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Abstract
Hepatitis C virus (HCV) causes a clinically important 
disease affecting 3% of the world population. HCV is 
a single-stranded, positive-sense RNA virus belonging 
to the genus Hepacivirus  within the Flaviviridae  family. 
The virus establishes a chronic infection in the face of 
an active host oxidative defence, thus adaptation to 
oxidative stress is key to virus survival. Being a small 
RNA virus with a limited genomic capacity, we specu-
late that HCV deploys a different strategy to evade 
host oxidative defence. Instead of counteracting oxi-
dative stress, it utilizes oxidative stress to facilitate its 
own survival. Translation is the first step in the replica-
tion of a plus strand RNA virus so it would make sense 
if the virus can exploit the host oxidative defence in 
facilitating this very first step. This is particularly true 
when HCV utilizes an internal ribosome entry site ele-
ment in translation, which is distinctive from that of 
cap-dependent translation of the vast majority of cellu-
lar genes, thus allowing selective translation of genes 
under conditions when global protein synthesis is 
compromised. Indeed, we were the first to show that 
HCV translation was stimulated by an important pro-
oxidant-hydrogen peroxide in hepatocytes, suggesting 

that HCV is able to adapt to and utilize the host anti-
viral response to facilitate its own translation thus al-
lowing the virus to thrive under oxidative stress condi-
tion to establish chronicity. Understanding how HCV 
translation is regulated under oxidative stress condition 
will advance our knowledge on how HCV establishes 
chronicity. As chronicity is the initiator step in disease 
progression this will eventually lead to a better under-
standing of pathogenicity, which is particularly relevant 
to the development of anti-virals and improved treat-
ments of HCV patients using anti-oxidants.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Oxidative stress inhibits canonical translation, 
however, emerging evidence suggests that oxidative 
stress can actually stimulate alternative translation from 
select internal ribosome entry site (IRES) elements in-
cluding that involved in redox regulation and in persis-
tent virus infection e.g. , human immunodeficiency virus 
and hepatitis C virus (HCV). We postulate a novel role 
of oxidative stress-activated IRES-mediated translation 
in redox homeostasis and virus persistence. In the case 
of HCV, we explore the idea that HCV exploits oxidative 
stress to activate its own translation as a novel means 
of evading the host oxidative defence to establish chro-
nicity.
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INTRODUCTION
Hepatitis C virus (HCV) causes a clinically important 
disease affecting 3% of  the world population[1]. About 
75% of  the infection will develop into chronic hepatitis, 
which can then progress into fibrosis, cirrhosis and hepa-
tocellular carcinoma. A vaccine is not available. Current 
interferon (IFN) treatments are expensive, with numer-
ous side effects and are particularly ineffective against the 
predominant genotype 1 in America and European coun-
tries[2]. The newly approved protease inhibitors likely pro-
mote the emergence of  drug resistant mutants, owing to 
the high mutation rate of  the HCV genome[2]. Thus there 
is a pressing need for alternative HCV therapies. HCV 
establishes a chronic infection in the face of  an active im-
mune response and the host oxidative defence. A number 
of  mechanisms have been proposed to account for eva-
sion of  the antibody and cellular immunity and the natu-
ral killer, IFN and Toll-like receptor innate immunity[3-5]. 
However, little is known about how the virus can survive 
in a highly oxidative environment given that oxidative 
stress is such a prominent clinical feature associated with 
hepatitis C infection[6-12]. Adaptation to oxidative stress is 
key to virus survival. We postulate that adaptation can be 
at the level of  translation as HCV uses an internal ribo-
some entry site (IRES) element for translation, distinctive 
from that of  cellular translation[13]. Indeed, we were the 
first to show that translation from the HCV IRES was 
stimulated by an important pro-oxidant-hydrogen perox-
ide (H2O2) in hepatocytes, suggesting that HCV is able to 
adapt to and utilize host anti-viral response to facilitate 
its own translation thus allowing the virus to thrive un-
der oxidative stress condition to establish chronicity[14]. 
Anti-oxidants are now in clinical trials in the treatment 
of  HCV patients[15-17]. Understanding the mechanisms of  
how HCV evades host oxidative defence at the transla-
tional level may help shape the formulation of  improved 
and new anti-oxidant treatments for HCV.

HCV
HCV is a Hepacivirus belonging to the family Flaviviri-
dae[18]. As a single-stranded, positive-sense RNA virus, 
translation is the first step in the life cycle of  HCV upon 
infection of  a susceptible cell. Its 5’ untranslated region 
(UTR) contains an IRES element used to translate the 9.6 
kb RNA genome into a single polypeptide which is then 
cleaved by the host and viral proteases into structural 
proteins core, envelopes E1 and E2, and non-structural 
(NS) proteins p7, NS2, NS3, NS4A, NS4B, NS5A and 
NS5B (Figure 1)[19]. The RNA polymerase, NS5B, then 
catalyzes replication of  the viral genome. The genome 
of  HCV undergoes a high mutation rate giving rise to 
genetic variants, thus HCV is divided into genotypes and 
sub-types and is populated as “quasispecies”[20,21]. A “qua-
sispecies” is a cloud of  diverse, genetically linked mutants 
that function cooperatively and behave as a unit for 
natural selection[22]. Thus, a population of  mutants with 

similar fitness values will out-compete those with a broad 
range of  fitness values even though the latter includes 
mutants of  high fitness values. This constitutes the basis 
of  “the survival of  the flattest” in “quasispecies” theory 
in contrast to Darwinian “the survival of  the fittest”[23]. 
However, there is much debate on whether HCV or any 
RNA virus ever exists as a “quasispecies” in evolutionary 
term as the mutation rate of  HCV is never high enough 
to lead to “quasispecies” dynamics[23]. Nevertheless, this 
“quasispecies”/intra-host variants phenomenon has great 
impact on virus persistence, pathogenesis, anti-viral treat-
ment and vaccine design. However, different regions of  
the genome exhibit different degrees of  sequence vari-
ability, with the envelope E2 region being the most vari-
able harbouring hypervariable regions and the 5’ UTR 
the most conserved[21,24,25]. Thus, targeting 5’ UTR may be 
a solution to solve the problem of  sequence variability in 
anti-viral therapies[26,27].

TRANSLATION
The vast majority of  proteins is synthesized by a process 
known as cap-dependent translation, so named because 
it requires a 7-methyl guanosine (m7G) cap-structure at 
the 5’ end of  the mRNA[28]. Translation is initiated when 
the cap is bound by the cap-binding complex eukaryotic 
initiation factor (eIF) 4F, which consists of  eIF4E, eIF4A 
and eIF4G (Figure 2A). eIF4E is the cap-binding protein. 
eIF4A is a helicase, its unwinding activity is promoted 
by another initiation factor, eIF4B. eIF4G is the scaffold 
protein, which functions to recruit the 40S ribosomal 
subunit-eIF3-eIF2 pre-initiation complex to the 5’ end 
of  the mRNA via protein-protein interaction between 
eIF4G and eIF3. The ribosomal complex, primed by 
eIF1/1A, then scans a short distance (50-100 nucleotides) 
to (usually) the nearest AUG triplet within a favorable 
(Kozak) sequence context to initiate translation[29].

IRES mediates an alternative form of  translation 
distinctive from that of  cap-dependent translation of  
the vast majority of  cellular genes, thus allowing selec-
tive translation of  genes under conditions when global 
protein synthesis is compromised e.g., virus infection, 
stress[30-32]. IRES translation is an important strategy em-
ployed by a subset of  virus, mainly that of  RNA viruses 
belonging to the Picornaviridae family, to continue viral 
protein synthesis during host translational shut off. IR-
ESs found in cellular mRNAs mainly serve the function 
of  regulating cellular processes such as apoptosis, differ-
entiation, angiogenesis, thus their activity is usually tightly 
regulated and many are only responsive to stress. Studies 
on viral IRESs suggest that the IRES element forms a 
direct landing pad for the ribosome, therefore, the sec-
ondary and tertiary structures of  the IRES are important 
for its activity (Figure 2B)[33-36]. As a result, the viral IRES 
element normally spans a considerably longer 5’ UTR 
that folds into a higher order structure and is interspersed 
with multiple AUG triplets[37]. However, short sequence 
motif  rather than secondary structure is important in 
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most cellular IRES activity[38,39]. As short as a 9-nucleo-
tide sequence from the 5’ UTR of  the cellular gene Gtx 
exhibited IRES activity[40,41]. In yeast and Drosophila, 
strong IRES activity was associated with weak secondary 
structure[42]. Because IRES-mediated translation is inde-
pendent of  a cap many canonical eIFs are dispensable, 
however, the requirement for canonical eIFs varies great-
ly amongst IRESs, ranging from the dependence of  the 
entire set of  eIFs in the hepatitis A virus (a picornavirus 
unrelated to HCV) IRES to none of  them in the cricket 
paralysis virus IRES[31,35,37]. Another characteristic of  
IRES translation is that it is regulated by a diverse group 
of  proteins known as IRES trans-acting factors (ITAFs)[43]. 

ITAF
Each IRES has a unique set of  ITAFs, even within the 
same group of  IRES that shares primary sequence and 
secondary structure[44]. On the other hand, IRES of  
diverse origins can share common ITAFs[45]. Many of  
these ITAFs are RNA chaperone proteins. Most of  them 
facilitate IRES-mediated translation although some are 
negatively regulating. Common ITAFs include the La 
autoantigen, polypyrimidine tract binding protein (PTB), 
heterogeneous nuclear ribonucleoproteins (hnRNPs), 
poly r(C) binding protein (PCBP), Upstream of  N-ras 
(unr), death-associated protein 5 (DAP5) and the embry-

onic lethal abnormal vision/protein (ELAV/HuR)[30,46-52]. 
ITAF modification by stress signals is an important 

aspect in the regulation of  IRES activity under stress 
conditions, using mechanisms such as nuclear-cytoplas-
mic shuttling, protein cleavage, phosphorylation and 
increased protein expression[53-58]. Many of  the ITAFs are 
abundant nuclear proteins, thus nuclear-cytoplasmic shut-
tling presents an effective means of  a fast response[59]. 
hnRNP A1 shuttled to the cytoplasm during osmotic 
shock to downregulate translation from the X-linked in-
hibitor of  apoptosis protein (XIAP) IRES but upregulate 
translation from the fibroblast growth factor-2 IRES[53]. 
hnRNP A1 also shuttled to the cytoplasm in rhinovirus-
2-infected and UVC-irradiated cells to enhance transla-
tion from the rhinovirus IRES but limit translation from 
the apoptotic peptidase activating factor 1 IRES[60]. Pro-
teolysis also plays an important part in regulating IRES 
activity, either by directly conferring novel function to the 
truncated protein or by causing protein shuttling after the 
removal of  the nuclear localization signal (NLS), or both. 
Caspase cleavage of  DAP5 during endoplasmic reticulum 
(ER) stress released an active fragment with a novel ITAF 
function to activate the cellular inhibitor of  apoptosis 
protein (HIAP2) IRES[54]. Cleavage of  the La protein and 
PTB by the poliovirus serine protease released truncated 
fragments devoid of  NLS to shuttle to the cytoplasm to 
either activate or repress the poliovirus IRES[55,56]. Phos-
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and eIF3 to form the 43S pre-initiation complex[35,63,65]. 
Structural and biochemical studies have indicated an un-
usually vast binding site for the ribosome encompassing 
domains Ⅱ, Ⅲ and Ⅳ and conformational changes in 
both the 40S ribosomal subunit and the IRES have been 
observed upon their interaction[66]. Binding between the 
IRES and the ribosome is thought to be mediated via 
ribosomal proteins although the role of  RNA-RNA in-
teraction cannot be excluded[67-69]. eIF3 can bind both the 
ribosome and junction domain Ⅲabc and domain Ⅲb of  
the IRES, thus playing a significant role in stabilizing the 
ribosome-eIF2 binary complex[70]. The ternary complex 
eIF2α-GTP-the tRNA for the first methionine (MettRNAi) 
does not directly bind the IRES, rather it forms a ternary 
complex with eIF3 and the 40S ribosomal subunit to po-
sition MettRNAi directly onto the AUG codon in the P-site 
of  the ribosome[70].

A number of  putative ITAFs for the HCV IRES have 
been identified, including La, PTB, hnRNP D, hnRNP 
L, HuR, the NS1-associated protein 1 and miR-122 (Fig-

phorylation of  ITAFs is also commonly used to modify 
ITAF function. Phosphorylation of  the hnRNP C pro-
tein during differentiation stimulated translation from the 
IRES of  c-sis[57]. In some cases, over-expression of  ITAF 
is sufficient to promote IRES translation. Elevated ex-
pression of  unr stimulated translation from the IRES of  
PITSLRE cyclin-dependent protein kinase during G2/M 
phase of  the cell cycle[58].

HCV IRES
The HCV 5’ UTR is divided into four stem-loop domains 
(Figure 3)[61]. The IRES element is made up of  approxi-
mately 340 nucleotides and spans domain Ⅱ and extends 
into the core-coding region encompassing a double pseu-
doknot fold[13,62-64]. The HCV IRES has the second sim-
plest requirement of  eIFs, only needing eIF2 and eIF3. 
In reminiscent of  the prokaryotic ribosomal binding of  
the Shine-Dalgarno sequence, the HCV IRES can direct-
ly recruit the 40S ribosome before association with eIF2 
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Figure 2  Two different modes of translational initiation. A: Cap-dependent translation. Initiation of translation of most cellular genes requires a 7-methyl guanosine 
cap-structure at its 5’ end and a full set of canonical eukaryotic translation factors (eIFs) for ribosome binding and scanning to the AUG start codon[29]. The cap-binding 
complex eIF4F consists of the cap-binding eIF4E, the scaffold eIF4G and the helicase eIF4A. eIF4B promotes the RNA unwinding activity of eIF4A. Recruitment of the 
40S ribosomal subunit-eIF3-eIF2 pre-initiation complex to the 5’ end of the mRNA is via protein-protein interaction between eIF4G and eIF3. The ribosomal complex, 
primed by eIF1/1A, then scans a short distance (50-100 nucleotides) to (usually) the nearest AUG triplet to initiate translation; B: Internal ribosome entry site (IRES)-
mediated translation. The viral IRES element spans a considerably longer 5’ untranslated region (UTR) (180-450 nucleotides) that folds into a higher order structure 
and is interspersed with multiple AUG triplets[37]. The requirement for canonical eIFs varies greatly amongst IRESs, ranging from the dependence of the entire set of 
eIFs in the picornavirus hepatitis A virus IRES to none of them in the cricket paralysis virus IRES. The hepatitis C virus (HCV) IRES has the second simplest require-
ment, only needing eIF2 and eIF3. In reminiscent of the prokaryotic ribosomal binding of the Shine-Dalgarno sequence, the HCV IRES can directly recruit the 40S 
ribosome which lands on the authentic AUG initiator codon[35,63,65]. In some other IRESs, the ribosome lands on an upstream AUG and then scans or shunts to the 
initiator AUG[37]. An important feature about IRES-mediated translation is that its activity is regulated by IRES trans-acting factors[43].
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ure 3)[71-82]. There is evidence for a critical role of  the 
La autoantigen in IRES translation, by binding to and 
altering the conformation of  the IRES to orchestrate as-
sembly of  the ribosomal complex[82,83]. La is one of  the 
best known ITAFs and is pivotal in mediating translation 
from a number of  IRESs[72,82,84-89]. It normally functions 
in RNA metabolism e.g., nascent polⅢ transcript pro-
cessing and RNP assembly but is co-opted as an ITAF in 
IRES translation[90]. Pathologically, La is an autoantigen 
in a number of  autoimmune diseases such as lupus and 
Sjögren’s syndrome[91]. The binding site for the La auto-
antigen has been mapped to the initiator AUG and the 
adjacent GCAC motif  although additional binding sites 
may exist[88,92]. The binding sites for some other ITAFs 
have also been mapped[61,92]. Together with that of  the 
ribosomal subunit and eIF3, these binding sites offer at-
tractive targets for antiviral intervention because of  (1) 

the highly conserved nature of  the IRES[93]; (2) the dis-
tinctive mode of  translation making it likely to produce 
an anti-viral with a high therapeutic index[94]; and (3) the 
use of  cellular targets making it less ready to select for 
resistant mutants.

HCV IRES activity can also be modulated by the 
viral proteins core, NS2/3, NS3 and NS5A and the 3’ 
UTR[95-100]. A long range interaction between the IRES 
and the 3’ UTR is thought to be essential for IRES activ-
ity[101]. However, it is still unclear what constitutes the bona 
fide ITAFs and how they regulate HCV IRES activity, in 
particular under stress.

OXIDATIVE STRESS IN HEPATITIS C
Accumulation of  reactive oxygen species (ROS) and the 
generation of  oxidative stress are implicated in the devel-
opment of  a number of  inflammatory diseases, including 
viral hepatitis[102]. Chronic hepatitis C patients present el-
evated blood and hepatic levels of  pro-oxidants, reduced 
anti-oxidants levels, iron overload with increased lipid 
peroxidation, decreased hepatic glutathione and increased 
oxidative DNA damage[103-108]. Proteomic and microar-
ray analysis of  liver biopsies revealed increased oxidative 
stress in hepatitis C samples[109,110].

Important ROS include superoxide anion O2
.-, H2O2 

and hydroxyl radical .OH. ROS exist in every cell as part 
of  the by-products of  active respiration in the mitochon-
dria (Figure 4)[111]. ROS are harmful to cells as they will 
cause oxidative damage to intracellular macromolecules 
and are eliminated by anti-oxidant enzymes such as su-
peroxide dismutase, catalase and the glutathione system 
to maintain redox balance (Figure 4). A low level of  ROS, 
in particular H2O2, is however, important mediator of  
cellular signal transduction pathways[111,112]. A high level 
of  ROS is important in fighting infections[113]. Immune 
recognition of  infected cells triggers the release of  ROS 
from sequestered phagocytes and activated macrophages. 
Endogenous ROS are also produced as a direct result 
of  hepatitis C viral replication and interactions of  a 
number of  hepatitis C viral proteins with the host cell, 
as evidenced by studying infected cultured cells and ec-
topically expressed viral proteins (core, NS3 or NS5A) 
in cultured hepatocytes, monocytes and isolated mito-
chondria[6-12,114,115]. This is supported by data from in vivo 
studies. Transgenic mice carrying the structural proteins 
exhibited elevated levels of  ROS and were more sus-
ceptible to oxidant injury[10]. Infection of  a SCID/Alb/
uPA chimeric mouse (mouse with chimeric human and 
mouse liver) also revealed increased oxidative stress in 
infected hepatocytes[116]. It has recently been shown that 
the NAD(P)H oxidases, Nox1 and Nox4, are two of  the 
endogenous ROS sources in HCV-infected cultured cells 
and liver samples[117,118].

EVASION OF OXIDATIVE DEFENCE-HCV 
AND OTHERS
ROS are lethal to pathogens. How do pathogens coun-
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Figure 3  The hepatitis C virus internal ribosome entry site. The hepatitis C 
virus (HCV) 5’ untranslated region (UTR) is divided into four stem-loop domains 
and sub-domains[61]. The internal ribosome entry site (IRES) element is made 
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vast binding site for the ribosome encompassing domains Ⅱ, Ⅲ and Ⅳ and 
conformational changes in both the 40S ribosomal subunit and the IRES have 
been observed upon their interaction[66]. Binding between the IRES and the 
ribosome is thought to be mediated via ribosomal proteins although the role 
of RNA-RNA interaction cannot be excluded[67-69]. eIF3 can bind both the ribo-
some and junction domain Ⅲabc and domain Ⅲb. The ternary complex eIF2α-
guanosine triphosphate (GTP)-the tRNA for the first methionine (MettRNAi) does 
not directly bind the IRES, rather it forms a ternary complex with eIF3 and the 
40S ribosomal subunit to position MettRNAi directly onto the AUG codon in the 
P-site of the ribosome[70]. A number of non-canonical host factors are able to 
bind the HCV IRES and likely play a facilitating role in IRES translation. Howev-
er, there is evidence for a critical role of the La autoantigen in IRES translation, 
by binding to and altering the conformation of the IRES to orchestrate assembly 
of the ribosomal complex[82,83]. NS: Non-structural. 
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teract the damaging effects of  ROS? Bacteria do it at the 
transcriptional level as they normally do. Some bacteria 
such as Escherichia coli and Salmonella typhimurium can sense 
and counteract oxidative stress by inducing transcription 
of  response genes from the OxyR regulon[119,120]. Viruses, 
being obligatory intracellular parasites with limited ge-
nomic capacity, exploit different strategies to suit their 
life style. The poxvirus molluscum contagiosum virus 
has a large DNA genome thus is capable of  encoding 
their own anti-oxidant protein to become resistant to 
the cytotoxic effect of  H2O2

[121,122]. HCV is a small RNA 
virus with a limited genomic capacity. There is no evi-
dence that HCV encodes an anti-oxidant protein. This 
has led us to speculate that HCV deploys a different 
strategy to evade the host oxidative defence. Instead of  
counteracting oxidative stress, it utilizes oxidative stress 
to facilitate its own survival. This would be advantageous 
to the virus because it persists as a chronic infection. 
Precedence can be found in human immunodeficiency 
virus (HIV), which also establishes a chronic infection 
and has been associated with increased oxidative stress in 
HIV patients[123]. HIV replication was facilitated by ROS 
via activation of  the transcription factors nuclear factor-
kappa B and hypoxia inducible factor 1 alpha to stimulate 
gene expression from the HIV long terminal repeat[124-126]. 
The effect of  ROS on HCV replication is inconclusive, as 
opposing results were obtained from laboratory studies 
(most likely due to the use of  different pro-oxidants and 
HCV expression systems) although some clinical studies 
and anti-oxidants trials do support a stimulatory role of  
ROS on HCV replication[17,127-137]. Translation is the first 
step in the replication of  a plus strand RNA virus so it 
would make sense if  the virus can exploit the host oxida-

tive defence in facilitating this very first step. Indeed, we 
have previously shown that H2O2 stimulates translation 
from the HCV IRES[14].

Amongst viruses, HCV and HIV infections are com-
monly associated with elevated oxidative stress in patients, 
meaning that the viruses are continuously exposed to oxi-
dative stress[123]. Coincidentally, they both cause chronic 
infections and translation from their IRESs is both up-
regulated by H2O2, suggesting that the viruses can adapt 
to and utilize oxidative stress to their own advantage[14,138]. 
Amongst cellular IRESs, translation from the IRESs of  
nuclear factor erythroid-2 related factor 2 (Nrf2) and fer-
ritin is stimulated by pro-oxidants[139-141]. Coincidentally, 
these proteins are both involved in restoring redox bal-
ance, suggesting that upregulation of  IRES translation 
could be a homeostatic response to oxidative stress. Nrf2 
is the coordinator of  the anti-oxidant response to oxida-
tive stress and translation from its IRES was stimulated 
by H2O2

[139,141]. Ferritin sequesters excess iron from cata-
lyzing the Fenton reaction that leads to the production of  
free radicals and translation from the ferritin IRES was 
activated by iron (Figure 4)[140]. A protective response to 
oxidative stress was also mediated by IRES translation in 
a pathological setting of  ischaemic insults[142]. A rapid rise 
in the level of  H2O2 damaged the neuron but at the same 
time, conferred neuroprotection to ischaemic insults by 
stimulating translation from the Sp1 IRES. Altogether 
these results suggest that one of  the adaptive responses 
to oxidative stress could be at the level of  translation 
and that an IRES is being deployed to achieve this. It is 
interesting to see whether viruses co-opted a homeostatic 
cellular IRES in their counter-defence against oxidative 
stress or vice versa.
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Figure 4  Oxidant and anti-oxidant systems. During active respiration in the mitochondria, electron leaked from the respiratory chain reacts with oxygen (O2) to form 
reactive oxygen species (ROS) superoxide anion O2

.- and pro-oxidant-hydrogen peroxide (H2O2). O2
.- is quickly dismuted to H2O2 in a reaction catalyzed by superox-

ide dismutase. Non-mitochondrial sources of O2
.- and H2O2 include cytosolic xanthine oxidase and plasma membrane nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase. H2O2 is decomposed by iron in the Fenton reaction to yield the highly oxidizing hydroxyl radical .OH, causing macromolecule damage, DNA dam-
age and lipid peroxidation. H2O2 can be reduced to water (H2O) by catalase, glutathione peroxidases and peroxiredoxins. 
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Will all viruses possessing an IRES element be ca-
pable of  taking advantage of  oxidative stress to increase 
their replication rate? IRES is present in all members of  
the Picornaviridae family including poliovirus, rhinovirus 
(common cold), encephalomyocarditis virus, foot-and-
mouth disease virus and hepatitis A virus[143]. Picornavi-
rus IRESs are divided into Type I-V based on structural 
and functional similarity[144]. Type Ⅳ IRES is grouped 
with IRESs from the two genera Hepacivirus and Pestivirus 
of  the Flaviviridae family (here known as HCV-like IRES), 
leading to the speculation that HCV acquired an IRES 
element from picornavirus in the distant past by recom-
bination[143,145]. This may explain why IRES is not a com-
mon feature of  the Flaviviridae family and is absent from 
the genus Flavivirus. IRESs have also been found in some 
retroviruses and DNA viruses establishing chronic/latent 
infections such as HIV and Kaposi’s sarcoma-associated 
herpesvirus[138,146]. It is interesting to see whether respon-
siveness to oxidative stress is a function preserved in all 
HCV-like IRESs regardless of  whether they establish an 
acute or chronic infection or it is a function evolved with 

persistent infection.

MECHANISMS OF IRES TRANSLATION 
UNDER OXIDATIVE STRESS CONDITION
How then could an IRES facilitate an adaptive oxida-
tive response? All protein synthesis relies on eIF2α to 
deliver MettRNAi to the 40S ribosomal subunit by form-
ing a ternary complex eIF2α-GTP-MettRNAi (Figure 
5)[147]. Following hydrolysis of  GTP to GDP, the eIF2α-
GDP complex leaves the ribosome. GDP is converted to 
GTP in an exchange reaction catalyzed by the exchanger 
eIF2B, allowing eIF2α-GTP to be recycled for more 
complex formation with MettRNAi to continue translation 
initiation. Phosphorylation of  eIF2α at Serine-51 (Ser-51) 
inhibits eIF2B, thus arresting protein synthesis at the 
step of  GDP-GTP exchange. To date four mammalian 
eIF2α kinases have been known. They are the RNA-ac-
tivated protein kinase (PKR), PKR-like ER eIF2α kinase 
(PERK), heme-regulated inhibitor of  translation (HRI) 
and the mammalian homologue of  yeast eIF2α kinase 
general control nonderepressible 2 (GCN2)[148-151]. These 
kinases share similarity in their kinase domains but differ 
in their regulatory domains allowing them to respond to 
distinct stress stimuli whilst phosphorylating eIF2α at 
the identical residue Ser-51. PKR is specifically activated 
by ds-RNA during virus infections; PERK is specifically 
activated by ER stress; HRI is specifically activated by 
heme deficiency in erythroid cells primarily involved in 
the regulation of  haemoglobin synthesis whereas GCN2 
is specifically activated by amino acid starvation. We have 
shown that H2O2 is also a stress signal to induce phos-
phorylation of  eIF2α although currently we do not have 
evidence to suggest which of  the four mammalian ki-
nases is operating in our system[14]. All of  the four kinases 
have been shown to be the eIF2α kinase under different 
oxidative stress conditions and in different cell types: 
HRI in arsenite-induced oxidative stress; GCN2 in UV-ir-
radiation-induced oxidative stress and PKR and PERK in 
H2O2-stimulated osteoblastoma and HEK293 cells[152-156]. 
It is equally possible that oxidative stress-induced eIF2α 
phosphorylation is a result of  inhibition of  a phospha-
tase rather than activation of  a kinase[157].

Little is known of  how MettRNAi is delivered to main-
tain IRES translation under oxidative stress condition, 
when eIF2α is phosphorylated. So the question will be 
under this condition what is used to deliver MettRNAi? 
Although many eIFs are dispensable for IRES-mediated 
translation, almost all still rely on eIF2α to deliver 
MettRNAi, thus are sensitive to the inhibitory effect of  
phospho-eIF2α. The HCV IRES is no exception. Under 
non-stressed condition, translation from the HCV IRES 
is still dependent on eIF2α to deliver MettRNAi

[158-160]. 
However, some IRESs can evade this critical step of  
translational control and allow them to maintain trans-
lation under conditions that would otherwise inhibit 
protein synthesis. First, instead of  downregulation by 
phospho-eIF2α, translation from select viral and cellular 
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Figure 5  Delivery of MettRNAi to the ribosome. Eukaryotic translation factor 
(eIF)2α forms a ternary complex with guanosine triphosphate (GTP) and the 
tRNA for the first methionine (MettRNAi) to deliver MettRNAi to the 40S ribosomal 
subunit. Following hydrolysis of GTP to guanosine diphosphate (GDP), the 
eIF2α-GDP complex leaves the ribosome. GDP is converted to GTP in an ex-
change reaction catalyzed by the exchanger eIF2B. eIF2α-GTP can then be re-
cycled for more ternary complex formation with MettRNAi to continue translation 
initiation. When eIF2α is phosphorylated at Serine-51 (red), it inhibits eIF2B. 
Thus GDP cannot be exchanged for GTP and protein synthesis is arrested at 
this step. 
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IRESs is actually upregulated by phospho-eIF2α[161-163]. 
The exact mechanism of  how phospho-eIF2α upregu-
lates select IRES translation is unclear. Regarding HCV, 
there is no evidence that translation from the HCV IRES 
is upregulated by phospho-eIF2α, either under stress 
conditions that induce phosphorylation of  eIF2α or by 
ectopic expression of  a phospho-mimetic eIF2α-SD 
(substitution of  Ser-51 with Aspartate-51 which mimics 
the structure of  phospho-eIF2α)[14,164,165]. Secondly, a mi-
nority of  IRESs does not require any eIFs for translation. 
The cricket paralysis virus intergenic IRES simply folds 
to mimic the function of  MettRNAi

[166]. The HCV IRES 
can also operate without eIF. However, this “factor-less” 
translation was performed under in vitro condition, us-
ing a non-physiological high concentration of  Mg2+[167]. 
It is not known whether the HCV IRES can operate in 
an eIF-less mode of  translation in vivo. Thirdly, IRES 
translation can switch from eIF2-dependent to eIF2-
independent mode of  translation under stress conditions 
or during virus infections that induce phosphorylation 
of  eIF2α. Translation from the poliovirus IRES during 
early phase of  infection was dependent on eIF2α but 
was independent of  eIF2α during late phase of  infection 
and this eIF2-independence was assisted by the viral 2A 
protease[168]. HCV infection also induces phosphorylation 
of  eIF2α[169]. Translation from the HCV, classical swine 
fever virus (CSFV) and the cellular XIAP IRESs was re-
sistant to the inhibitory effect of  eIF2α phosphorylation 
by switching from eIF2-dependent to eIF2-independent 
mode of  translation, using alternative eIF such as eIF5B, 
eIF2A or eIF2D/ligatin to deliver MettRNAi

[158-160,170-173]. It 
remains to be seen which mechanisms operate to deliver 
MettRNAi in IRES translation under oxidative stress con-
dition.

However, the use of  an eIF2-independent mode of  
translation simply allows translation to operate at a lower 
efficiency when the more efficient canonical eIF2α-
dependent pathway is inhibited[158,160]. The HCV IRES 
behaves in a very different way under oxidative stress 
condition in that translation is not only maintained, but is 
actually upregulated, suggesting a different or additional 
way of  regulation under oxidative stress condition[14,174]. 
This is similar to the HIV and Nrf2 IRESs, in which 
translation is stimulated by oxidative stress[138-139,141]. Thus 
far two mechanisms have been proposed by which oxi-
dative stress stimulates IRES translation, both of  which 
involve ITAF, stressing the importance of  ITAF in trans-
lational regulation during oxidative stress.

A positive regulatory mechanism
A positive regulatory mechanism in which oxidative stress 
stimulates IRES translation by increasing cytoplasmic 
level of  ITAF, either by promoting its cytoplasmic shut-
tling or by one of  the mechanisms mentioned above. An 
example can be seen in the Nrf2 IRES. H2O2 stimulated 
Nrf2 IRES translation by increasing shuttling of  its ITAF, 
La, to the cytoplasm[141]. In this case, the H2O2-responsive 
element has been mapped to a region responsible for 
both basal and H2O2-induced IRES activity[139].

A derepression mechanism
This is similar to the positive regulatory mechanism in 
which oxidative stress stimulates IRES translation by in-
creasing cytoplasmic level of  ITAF. However, in this case, 
the IRES activity is normally repressed by being locked 
into a weakly active conformation by a repressor pro-
tein. Oxidative stress induces eIF2α phosphorylation to 
shut down global protein synthesis including that of  the 
repressor. As the repressor level drops, oxidative stress in-
creases the cytoplasmic level of  an activator ITAF, either 
by promoting its cytoplasmic shuttling or by one of  the 
mechanisms mentioned above. The release of  the repres-
sor allows binding of  the activator ITAF to induce a con-
formational change in the IRES to activate translation. In 
this case, the H2O2-responsive element has been mapped 
to a negatively regulating domain that inhibits basal IRES 
translation. An example can be found in the HIV IRES, 
although in this case the repressor and activator ITAFs 
have yet to be identified to support this derepression hy-
pothesis[138].

As for HCV, we currently do not have evidence to 
suggest how H2O2 activates IRES translation. How-
ever, others have found that iron stimulates translation 
from the HCV IRES, via upregulation of  eIF3 and La 
mRNAs[175,176]. Iron catalyzes the Fenton reaction in the 
conversion of  H2O2 into the highly oxidizing and dam-
aging .OH (Figure 4)[111]. Thus iron promotes oxidative 
stress and iron overload is frequent in HCV patients[105]. 
Although these studies did not show a direct correlation 
between oxidative stress and IRES translation, they pro-
vide an indication of  how this might work and the simi-
larity with the two proposed mechanisms in that they all 
involve an ITAF. Further work will be required to dissect 
the mechanisms of  how H2O2 activates translation from 
the HCV IRES.

Still exactly how oxidative stress stimulates IRES 
translation is far from clear. Despite collectively known as 
IRES, each IRES is unique in terms of  sequence, struc-
ture, use of  eIF and ITAF, mechanism of  translation and 
response to stress. Cellular IRESs are distinctly different 
from viral IRESs in that they are naturally capped, flatter 
and for most, depend on short motif  rather than overall 
structure to function[38,39]. HIV-a retrovirus-has a capped 
mRNA which is translated by a cap-dependent mecha-
nism under normal circumstances[177]. For HIV and some 
cellular genes, IRES-mediated translation serves as an 
alternative mechanism of  translation under stress condi-
tions[138]. In contrast, when IRES-mediated translation 
represents the main (sole) mechanism of  translation in 
RNA viruses such as picornavirus and HCV the mRNAs 
are uncapped[38]. Thus it is anticipated that the mecha-
nisms used to respond to oxidative stress would be as 
diverse as the IRES itself.

“QUASISPECIES”/INTRA-HOST IRES 
VARIANTS IMPACT ON OXIDATIVE 
RESPONSIVENESS AND PERSISTENCE
HCV genome exhibits a high degree of  sequence varia-
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tion, with > 30% difference between genotypes and 
20%-25% between sub-types[178]. Due to structural con-
straint, the 5’ UTR (which contains the IRES element) is 
the most conserved region, but substitutions along the 
IRES region are common amongst genotypes, sub-types 
and even “quasispecies”/intra-host variants[93,179]. Substi-
tutions have been mapped to the stem, loop and unpaired 
regions[36,180,181]. Most of  the substitutions in the stem re-
gions are co-variants thus preserving the structural integ-
rity of  the IRES element. A minority of  substitutions in 
the stem regions results in loss of  base-pairing and altera-
tion in IRES structure and hence function. Substitutions 
mapped to the loop or unpaired regions are important as 
well, as they may contain binding sites for the ribosomal 
subunit, eIF3 and ITAFs[36,182,183]. Therefore, despite being 
a highly conserved region, slight alteration in the IRES 
sequence can have a profound effect on basal IRES 
translation and responsiveness to stresses. The efficiency 
of  genotypic IRESs has been compared in various stud-
ies. IRESs from some genotypes or sub-types were more 
efficient in mediating basal translation (i.e., under non-
stressed condition), however, the results are not con-
sistent across studies, most probably due to the use of  
different IRES regions in their studies and the existence 
of  intra-genotypic variation in the IRES sequences used 
in different studies[184-186]. Indeed, substitutions are com-
monly found in closely related IRES sequences isolated 
from a single patient and some of  these substitutions im-
pacted a substantial change in the translational efficiency, 
highlighting the fact that HCV exists as a swarm of  vari-
ants each with slightly different IRES sequence and struc-
ture hence efficiency in basal translation and responsive-
ness to stresses/IFN[187]. It is well known that genotype 
is a determining factor in patients’ response to IFN treat-
ment. Comparison of  IRESs from six genotypes did not 
reveal any differences in their translational responsiveness 
to IFN, however, IRESs isolated from sustained respond-
ers of  genotype 3a patients had lower translation efficien-
cies than that from non-responders and were more prone 
to IFN inhibition[188,189]. Other studies also identified 
marked differences in the distribution of  substitutions 
between sustained responder and non-responder IRESs 
and between pre-treatment and post-treatment IRESs 
in non-responders, regardless of  genotypes[190-193]. These 
results further emphasize the significance of  intra-host 
IRES variants in determining stress/IFN responsiveness.

Variation in IRES sequence can also have an effect on 
virus replication via two mechanisms. First, as many of  
the translated proteins are required for virus replication, 
a change in the translation efficiency can alter the avail-
ability of  proteins involved in virus replication. Second, 
the antisense IRES contains the promoter for the plus 
strand synthesis in virus replication, thus variation in 
IRES sequence can affect the rate of  replication[194,195]. It 
is therefore interesting to see whether intra-host variation 
in IRES sequence will also result in a swarm of  variants 
with different degrees of  replication efficiencies under 
oxidative stress condition. This may also explain why 

opposing results were obtained regarding the effects of  
ROS on HCV replication[17,127-137].

Therefore, studies with viruses with high sequence 
variability such as HIV and HCV have been complicated 
by the existence of  a population of  intra-host variants 
in each patient. The collective response of  this popula-
tion of  intra-host variants will ultimately determine the 
response to oxidative stress and outcome of  infection 
(persistence).

CONCLUSION
HCV establishes a chronic infection[1]. To survive in a 
harsh environment the virus needs to deploy a number 
of  machinery to evade the host anti-viral responses, 
one of  which is oxidative stress[113]. H2O2 induces phos-
phorylation of  eIF2α resulting in inhibition of  global 
(including that of  viral) protein synthesis and constitutes 
an important defence against virus infection[14]. Posses-
sion of  an IRES element enables some viral and cellular 
genes to continue protein synthesis when the majority 
of  protein synthesis is inhibited by phosphorylation of  
eIF2α, by means of  (1) a phospho-eIF2α-dependent 
mechanism[161-163]; (2) an eIF-less mechanism[166,167]; and (3) 
an eIF2α- independent mechanism[158-160,168,170-173]. At pres-
ent, there is no evidence to suggest which mechanism is 
operating to enable translation from the HCV IRES to 
proceed when eIF2α is phosphorylated by H2O2

[14]. Thus 
far studies on other IRESs have led to the proposal of  a 
positive regulatory and a derepression mechanism, both 
involving H2O2-responsive ITAF, such as the La autoanti-
gen, implicating a pivotal role of  ITAF in H2O2-regulated 
IRES translation[138-139,141].

HCV IRES appears to belong to a class of  IRESs that 
is translationally upregulated by H2O2

[14,138-142]. This cat-
egory of  IRESs includes a number of  cellular IRESs that 
orchestrate the anti-oxidants response and IRESs from 
viruses that establish chronic infections in a highly oxida-
tive environment. It is interesting to see whether viruses 
co-opted a cellular homeostatic IRES or it is an inherent 
property of  the viral IRES in the facilitation of  a persis-
tent infection.

HCV exhibits a high degree of  sequence variability[178]. 
One must therefore take into consideration the collective 
response of  a swarm of  intra-host variants, each with 
different IRES structure and function and hence differ-
ent translation and replication efficiencies under oxidative 
stress condition and, as a functional unit, will ultimately 
determine how well the virus can survive a highly oxida-
tive environment in the process leading to persistence.
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