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Abstract
BACKGROUND 
Sinapic acid (SA) has been shown to have various pharmacological properties 
such as antioxidant, antifibrotic, anti-inflammatory, and anticancer activities. Its 
mechanism of action is dependent upon its ability to curb free radical production 
and protect against oxidative stress-induced tissue injuries.

AIM 
To study the hepatoprotective effects of SA against lipopolysaccharide (LPS)/D-
galactosamine (D-GalN)-induced acute liver failure (ALF) in rats.

METHODS 
Experimental ALF was induced with an intraperitoneal (i.p.) administration of 8 
μg LPS and 800 mg/kg D-GalN in normal saline. SA was administered orally once 
daily starting 7 d before LPS/D-GalN treatment.

RESULTS 
Data showed that SA ameliorates acute liver dysfunction, decreases serum levels 
of alanine transaminase (ALT), and aspartate aminotransferase (AST), as well as 
malondialdehyde (MDA) and NO levels in ALF model rats. However, 
pretreatment with SA (20 mg/kg and 40 mg/kg) reduced nuclear factor kappa-
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light-chain-enhancer of activated B cells (NF-κB) activation and levels of 
inflammatory cytokines (tumor necrosis factor-α and interleukin 6). Also, SA 
increased the activity of the nuclear factor erythroid-related factor 2/heme 
oxygenase-1 (Nrf2/HO-1) signaling pathway.

CONCLUSION 
In conclusion, SA offers significant protection against LPS/D-GalN-induced ALF 
in rats by upregulating Nrf2/HO-1 and downregulating NF-κB.

Key Words: Sinapic acid; D-galactosamine/lipopolysaccharide; Oxidative stress; Fulminant 
hepatitis; Antioxidant; Nuclear factor erythroid-related factor 2/heme oxygenase-1 
pathways

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This work demonstrated for the first time that the sinapic acid (SA) has 
hepatoprotective effects in the D-galactosamine/lipopolysaccharide (D-GalN/LPS)-
induced rat model through its ability to suppress oxidative stress, inflammation, and 
apoptosis. The protective mechanism of SA depends on the downregulation of nuclear 
factor kappa-light-chain-enhancer of activated B cells and the restoration of antioxidant 
enzyme levels through the activation of the Nrf2/HO-1 pathway. Thus, SA could be 
applied to treat or prevent D-GalN/LPS-induced acute liver failure in the future.

Citation: Ansari MA, Raish M, Bin Jardan YA, Ahmad A, Shahid M, Ahmad SF, Haq N, Khan 
MR, Bakheet SA. Sinapic acid ameliorates D-galactosamine/lipopolysaccharide-induced 
fulminant hepatitis in rats: Role of nuclear factor erythroid-related factor 2/heme oxygenase-1 
pathways. World J Gastroenterol 2021; 27(7): 592-608
URL: https://www.wjgnet.com/1007-9327/full/v27/i7/592.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i7.592

INTRODUCTION
Naturally occurring phenolic compounds play a significant role in disease prevention 
and treatment[1]. Natural phenols from plants include phenolic acids, tannins, 
flavonoids, stilbenes, coumarins, curcuminoids, quinones, lignans, and others. Sinapic 
acid (SA) Hydroxycinnamic acids (HCAs) are a group of naturally occurring phenolic 
acid and highly abundant in the human diet, such as fruits, vegetables, and grains[2]. 
Previous studies demonstrate that SA is a bioactive phenolic acid and has the potential 
to attenuate various chemically induced toxicities[3]. Fulminant hepatitis is a life-
threatening clinical syndrome that is associated with overwhelming inflammation, 
hepatic encephalopathy, liver injury, and eventually liver failure[4]. Several studies 
have identified various etiologies for acute liver failure such as viral infections, 
bacterial infections, alcohol, and drugs[5-7]. Lipopolysaccharide (LPS) contains 
endotoxin prompted inflammation, and D-galactosamine (D-GalN) consequences in 
lipid peroxidation via promoting the release of reactive oxygen species (ROS) in liver 
cells[8]. There is an urgent need for the development of novel hepatoprotective 
therapies. The pathogenesis of fulminant hepatitis is currently under extensive 
investigation using LPS/D-GalN-prompted acute liver failure (ALF) model. This is a 
well-known model to probe the mechanism, pathogenesis, and agents for human liver 
injury[9,10]. D-GalN, a well-established hepatotoxic agent, produces hepatic necrosis by 
inhibiting mRNA translation[11]. LPS is known to stimulate Kupffer cells and promote 
the release of inflammatory cytokines such as tumor necrosis factor-α and interleukin 
6 (TNF-α and IL-6), that successively produce hepatonecrosis and ALF. Furthermore, 
ROS-induced mitochondrial dysfunction was identified as a probable mechanism in 
LPS/D-GalN-induced ALF[12,13].

Several reports indicated that decreasing inflammation and oxidative stress could 
mitigate liver damage[14]. The homeostasis of metabolism, redox equilibrium and 
production of ROS are easily apparent at the mitochondrial level in which superoxide 
is generated as a result of the electron transport chain and Kerb’s cycle reaction. The 
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recent data demonstrate that nutritional intake, energy metabolism is also associated at 
nuclear level via the nuclear factor erythroid-related factor-2 (Nrf2)/antioxidant 
response element (ARE) pathway[15]. Several genes that contribute to oxidative stress 
are controlled by the key Nrf2. Before elevation in ROS, the Nrf2 transcription factor 
present in cytoplasm causes it to translocate to the nucleus. Activated, Nrf2 binds to 
the promoter region cis-acting enhancer ARE sequence (core sequence: 
TGAG/CNNNGC) of antioxidant genes to increase their expression of 500 genes 
including Gsts, Nqo1, Ugts, Gclc, Gclm, and Ho-1 etc. referred to as the “Nrf2 
regulon”[16], which enhanced the capacity of the cellular radical-scavenging systems 
which decrease oxidative stress and activate pro-inflammatory pathways[17,18]. NRF2/ 
ARE pathway predominantly involves in phase-II detoxification organs including 
liver, kidney, heart, intestine etc. A link between liver diseases and oxidative stress is 
indispensable. Nrf2 is a key regulator of cytodefence via mediation of antioxidant 
response, anti-inflammatory and chemoprotective activity[19]. The capacities of Nrf2 to 
enhance the expressions of antioxidant proteins and suppress oxidative stress-related 
injury have been broadly studied[14,20]. Therefore, implication of Nrf2/ARE activating 
regimens may be used for liver diseases. The generation of ROS devastates the 
antioxidant capacity, which contributes to the pathogenesis of several diseases, 
including fulminant hepatitis[10,21]. SA, also known as 3,5-dimethoxy-4-hydroxycin-
namic acid, is a key phytoconstituent of citrus fruits, spices, berries, cereals, vegetables 
and oilseed crops commonly used in food and beverages[22]. SA is known to possess 
activities, such as antimicrobial, antioxidant, anti-inflammatory, anticancer, 
antidiabetic, antihypertensive, anti-anxiety, neuroprotective and hepatoprotective 
activities[3,22-26]. SA is a prominent member of the Brassicaceae family[24]. Literature 
reveals that SA is a bioactive phenolic acid and has the potential to attenuate various 
chemically induced toxicities[3]. SA is a potent scavenger of ROS; this property allows it 
to protect against tissue injuries[3,25,26]. SA induced NRF2/HO-1 has been reported in 
various disease models[25-29]. The amolearation of LPS/D-GalN-induced fulminant 
hepatitis through NRF2/HO-1 activation have been previously documented[30-32]. 
However, the hepatoprotective effects of SA in LPS/D-GalN-induced fulminant 
hepatitis has not been previously investigated. To identify the detailed mechanisms of 
action for SA, we tested its antioxidant and anti-inflammatory activities in a rat model 
of LPS/D-GalN-induced fulminant hepatitis. Thus, the purpose of the current study 
was to explore the underlying hepatoprotective mechanism of SA against LPS/D-
GalN-induced ALF in rats. We also aimed to identify its effects on ROS production, 
inflammation and apoptosis and the roles of Nrf2/heme oxygenase 1 (HO-1) and NF-
κB pathways.

MATERIALS AND METHODS
Drugs and chemicals
SA, LPS, and D-GalN were acquired from Sigma-Aldrich (Switzerland). The following 
primary antibodies were purchased from Santa Cruz Biotechnology (Dallas, TX, 
United States): transforming growth factor (TGF-β), Nrf2, HO-1, B-cell lymphoma 2 
(Bcl-2), Caspase 3, Bcl2-Associated X, Apoptosis Regulator (Bax), nuclear factor of 
kappa light polypeptide gene enhancer in B cells inhibitor alpha (IκBα), NF-κB, and 
beta-actin (β-actin). HRP-conjugated secondary antibodies were also purchased from 
Santa Cruz Biotechnology (Dallas, TX, United States). A nuclear and cytoplasmic 
protein NE-PER kit was purchased from Pierce Biotechnology (Rockford, IL, United 
States). Enzyme-linked immunosorbent assay (ELISA) kits for rat TNF-α, IL-6, and 
myeloperoxidase (MPO) were purchased from R&D Systems, Inc. (MN, United States).

Animals
Wistar adult male rats (weight, 212-226 g) were taken from the animal facility of King 
Saud University, Riyadh, Saudi Arabia. The experiment proposal was authorized by 
the Ethics Committee of the Experimental Animal Care Society, King Saud University, 
Saudi Arabia (KSU-SE-20-13). They were kept under standard conditions 24 ± 2 °C, 12 
h light/dark cycle, and received water and food ad libitum. The studies were 
performed according to the protocols that were approved by the Animal Ethics 
Committee of King Saud University, College of Pharmacy, Riyadh, Saudi Arabia.

Experimental design
The total forty-two rats were arbitrarily categorized into four groups: The control 
group (n = 6), the D-GalN/LPS treated (ALF) group (n = 12), the ALF + SA (20 mg/kg) 
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group (n = 12), and the ALF + SA (40 mg/kg) group (n = 12), To induce ALF, rats were 
injected intraperitoneally (i.p.) with 8 µg/kg LPS and 800 mg/kg D-GalN in 800 μL 
sterile normal saline. SA (20 and 40 mg/kg) solution in normal saline were 
administered via gavage once per day starting seven days before LPS/D-GalN 
treatment. The normal control group was injected i.p. with an equal volume of normal 
saline. Rats were anesthetized with ketamine (55 mg/kg) and xylazine (7 mg/kg) and 
euthanized 72 h after the D-GalN/LPS injection. Both serum and liver samples were 
collected and stored at -80 °C for further analysis. The dose of SA was selected based 
on preliminary and published data[3,23,33].

Survival rate and liver function activity
The rate of survival was observed for 48 h after the injection with D-GalN/LPS. Rats 
were witnessed for morbidity every hour after the injection of D-GalN/LPS. Assay kits 
to measure levels of aspartate aminotransferase (AST), alanine transaminase (ALT) 
and the ratio of bilirubin to alkaline phosphatase were purchased from Human 
Diagnostic Worldwide (Wiesbaden, Germany), using a spectrophotometer (Shimadzu 
– Model UV 2401, Kyoto, Japan).”

Histological evaluation
Hepatic tissue from each rat was fixed in 12% formalin for histopathological 
evaluation. The hepatic tissues were gradually dehydrated, embedded in paraffin, cut 
into 5-μm sections, and stained with hematoxylin and eosin for histological inspection. 
Briefly, the severity of liver damage was evaluated by a blinded pathologist using 
four-point scale from 0 to 3 as follows: 0, l, 2, and 3 represent no damage, mild 
damage, moderate damage, and very severe damage, scoring system in 20 random 
fields at 400 × magnification per animal (n = 6) for each group. A light microscope 
(Olympus, Japan) examined the histological anomalies.

Preparation of nuclear and total protein extracts
Total hepatic protein was extracted by homogenizing (T 25 Digital ULTRA-TURRAX®) 
tissue in cold RIPA buffer (Pierce Biotechnology, United States) and the supernatant 
was collected after centrifuging at 2500 × g for 20 min at 4 °C. Similarly, cytosolic and 
nuclear proteins were prepared using the NE-PER Kit (Pierce Biotechnology, United 
States) following the kit instructions. The protein concentration was examined using 
(Pierce Biotechnology, United States) the method bicinchoninic acid (PierceTM BCA) 
assay[34].

Oxidative stress indices
The levels of malondialdehyde (MDA) and NO were examined in hepatic tissues using 
commercially available colorimetric assay kit (Sigma-Aldrich, St. Louis, MO, United 
States).

Antioxidant enzyme indices
Hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase 
(GPX) activities in homogenized hepatic tissues were examined using commercial kits 
(Cayman Chemical, Ann Arbor, MI, United States).

Cytokine and inflammatory marker
TNF-α, IL-6, and MPO levels in the hepatic tissue were measured using ELISA kits 
according to the kit instructions. Absorbance was read at 450 nm.

Western blot analysis
Protein expression was performed using western blot analysis using a previously 
described protocol[35]. Precisely, 30-40 µg of protein was separated via sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), electrophoretically 
transferred to nitrocellulose membranes, blocked with 4% casein and BSA in TBS 
containing 1% Tween-20 (TBST), and incubated at 4 °C overnight with the primary 
antibodies. The next day, membranes were washed five times with TBST and 
incubated with secondary antibodies for 2 h at room temperature. Bands were 
observed using Luminata™ Western Chemiluminescent HRP Substrates (Millipore, 
Billerica, MA, United States). Densitometric analysis of the immunoblots was also 
performed using a LI-COR C-Di-Git Blot Scanner (Lincoln, NE, United States).
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Statistical analysis
All results are presented as arithmetic means ± SE. Data were analyzed using a one-
way analysis of variance followed by Dennett’s test by using Graph Pad V6.

RESULTS
Effects of SA on the survival rate of animals with D-GalN/LPS-induced ALF
The effect of SA pretreatment (20 and 40 mg/kg) on the 96 h survival rate is shown in 
Figure 1. After the administration of D-GalN/LPS, five rats died before 12 h with a 
survival rate of 58.33% after 96 h. Pretreatment with 20 and 40 mg/kg SA increased 
the survival rate by 66.66% and 75%, respectively, compared to the ALF group.

Effect of SA pretreatment on liver failure serum markers in D-GalN/LPS-induced ALF
The administration of D-GalN/LPS to rats caused ALF, as demonstrated by the 
significant increase in ALT, AST, and bilirubin levels (1485.73%, 774.10%, and 374.28%, 
respectively) compared with the normal controls (P < 0.05, P < 0.05, P < 0.05). 
Nevertheless, pretreatment with 20 and 40 mg/kg SA prevented ALF, as demonstrated 
by the 51.93% and 69.65% decreases in ALT levels (P < 0.05, P < 0.05), 44.29% and 
73.66% decreases in AST levels (P < 0.05, P < 0.05) and 48.67% and 56.22% decreases in 
bilirubin levels (P < 0.01, P < 0.01) compared to the ALF rats (Table 1). Moreover, the 
histological examination of liver tissues showed that D-GalN/LPS caused focal central 
vein congestion, massive changes in lipid accumulation, ballooning formation, loss of 
cellular boundaries, and necrosis with inflammation. SA pretreatment, especially the 
40 mg/kg dose, improved liver architecture in comparison to the ALF rats.

Effect of SA pretreatment on oxidative stress markers in the hepatic tissue of ALF 
rats
Liver tissue from the D-GalN/LPS-induced ALF animals showed significantly higher 
levels of MDA (122.90%) (P < 0.05) (Figure 2A) and NO2

-content (230.01%) (P < 0.05) 
(Figure 2B) compared with the liver tissue from the control animals. However, the oral 
administration of 20 and 40 mg/kg SA significantly and dose-dependently reduced the 
MDA levels by 35.24% and 41.22%, respectively (P < 0.05; Figure 2A) and NO2

- levels 
by 39.05% and 51.82%, respectively (P < 0.05; Figure 2B).

Effect of SA pretreatment on the activity of antioxidant enzyme markers in hepatic 
tissue of D-GalN/LPS-induced ALF rats
Hepatic tissue from D-GalN/LPS-induced ALF rats show 55.14% (P < 0.05), 70.01% (P 
< 0.05), and 73.37% (P < 0.05) reduction in the activities of GPx, SOD, and CAT, 
respectively (Figure 3). The oral administration of 20 and 40 mg/kg SA significantly 
restored the activity of GPx by 29.23% and 78.81%, respectively (P < 0.05); the activity 
of SOD by 117.64% and 185.87%, respectively (P < 0.05); and CAT activity by 123.41% 
and 198.41%, respectively (P < 0.05).

Effect of SA pretreatment on cytokines and inflammatory markers in hepatic tissue 
of D-GalN/LPS-induced ALF
The data suggested that TNF-α, IL-6 and MPO levels were significantly augmented in 
the D-GalN/LPS-induced ALF that is 524.61 %, 154.57 % and 118.56 % respectively (P 
< 0.05) as compared to control rats. SA at 20 and 40 mg/kg pretreatment significantly 
and dose-dependently downregulate these effects of TNF-α, IL-6 and MPO (P < 0.05; 
Figure 4) that is 29.69% and 50.39% for TNF-α, 37.03%, 46.53% for IL-6 and 23.52% and 
32.72% for MPO as compared to D-GalN/LPS –induced ALF rats.

SA downregulates NF-κB (p65) in ALF
To examine the probable mechanism by which SA blocks TGFβ and IL-6 generation, 
we analyzed the activity of 20 and 40 mg/kg SA on NF-κB activation. As illustrated in 
Figure 5, the protein expression of IκB-α in the ALF group declined compared to the 
control group; however, this decrease was reversed by 20 and 40 mg/kg SA in a dose-
dependent fashion. Moreover, In the ALF group, we detected increased nuclear NF-κB 
(p65) relative to the control group. However, 20 and 40 mg/kg treatment with SA 
reduced NF-κB (p65) during ALF in dose-dependent manner. The data proposed that 
SA may inhibit D-GalN/LPS -induced TGFβ generation by blocking NF-κB activation. 
Induction with D-GalN/LPS encouraged the translocation of p65 into the nucleus, and 
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Table 1 Effect of sinapic acid pretreatment on liver function serum markers in D-galactosamine/lipopolysaccharide-induced acute liver 
failure

Serum Control D-GalN/LPS SA 20 mg/kg + D-GalN/LPS SA 40 mg/kg + D-GalN/LPS

Total protein (mg/dL) 121.98 ± 1.45 82.48 ± 1.84 92.70 ± 1.17a,b 104.96 ± 2.24a,b

AST (U/L) 85.78 ± 3.26 749.83 ± 36.99 417.67 ± 23.46a,b 197.50 ± 18.25a,b

ALT (U/L) 60.75 ± 4.18 963.33 ± 45.73 463.00 ± 22.41a,b 292.33 ± 23.76a,b

Bilirubin (mg/dL) 0.35 ± 0.04 1.66 ± 0.15 0.85 ± 0.03a,b 0.73 ± 0.02a,b

The results are presented as the mean ± SE of six animals per group.
aDenotes significant differences to the in D-galactosamine/lipopolysaccharide–induced acute liver failure group (P < 0.05).
bDenotes significant differences to the normal control. SA: Sinapic acid; D-GalN/LPS: D-galactosamine/lipopolysaccharide; ALT: Alanine transaminase; 
AST: Aspartate aminotransferase.

Figure 1 Effect of sinapic acid (20 and 40 mg/kg bodyweight) pretreatment on the survival rate of D-galactosamine/lipopolysaccharide-
induced acute liver failure. SA: Sinapic acid; D-GalN/LPS: D-galactosamine/lipopolysaccharide.

Figure 2 Effect of sinapic acid pretreatment on oxidative stress markers in hepatic tissue of D-galactosamine/lipopolysaccharide-induced 
acute liver failure. The results are presented as mean ± SE with six animals per group. aDenotes significant differences compared to the control group (P < 0.05); 
bDenotes significant differences compared to the D-galactosamine/lipopolysaccharide group (P < 0.05). MDA: Malondialdehyde; SA: Sinapic acid; D-GalN/LPS: D-
galactosamine/lipopolysaccharide.

induced the inflammatory response through the NF-κB signaling pathway. As 
illustrated in Figure 5, D-GalN/LPS apparently upregulated the expression of Bax, 
caspase 3, and downregulated the expression of Bcl-2, which indicated apoptosis. On 
the contrary, dose-dependent downregulation of Bax, caspase 3 and upregulation of 
Bcl-2 was observed after pretreatment with 20 and 40 mg/kg SA in the D-GalN/LPS 
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Figure 3 Effect of sinapic acid pretreatment on antioxidant enzyme activity in hepatic tissue from D-galactosamine/lipopolysaccharide-
induced acute liver failure rats. The results are presented as mean ± SE with six animals per group. aDenotes significant differences compared to the control 
group (P < 0.05); bdenotes significant differences compared to the D-galactosamine/lipopolysaccharide group (P < 0.05). CAT: Catalase; SA: Sinapic acid; D-
GalN/LPS: D-galactosamine/lipopolysaccharide.

group. These results indicate that SA inhibited LPS/D-GalN-induced hepatocyte 
apoptosis by affecting the expression of apoptosis-related factors. D-GalN/LPS 
administration induced iNOS expression compared to the normal control. 
Pretreatment with 20 and 40 mg/kg SA significantly and dose-dependently inhibits 
iNOS expression, thus suggestive its potent anti-inflammatory effects. The antioxidant 
activity of SA is controlled via the modulation of the Nrf2/HO-1 pathway. Hepatic 
tissue from D-GalN/LPS-induced ALF show lower levels of Nrf2 and HO-1 expression 
as compared to the normal control rats. However, treatment with 20 mg/kg and 40 
mg/kg SA significantly and dose-dependently upregulated the expression of Nrf2 and 
HO-1 compared with tissues from D-GalN/LP -induced animals (P < 0.05).

Effects of SA on histoarchitecture of liver tissues in ALF
As illustrated in Figure 6A, the hepatic tissues from the normal control group 
exhibited normal cellular and lobular architecture. Hepatic tissue from the ALF group 
exhibited prominent pathological alterations comprising widespread portal 
inflammation, hepatic cell necrosis, and infiltration of inflammatory cells (Figure 6B). 
However, pretreatment with 20 mg/kg and 40 mg/kg SA significantly ameliorated the 
D-GalN/LPS-induced pathological alterations in a dose-dependent manner as 
demonstrated by the reduced cell infiltration and restored lobular architecture. The 
severity of liver damage score has been illustrated in Figure 7.
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Figure 4 Effect of sinapic acid pretreatment on cytokines and inflammatory markers in hepatic tissue of D-galactosamine
/lipopolysaccharide-induced acute liver failure. The results are presented as mean ± SE with six animals per group. aDenotes significant differences 
compared to the control group (P < 0.05); bdenotes significant differences compared to the D-galactosamine/lipopolysaccharide group (P < 0.05). TNF-α: Tumor 
necrosis factor-α; IL-6: Interleukin 6; MPO: Myeloperoxidase; SA: Sinapic acid; D-GalN/LPS: D-galactosamine/lipopolysaccharide.

DISCUSSION
There is an overwhelming amount of evidence showing that SA protects against liver 
damage in animal models via various mechanisms, such as its antioxidant activity, 
anti-inflammatory activity, and ability to downregulate NF-κB p65. Therefore, SA has 
potential as a hepatoprotective agent for decreasing inflammation in CCL4 and 
dimethyl nitrosamine-induced acute liver fibrosis[23]. The fulminant hepatitis rodent 
model was not investigated, and more detailed mechanisms remain unclear. Since SA 
has potent anti-inflammatory and antioxidant functions, we hypothesized that SA 
could also have hepatoprotective effects against D-GalN/LPS-induced fulminant 
hepatitis. The D-GalN/LPS-induced animal model of ALF is widely used to check the 
efficacy of hepatoprotective agents[36,37]. To examined the hepatoprotective effect of SA, 
serum levels of AST and ALT were analyzed to study the extent of liver damage. 
Several reports have shown that SA decreased AST and ALT[23]. AST and ALT are two 
known serum biomarkers of liver dysfunction[38,39]. Elevated levels of AST are 
indicative of tissue necrosis[40]. D-GalN/LPS-induced ALF rats exhibit enhanced serum 
levels of AST and ALT that were accompanied by enhanced inflammatory infiltration, 
hemorrhage, hepatocyte necrosis, and the loss of hepatic architecture. Pretreatment 
with SA (20 and 40 mg/kg) dose-dependently downregulated the AST and ALT levels 
and helped restore liver functions and structures. These results are consistent with 
previous reports[3,23,24,41,42]. Mitochondrial dysfunction and oxidative stress are two 
linked cellular events[43]. The dysfunction of mitochondrial dynamics leads to 
accumulation ROS and encourages induction of DNA damage, up or down regulation 
of apoptotic/anti-apoptotic factors, phosphatases and apoptotic/antiapototic factors 
leading to redox imbalance leading to wide range of disease including fulminant 
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Figure 5 Sinapic acid downregulates nuclear factor kappa B in acute liver failure. A-H: Effect of sinapic acid on the protein expression of transforming 
growth factor-β1 (A), heme oxygenase-1 (B), nuclear factor erythroid 2-related factor 2 (C), nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor 
alpha protein (D), nuclear factor kappa B (E), anti-apoptotic protein BCl2 (F), caspase 3 (G), and Bax in D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced 
acute liver failure (ALF) (H). The results are presented as the mean ± SE of six animals per group. aDenotes significant differences to the D-GalN/LPS-induced ALF 
group (P < 0.05); bdenotes significant differences compared to the normal control. TGF-β1: Transforming growth factor-β1; HO-1: Heme oxygenase-1; Nrf2: Nuclear 
factor erythroid 2-related factor 2; IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha; NF-κb: Nuclear factor kappa B; SA: Sinapic 
acid; D-GalN/LPS: D-galactosamine/lipopolysaccharide.

Figure 6 Light photomicrographs of hepatic tissues. Hematoxylin and eosin stains, magnification 100 ×. A: Hepatic section of normal control rat exhibits 
normal architecture of hepatic cord of cells; B: Hepatic section of D-galactosamine/lipopolysaccharide (D-GalN/LPS) treated rats exhibiting massive fatty changes, 
focal central vein congestion, ballooning formation, necrosis with inflammation, and loss of cellular boundaries, massive cellular infiltration; C: Hepatic section of rats 
treated D-GalN/LPS and 20 mg/kg of sinapic acid (SA) showing mild central vein congestion, mild fatty changes, ballooning, necrosis with sinusoidal dilatation, mild 
cellular infiltration; D: Hepatic section of rats treated D-GalN/LPS and 40 mg/kg of SA exhibiting the absence of ballooning, inflammatory cells, and regeneration of 
hepatocytes around central vein toward near-normal liver architecture but slight congestion in the central vein.

hepatic disease[42,44,45]. Previous evidence indicate that mitochondrial defects contribute 
to liver damage via a number of pathways[46,47], involving inhibition of mitochondrial β-
oxidation and respiratory chain activity, failure of mitochondrial membrane potential 
and damage to the antioxidant protection mechanism.
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Figure 7 The liver damage score was examned using four-point scale from 0 to 3. 0, l, 2, and 3 represent no damage, mild damage, moderate 
damage, and very severe damage, scoring system in 20 random fields at 400 × magnification per animal (n = 6 per group). aDenotes significant differences compared 
to the control group (P < 0.05); cDenotes significant differences compared to the D-galactosamine/lipopolysaccharide group (P < 0.05). SA: Sinapic acid; D-GalN/LPS: 
D-galactosamine/lipopolysaccharide.

ROS play a significant role in the pathogenesis of ALF[21,48]. Reactive nitrogen species 
(RNS) and ROS can react with polyunsaturated fatty acids (PUFAs) to cause lipid 
peroxidation; this process may further damage the cellular membrane and trigger 
apoptosis[49,50]. Kupffer cells and neutrophils undergo apoptosis during vascular 
oxidative stress, which leads to ALF[51]. Several reports have implicated oxidative stress 
in D-GalN/LPS-induced ALF[52]. MDA is the end product of lipid peroxidation and the 
accumulation of ROS/RNS. It is also an excellent marker for oxidative stress[53]. The 
level of MDA and NO increased significantly in D-GalN/LPS-induced ALF rats as 
compared to normal control rats. The pretreatment with 20 and 40 mg/kg SA 
pretreatment substantially and dose-dependently curbed the oxidative stress as 
indicated by reduced MDA and NO levels. Therefore, SA might have potent 
antioxidant activity through its ability to inhibit ROS/RNS production induced by D-
GalN/LPS. There are several reports that SA has potent antioxidant activity[3]. D-
GalN/LPS-induced oxidative stress leads to the accumulation of hepatic lipid 
peroxides and the depletion of antioxidant enzymes such as GPx, SOD, and CAT.

D-GalN/LPS-induced ALF rats exhibit lower levels of GPx, SOD, and CAT as 
compared to normal control animals. SA (20 and 40 mg/kg) pretreatment significantly 
restored levels of GPx, SOD, and CAT in hepatic tissues, which is possibly an adaptive 
response to oxidative stress. SA has been previously shown to restore levels of GPx, 
SOD and CAT in a CCL4 and dimethyl nitrosamine-induced model of acute liver 
injury[23]. D-GalN/LPS-induced liver failure caused the production of TNF-α and IL-6, 
which triggered an inflammatory cascade in hepatocytes causing ALF[54,55]. Several 
natural polyphenols have been reported to prevent liver injuries[52,56]. Thus, levels of 
TNF-α and IL-6 in the liver were analyzed in the study. Pretreatment with SA reduced 
levels of these cytokines in a dose-dependent fashion. This finding may partially 
explain the hepatoprotective activity of SA. NF-κB is activated by D-GalN/LPS 
through the phosphorylation and degradation of IκB-α; this allows NF-κB to 
translocate to the nucleus and increase the gene expression of cytokines such as TNF-α 
and IL-6[57]. Out data indicate that SA downregulated NF-κB activation by decreasing 
IκB-α degradation in a dose-dependent fashion.

Nrf2, a crucial transcription factor, controls these enzymes such as SOD, CAT, GPx, 
and HO-1 by binding to the elements of antioxidant response, inducing adaptive 
cytoprotective responses, and having a strong influence on the response to oxidative 
stress[58]. Several antioxidant genes are controlled by Nrf2. Upon activation by 
oxidative stress, Nrf2 translocates to the nucleus and binds to antioxidant transcription 
elements of Phase II to increase the expression of antioxidant genes[13,52,59]. The 
restoration of antioxidant enzymes SOD, CAT, GPx, and HO-1 and down regulation of 
TNF-α and IL-6 due to upregulation of NRF2 and down regulation of NF-kB indicates 
towards cytoprotective effect due to its antioxidant and antinflamatory nature[58]. The 
data indicates SA mediates Nrf2 nucleus translocation as evident upregulation of 
NRF2 expression in nucleus that cause upregulation in antioxidant enzyme SOD, CAT, 
GPx, and HO-1 that performing a defending role against D-Gal/LPS induced 
inflammation and oxidative stress[58,60]. Down regulation of NRF2 is linked with 
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enhanced inflammation, while its upregulation reduces transcriptionally mediated 
NF-kB, pro-inflammatory and immune responses[44,61]. HO-1 is a rate-limiting enzyme 
that translates heme into equimolar amounts of iron, carbon monoxide, and biliverdin. 
HO-1 has cytoprotective and antioxidant activities and is activated in D-GalN/LPS-
induced hepatitis[6,52]. The pretreatment of D-GalN/LPS-induced ALF rats with SA 
induced the expression of HO-1 through increased Nrf2 expression. Several studies 
have shown that there is a reduction in the expression of HO-1 and Nrf2 in D-
GalN/LPS-induced ALF, which is similar to our results (Figure 2)[23,48,52]. Our data 
show that HO-1 and Nrf2 were downregulated in liver tissue after D-GalN/LPS 
administration, but SA pretreatment enhanced their expression in a dose-dependent 
manner. These outcomes showed that the Nrf2/HO-1 signaling pathways are 
implicated in the protective mechanism of SA. Apoptosis plays a key role in the 
pathogenesis of D-GalN/LPS-induced ALF[62]. Our data showed that D-GalN/LPS 
treatment may increase apoptotic and necrotic hepatocellular death through the 
upregulation of Bax and caspase-3 and the downregulation of Bcl-2. SA pretreatment 
significantly downregulates the expression of Bax and caspase-while upregulating 
Bcl2 in a dose-dependent manner, thus reducing apoptotic cell damage in hepatocytes. 
The aforesaid data is consistent with previously published studies[63,64].

CONCLUSION
This work demonstrated for the first time that the SA has hepatoprotective effects in 
the D-GalN/LPS-induced rat model through its ability to suppressing oxidative stress, 
inflammation, and apoptosis. The protective mechanism of SA depends on the 
downregulation of NF-κB and the restoration of antioxidant enzyme levels through 
the activation of the Nrf2/HO-1 pathway. Thus, SA could be applied to treat or 
prevent D-GalN/LPS -induced ALF in the future (Figure 8).
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Figure 8 Graphical abstract. SA: Sinapic acid; D-GalN/LPS: D-galactosamine/lipopolysaccharide; ALT: Alanine transaminase; AST: Aspartate aminotransferase; 
TNF-α: Tumor necrosis factor-α; IL-6: Interleukin 6; TGF-β1: Transforming growth factor-β1; HO-1: Heme oxygenase-1; Nrf2: Nuclear factor erythroid 2-related factor 
2; IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha; NF-κb: Nuclear factor kappa B; ROS: Reactive oxygen species; CAT: 
Catalase; MDA: Malondialdehyde; GPX: Glutathione peroxidase; SOD: Superoxide dismutase.

ARTICLE HIGHLIGHTS
Research background
Sinapic acid (SA) has been shown to have various pharmacological properties such as 
antioxidant, antifibrotic, anti-inflammatory, and anticancer activities. Its mechanism of 
action is dependent upon its ability to curb free radical production and protect against 
oxidative stress-induced tissue injuries.

Research motivation
In the current study, the hepatoprotective effects of SA against lipopolysaccharide 
(LPS)/D-galactosamine (D-GalN)-induced acute liver failure (ALF) in rats were 
studied.

Research objectives
In the current study, the hepatoprotective effects of SA against LPS/D-GalN-induced 
acute liver failure (ALF) in rats were studied.

Research methods
Experimental ALF was induced with an intraperitoneal (i.p.) administration of 8 μg 
LPS and 800 mg/kg D-GalN in normal saline. SA was administered orally once daily 
starting 7 d before LPS/D-GalN treatment.

Research results
Data showed that SA ameliorates acute liver dysfunction, decreases serum levels of 
alanine transaminase (ALT), and aspartate aminotransferase (AST), as well as 
malondialdehyde (MDA) and NO levels in ALF model rats. However, pretreatment 
with SA (20 mg/kg and 40 mg/kg) reduced nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB) activation and levels of inflammatory cytokines (tumor 
necrosis factor-α and interleukin 6). Also, SA increased the activity of the nuclear 
factor erythroid-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathway.

Research conclusions
In conclusion, SA offers significant protection against LPS/D-GalN-induced ALF in 
rats by upregulating Nrf2/HO-1 and downregulating NF-κB.
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Research perspectives
The amolearation of LPS/D-GalN-induced fulminant hepatitis through NRF2/HO-1 
activation have been previously documented. However, the hepatoprotective effects of 
SA in LPS/D-GalN-induced fulminant hepatitis has not been previously investigated. 
To identify the detailed mechanisms of action for SA, we tested its antioxidant and 
anti-inflammatory activities in a rat model of LPS/D-GalN-induced fulminant 
hepatitis. Thus, the purpose of the current study was to explore the underlying 
hepatoprotective mechanism of SA against LPS/D-GalN-induced ALF in rats. We also 
aimed to identify its effects on ROS production, inflammation and apoptosis and the 
roles of Nrf2/HO-1 and NF-κB pathways.
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