alterations of BMSCs during the early bone loss and 
uncover the transcriptomic dynamics that underpin the early loss of osteogenic 
potential.

Research methods
We collected BMSCs from mice at early to middle ages and assessed their self-renewal 
and differentiation potential. Subsequently, we obtained the transcriptomic profiles at 
a young age to reveal the features of BMSCs during early bone loss.

Research results
The colony-forming and osteogenic commitment capacity decreased at the age of 1 mo. 
At 3 mo, BMSCs were enriched in osteoblastic regulation genes, and at 7 mo, the 
transcriptomic features shifted toward adipogenic and DNA repair. The gene set 
enrichment analysis suggested the involvement of WNT and MAPK signaling 
pathways at the osteogenic phase and increased pro-inflammatory and apoptotic 
features at the latter phase.

Research conclusions
We demonstrated the contribution of BMSCs to the early stage of age-related bone loss 
and uncovered the underlying transcriptomic dynamics.

Research perspectives
Resolving the detailed cellular and molecular mechanism underlying bone aging is 
crucial. In this study, we demonstrated the role of BMSCs in early bone loss and 
revealed the transcriptomic dynamics to better understand the underlying molecular 
mechanism.
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