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Abstract
This review report represents an overview of research and development on 
medical hyperspectral imaging technology and its applications. Spectral imaging 
technology is attracting attention as a new imaging modality for medical applic-
ations, especially in disease diagnosis and image-guided surgery. Considering the 
recent advances in imaging, this technology provides an opportunity for two-
dimensional mapping of oxygen saturation (SatO2) of blood with high accuracy, 
spatial spectral imaging, and its analysis and provides detection and diagnostic 
information about the tissue physiology and morphology. Multispectral imaging 
also provides information about tissue oxygenation, perfusion, and potential 
function during surgery. Analytical algorithm has been examined, and indication 
of accurate map of relative hemoglobin concentration and SatO2 can be indicated 
with preferable resolution and frame rate. This technology is expected to provide 
promising biomedical information in practical use. Several studies suggested that 
blood flow and SatO2 are associated with gastrointestinal disorders, particularly 
malignant tumor conditions. The use and analysis of spectroscopic images are 
expected to potentially play a role in the detection and diagnosis of these diseases.

Key Words: Diffuse reflectance spectroscopy; Endoscopy; Hemoglobin saturation; 
Hypoxia; Gastrointestinal cancer; Tumor
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detection has been studied. Detailed analysis of this information will contribute to the 
development of novel objective diagnostic techniques for diseases. In the latest 
research, it has become possible to visualize pathological conditions by indicating the 
two-dimensional distribution of blood concentration and oxygen saturation in real time, 
which can be realized without dosage. In the near future, derived research field that can 
be greatly expected to develop into future prediction of pathological conditions when 
performed in combination with statistical methods.

Citation: Chiba T, Murata M, Kawano T, Hashizume M, Akahoshi T. Reflectance spectra 
analysis for mucous assessment. World J Gastrointest Oncol 2021; 13(8): 822-834
URL: https://www.wjgnet.com/1948-5204/full/v13/i8/822.htm
DOI: https://dx.doi.org/10.4251/wjgo.v13.i8.822

INTRODUCTION
Studies on spectral characterization for visible using the diffuse reflectance method 
have been reported for various diseases. In recent years, the diffuse reflectance method 
has been applied to measure changes in perfusion in response to operations, such as 
infusion of vasoactive agents and cardiopulmonary bypass, and is expected to be 
applied to various fields, such as emergency medical monitoring of condition of blood 
flow and activity of the tissue[1,2]. Spectral characterization of tissue in the intestinal 
tract by combining the diffuse reflection method and the endoscope was reported[3].

For the past 20 years, spectral data capture technology using the diffuse reflectance 
method has been used in actual clinical trials, and its technique has expanded from 
spectral measurement using single or several fibers to multispectral imaging method, 
which focuses on the characteristic changes of the target.

In this report, measuring methods and analyses to date based on visible light 
spectra and its developments of several devices from the early stage to the present day 
are focused. There are two main types of spectral information: Hyperspectral data and 
multispectral data. In general, a series of information collected at a consecutive 
wavelength with 1-5 nm interval in defined wavelength area is treated as hyperspec-
tral data, and information collected at some specific and discrete wavelength area is 
treated as multispectral data, which focuses on characteristic spectral information. 
Both appear to be positioned as part of diffuse reflectance spectroscopy, but there are 
major differences in the functions required of the equipment depending on the 
purpose. All information in the target wavelength region is required to elucidate the 
information of unknown substances. Collecting hyperspectral information always 
requires complicated equipment as well as a long capturing and analysis time, which 
prevents its practical use.

By contrast, in the case of tracking change for committed spectral information, it 
may be possible to collect information in a limited wavelength range with a higher 
data rate. For the development of practical equipment, which is using multispectral 
information, the aggregation of hyperspectral information is necessary.

The development of devices for the actual clinical field is actively promoted[4]. 
Results of the current applied research indicated the possibility that diffuse reflectance 
and multispectral technological methods will evolve into devices that may be useful in 
actual clinical practice in the near future[5-7]. Several studies reported on the use of 
spectroscopic information for gastrointestinal disorders. Some studies have used 
spectroscopic information peculiar to diseases and reports based on hemodynamics; 
however, the latter is a report focusing on high blood flow and hypoxia in malignant 
tumors. Supporting information for disease detection and diagnosis based on this 
information will make a great contribution to the field of diagnostic imaging.

With the advancement of equipment development, results obtained in this study are 
expected to be applied for practical use.

Based on the history of research and development of research and equipment, the 
report will cover the following contents: (1) Diffuse reflectance spectroscopy (DRS) 
and endoscope: Spectral information in the biomedical field; (2) Analysis of scattering 
information; (3) DRS data analysis; (4) Method of spectral image capturing: Hyper-
spectral image capturing and equipment; (5) Practical use of multispectral analysis; 
and (6) Discussion: Application of reflectance spectroscopy, reflectance spectroscopy 
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as a future technology.

DRS AND ENDOSCOPE
In recent years, spectral observations through a fiber that has passed through a video 
endoscope and its accessory channel have been reported in a case, in which a spectral 
image of the large intestinal mucosa was captured using the combination of endoscope 
and spectral imaging device[8-18]. It has become possible to use objective information, 
including spectrochemical information, as well as the doctor's subjective diagnosis 
based on single image information. Other studies have reported that relative diffuse 
spectral information on the inner surface of the colon was dominated by relative 
hemoglobin concentration (r-Hconc), oxygen saturation (SatO2), and scattering informa
-tion[19-21].

Most of the hemoglobin in blood is in red blood cells in vessels, and the measured 
mucosal SatO2 indicates tissue capillary oxygenation in both hypoxic and ischemic 
tissue. The SatO2 of the mucosa is known to differ from the arterial SatO2[22-24]. In 
addition, the relationship among blood flow, hypoxia, and malignant tumor have been 
previously studied by many and is expected to be effective in giving practical 
diagnostic support information. The information obtained by analyzing this spectral 
image has the advantage of visualizing and tracking the changes related with local 
events, in comparison with the surrounding conditions. Decades of multigroup studies 
have established the utility of spectral information as a research tool for obtaining 
information on gastrointestinal disease[24-26].

In addition to the method of measuring absorbance with a narrow-band wavelength 
filter, the method of evaluating the absorption spectrum in a wide wavelength range 
and the multivariate simultaneous analysis method were adopted to improve the 
accuracy of spectral analysis. These have been largely brought about by the contri-
bution of not only endoscopic devices and spectroscopic devices but also the 
improvements in digitalization, transfer of data, and computer software that facilitate 
multivariate optimization calculation methods[27,28].

Spectral information in the biomedical field
Because the spectral information of the target substance is linked to the chemical 
information and its changes, it is possible to analyze the acquired spectral information 
and obtain the chemical information.

By applying a conventional spectral analysis method, spectral information on the 
chemical and histologic characteristics of the substances can be obtained[29-31]. Based 
on these analysis results, in the biomedical field, chemical and biological characteriz-
ations that are unique to the disease are expected to be recognized as new diagnostic 
support information. Specifically, capturing the effect of differences in the chemical 
structure between normal and diseased parts on the spectra may enable the utilization 
of a vast amount of information between the chemical structure and the spectra. In this 
respect, the chemical information and the medical diagnosis support information can 
be expected to be integrated and utilized[32-34].

As an example of capturing chemical structural changes as spectral information, 
Figure 1 shows the changes in the spectral characteristics of oxyhemoglobin and 
deoxyhemoglobin secondary to the changes in the absorption of spectra, based on the 
difference in absorption spectrum between oxyhemoglobin and deoxyhemoglobin, 
according to oxygen binding.

The ratio of two substances calculated by quantitative spectral analysis is the SatO2 
information itself. This information is based on strong changes in hemoglobin in the 
wavelength range of 500-600 nm and the presence of detectable spectral absorption. 
The diffuse reflectance data of the colonic mucosa is also shown in Figure 1.

On the other hand, the physical structural changes can be detected by utilizing the 
fact that the nucleus is filled with a substance that has a higher refractive index, 
compared with that of the surrounding cytoplasm. By measuring the unique scattering 
pattern, the nuclear deformation of the cell can be estimated. Calculating the exact 
scattering behavior of a simple model system, such as a collection of spheres with 
specific size, density, and refractive index, and applying statistical processing may 
enable the diagnosis of the relationship between tissue changes secondary to nuclear 
variants and diseases. This information was reported to be used as support for the 
diagnosis of cancer[35-37]. In this study, the distribution of the size of the nucleus was 
estimated using the known properties of cell structure, such as the refractive index of 
the nucleus, and the measurements of periodic characterizations of the backscatter in 
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Figure 1  Spectra components oxyHb and deoxyHb and scatter.

the visible wavelength region. Analysis of nuclides has shown their effectiveness as a 
method for dysplasia assessment[38-40]. There have been many efforts to use DRS for 
disease detection and diagnosis. However, because of difficulties in data acquisition of 
back scatter (complicated optical system and higher light intensity is necessary) and 
the complex analysis in estimating nuclear size distribution, there have been few 
developments of practical commercial systems.

ANALYSIS OF SCATTERING INFORMATION
In the spectra information of human mucosa, scattering information dominates a large 
part of the information. Because of this reason, the explanation of spectral absorption 
and scattering is important for predicting the mucosa spectral information. Absorption 
and scattering comprise some of the optical processes that form the basis of the 
information obtained by DRS. Considering the effects of scattering on normal mucosa 
is basically an important issue. To estimate the concentration spectrochemically, the 
mathematical optimization described above is performed. The spectrum information 
of each component contained in this observed spectrum must be accurate. Several 
studies have focused on predicting light scattering spectra in the body to explain 
spectral information in the body.

The physical phenomenon is represented by the following equation, from which the 
relationship between scattering and transmittance can be derived (Formula 1)[5,41,42].

In this absorption model for the mucosal surface, scatter is defined as the 
cumulative count of the components of the two types of scatter. The first and second 
terms on the right side of this expression are related to the Mie scatter and Rayleigh 
scatter, respectively. The parameters k1, k2, and k3 in this equation are calculated for 
the spectral simulation of scatter. λmax of 700 nm is employed as the wavelength area 
in our study.

Total scattering is divided into Rayleigh scattering and Mie scattering, and the 
influence of scattering on the diffuse reflectance measurement of the mucosa can be 
estimated by setting the parameters[43,44]. In our measurement experiment and in 
previous reports, the effectiveness of fitting using the abovementioned formula and 
measurement of the colonic mucosa and brain surface was confirmed to be greater 
with Mei scattering than with Rayleigh scattering[45].

The features of a disease in endoscopic imaging and spectral image analysis of the 
colon was examined and reported. Furthermore, a method of using spectral image 
information to monitor blood flow and SatO2 during neurosurgery was proposed[46]. 
In the case of intestinal diseases, detection of various changes in the mucosal status on 
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the tissue surface can also be considered as changes in the spectrum secondary to 
diseases, such as ulcers, polyps, and inflammation[47]. For cases in which there can be 
changes in the optical path length or hemoglobin concentration secondary to ischemia, 
spectral information that considers these expected changes and the corresponding 
optical interpretation is required. Although many kinds of mucosa modeling were 
reported, there are few studies of modeling of the spectral information of unique 
disease, and detailed research results must be conducted for practical application[48-
50].

DRS DATA ANALYSIS
In this report, a diffuse reflectance image of visible light was captured by illuminating 
the tissue of interest with a reference light and by quantitative analyses of spectral 
information of the reflected light from the tissue back to the detector. The reference 
light was a xenon light source with a wavelength of approximately 400-650 nm, which 
was the near-infrared range of ≥ 650 nm in endoscopy cases. Each 5 nm video graphics 
array (VGA) (640 × 480 pixels) took approximately 10 s to capture. Using a glass fiber-
based fiberscope, the transmitted visible light image was captured with a spectral 
camera that was mentioned in the previous section[51]. The spectral information of 
stored data was quantitatively analyzed. An example of blood spectrum measurement 
is shown in Figure 1. In a typical colonic mucosa, the average hemoglobin SatO2 was 
approximately 65%–80%.

This overlap can be exemplified by the measurement spectra of oxyhemoglobin 
(74%) and deoxyhemoglobin (26%) and scatter. The mathematical fitting to find this 
ratio was performed on all pixels to render a 2D SatO2 display[52,53]. In the spectra 
analyses that used a large amount of spectral information for each 5-nm image, 
information other than the explanatory variables in the analysis was specified as an 
error; therefore, analysis of the spectral information of several pixels while 
maintaining the determined accuracy was possible. Additional factors, such as 
wavelength dependence of scattering, were minimized by a computerized process of 
providing a linear or polynomial correction term when fitting the spectrum (Formula 
2)[54].

Where (/L) is the absorbance of wavelength λ, I0 is reference intensity, I is observed 
intensity, j corresponds to the number of component, ε is the molar attenuation 
coefficient of the attenuating species at each wavelength (mol/L), C is the concen-
tration of the attenuating species (mol/L), and d is the optical path of the component 
(L). In addition, the baseline offset was considered. The modified Beer–Lambert law 
was completed for each wavelength and each component.

This method of analysis was based on the Beer–Lambert law and was affected by 
the optical path length and the number of hemoglobin molecules[55]. In addition, it 
was necessary to compensate for the angle between the mucosal imaging area and the 
fiber incident surface angle. In this study, the information obtained by diffuse 
reflection was practically limited to the information near the surface layer of the 
mucosa. For example, using visible light, the standard signal was reported to be 
mainly secondary to hemoglobin absorption at a 0.25-mm surface tissue[56] and 
provided a good indicator of mucosa relative to the hemoglobin concentration and 
oxygenation[57].

This way, the average hemoglobin SatO2 on the surface of the mucosa was 
accurately estimated by the DRS method. Because most blood in the measurement area 
was inside the mucosal capillaries, the tissue hemoglobin SatO2 measured by DRS was 
estimated as the SatO2 of hemoglobin in the mucosal capillaries. This made it possible 
to detect conditions of hypoxia caused by insufficient oxygen supply or excessive 
oxygen consumption of the mucosa.

In the actual measurement in the diseased part, blood concentration may have 
changed significantly because of bleeding. A high concentration of blood may be 
measured, especially in bleeding points. In this case, the spectra absorption was 
saturated, and the calculation of hemoglobin concentration and oxygenation became 
more difficult. In addition, despite attempts to create individual optical models, 
accurate diagnosis may not have been possible in special cases, such as in the presence 
of unexpected compounds; this limitation of this method must be recognized.
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In other cases, such as the liver, which contains significant concentrations of 
cytochromes with a strong absorption spectrum in this range, measurement of 
hemoglobin oxygenation was not possible because of competing signals from other 
molecules. Regarding the irradiation of the reference light, generation of additional 
optical processes, such as fluorescence and Raman scattering, was considered. 
However, these kinds of light are usually weak and do not substantially affect the 
measurement.

METHOD OF SPECTRAL IMAGE CAPTURING
Hyperspectral image capturing and equipment
Basically, when detecting spectral information in a living body, comparison of the 
normal and diseased portions is necessary because of the limitations in reliability of 
the measurement results for each point, owing to biological individual difference. 
Using the capture technology of the 2D spectral information, the normal and diseased 
parts were effectively compared on the same screen. Moreover, sharing information 
with the output of the other imaging diagnostic equipment was possible. In this 
respect, 2D indication has been indispensable and extremely innovative in the field of 
diagnostic imaging support[58].

Because of limitations in the sensitivity region of the image sensor that is used for 
the detector, the spectroscopic device has been used in practice mainly with 
equipment that has a visible range of about 400-800 nm. Many studies have been 
conducted based on the observation that the spectral feature quantity changed in this 
wavelength region[59]. Spectral images have been recorded based on the functions of 
wavelength resolution with diffraction grating and light intensity measurement, using 
a photoelectric conversion element, i.e., charge coupled device and complementary 
metal oxide semiconductor (WAT-902H2 camera, Watec). This way, spectral image 
capturing using two typical capturing methods has been put to practical use.

The first method entailed optical image decomposition using a slit; the spectral 
information of one line of the slit was recorded in a 2D element. After recording the 
spectral information of each line, the recorded data were reconstructed as an image for 
each wavelength. This operation was repeated while moving the slits for vertical pixels 
to obtain 2D spectral information (Figure 2)[51,60].

For the second method, a switchable wavelength selection element was placed in 
front of a photoelectric conversion element. A typical case involved replacement of the 
conventional band-pass filter in front of the monochrome camera with a liquid crystal 
tunable filter (LCTF), repetition of high-speed switching of the transmission band, and 
image capturing in the wavelength range. Multiple filters limited the transmitted by 
combining the etalon plates. Furthermore, a liquid crystal material layer that had an 
anisotropic material of refractive index was placed in between the substrates of the 
etalon plates, and the optical path length of extraordinary light was controlled by 
applying a voltage. As a result, the transmission wavelength region was controlled[54,
61].

For example, when capturing a VGA 640 × 480-pixel spectral image, the spectral 
camera (Figure 2) captures one line in one image frame. Therefore, basically, the 
requirements were capturing an image in steps (usually pixels) toward the scan 
direction was necessary; 10 s, including 30 frames/s; and data transfer. Under this 
condition, the captured image will be distorted according to the movement of the 
object. However, because each line captured the entire wavelength range with a 
capture time of 1/30 sec, maintenance of the spectral information of pixels, which is 
the major feature of this method, was possible[51,60].

The second LCTF method was a method of arranging a LCTF in front of the image 
sensor, specifically a monochrome camera, and controlling the wavelength range 
incident on an image sensor (Figure 3). The time required for modulation was 50-80 
ms for each image capture; this way, capturing a series of 400-800 nm for each of the 81 
each 5-nm images, excluding data transfer, took around 5 s[54,61]. With this method, 
the screen capture for each transmission wavelength was realized; therefore, the 
motion on the image of the object being captured was recorded as a position change of 
the image in each wavelength, and this led to a calculation defect. As a solution to this 
problem, software for position compensation was used.

In both methods, the capture time depended on the operation speed of the light 
conversion element, the transfer speed of the captured data, and the processing speed 
of the time series information calculation. Therefore, equipment of higher 
performance, compared with that of commercially available equipment, was required 
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Figure 2  Scheme of hyperspectral camera.

Figure 3  Scheme of liquid crystal tunable filter and digital camera combination.

for this information capture and processing.

PRACTICAL USE OF SPECTRAL ANALYSIS
As described above, spectral analysis acquires images by sampling wavelengths at 
equal intervals, and the movement of the apparatus itself or the movement or 
deformation of the object during capturing occurs; these make accurate spectral 
analysis extremely difficult. Although capturing many images is an unavoidable 
disadvantage, it may be solved by limiting the target spectral feature. And by short 
time capturing through reduction of the number of bands is to realized[5,48]. Multis-
pectral method is unsuitable for tracking unknown chemicals and for characterizing 
chemical structure but is extremely effective for quantitative tracking of featured 
spectra changes.

By contrast, the spectral analysis is expected for the accurate detection and objective 
diagnosis of diseases. The effectiveness of spectral data in the medical field has been 
addressed in previous reports[46,49,50]. In addition, the application of blood flow and 
hemoglobin mapping for implantation surgery using a small animal model was 
proposed[62,63].

Multispectral endoscope system is used to indicate r-Hconc and saturation 
generated with 2D display, which is analyzed using the spectral feature of the three 
multispectral images. This method achieved an image output of 7.5 frames/s was 
reported. The system enables to indicate hemoglobin saturation (SatO2) of the mucosa 
with a practical frame rate for normal examination (Figure 4).

Diffuse reflection spectroscopy for gastrointestinal examination is expectedly 
applied in various ways for the noninvasive diagnosis of diseases[64,65].

The proposed technique for the detection of hypoxic areas is based on Hb–oxygen 
dynamics, and detailed observation of the gastrointestinal mucosa is important for 
endoscopic detection and diagnosis. Previous studies reported a successful spectro-
scopic analysis of the gastrointestinal mucosa, with some characterizing both normal 
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Figure 4 The system enables to indicate hemoglobin saturation of the mucosa with a practical frame rate for normal examination. An area 
with relatively high Hb concentration area is enhanced by an Hb concentration mask. The higher Hb concentration and lower Hb saturation areas that are influenced 
by the tumor are observed as a blue area. A: Experimental cancer model. Red–green–blue video endoscope image of the mouse viscera. The tumor area is outlined 
by a white line; B: Hb saturation map of the tumor generated by the endoscope system; C: Hb concentration map of the tumor generated by the endoscope system; 
D: Hb concentration-masked Hb saturation map.

and abnormal tissues[66,67].
With regard to the spectral data of the colonic mucosa, marked characteristics in 

relative Hb concentration and blood oxygenation have been reported to be also 
detected for the tumor. Differences in the relative Hb concentration and saturation 
between malignant tumors and non-malignant mucosa have been previously invest-
igated and reported as a “high Hb concentration level and lower Hb saturation for 
malignant tumors.” To compare actual individual differences between Hb concen-
tration and normal tissue saturation, superiority of the “spatial indication,” including 
diseased and normal tissue, has been confirmed[7,68-70].

The logical combination of the relative Hb concentration and saturation will also be 
useful to detect notable regions.

DISCUSSION
Several studies have reported the effect of scattered spectral data on human mucosa[6,
19]. In this study and previous studies, the components of diffuse reflectance data of 
normal intestinal mucosa were explained mainly by oxyhemoglobin, deoxyhemo-
globin, and scattering; detection of differences between normal and diseased parts as 
an abnormal ratio of these three components is expected. As shown above, the use of 
multispectral analysis reduced the device load of wavelength shift capturing and 
transfer and allowed near real-time monitoring of r-Hconc and saturation. In this 
study, the fusion of information on r-Hconc and SatO2 enabled the extraction of partial 
data on high blood flow with high SatO2 and high blood flow with low oxygen. This 
fusion information is expected to support the diagnosis and identification of inflam-
mation and malignant tumors.

Endoscope system, which enables the indication of 2D SatO2 and r-Hconc mapping, 
was developed. Display and recording of blood concentration and mucosal SatO2 
changes over time were possible with the video rate. The system paved the way to 
SatO2 evaluation for general endoscopic examination. Moreover, an animal study has 
shown that reduced SatO2 in tissues following vascular occlusion in a controlled 
setting, including arterial and venous occlusion models, is reproducible. These results 
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Table 1 Application of indicating relative hemoglobin concentration and saturation function to surgical operation

Department Target disease Expected results

Neurosurgery (1) Brain tumor; and (2) Cerebral infarction: Detection of diseased area (1) Improvement of postoperative outcome in terms 
of oncologic and functional preservation; and (2) 
Diagnostic improvement

Urology Partial nephrectomy of renal tumor: Detection of area of ischemia secondary to 
occlusion of a dominant artery

Improvement of postoperative outcome in terms of 
oncologic and functional preservation

Gynecology Trachelectomy for cervical cancer: Assessment of relativity between blood 
flow and fertility after anastomosis

Decision on the optimal reconstruction method

Gastroenterology 
surgery

Organ resection for gastrointestinal cancer: Assessment of the organ after 
resection and reconstruction. Strangulation ileus and hernia: Conformation of 
organ and tissue viability-related blood flow and oxygen saturation

Reduction of postoperative complications by 
assessment of real-time organ viability

Plastic surgery Skin transplantation, including breast reconstruction: Confirmation of 
transplanted organ and tissue viability-related blood flow and oxygen 
saturation. Keloid scar: Relative assessment of keloid scar formation-related 
blood flow and oxygen saturation

(1) Improvement of reconstructive surgery; and (2) 
Establishment of knowledge on the oxygen 
saturation of wound tissue for prevention of keloid 
formation

Ocular Diabetic retinopathy: Evaluation of the oxygen saturation of fundus blood 
vessels

Establishment of evaluation and treatment for 
diabetic retinopathy

were consistent with decreased SatO2 in the mucosa when blood flow is blocked after 
arterial occlusion and with increased SatO2 during blood flow restoration. Moreover, 
these results led to the evaluation of biological activities.

Application of reflectance spectroscopy
DRS endoscopy is expected to be used as a tool to investigate the roles of mucosal 
perfusion and hemoglobin oxygenation in the pathophysiology of various diseases, 
such as peptic ulcer disease, inflammatory bowel disease, and portal hypertensive 
gastritis. Other studies have investigated the effects of various vasoactive agents on 
mucosal perfusion and physiologic interventions, such as brain tumor[2,71,72]. 
Moreover, research on the application of reflectance spectrophotometry on ulcer 
disease has been reported[73]. In animal models, studies reported decreased hemoglo-
bin concentration and SatO2 after ligation of arterioles that fed the mucosa. Another 
research noted that unlike pulse oximetry, the diffuse reflectance method provided 
reliable measurements in areas other than the aorta. This recent study convincingly 
demonstrated the application of the diffuse reflectance technique to continuous 
monitoring of mucosal perfusion and oxygenation in the emergency setting[73].

Reflectance spectroscopy as a future technology
A decade ago, spectral analysis started with an old spectroscopic system. Nowadays, 
real-time display of diagnostic assistance information is possible by acquisition and 
analysis of data, based on 2D spectral information. Spectral imaging, which has been 
researched in recent years, has opened the way to the acquisition and analysis of 2D 
spectral information, as well as fusion with new diagnostic support information based 
on chemical and biological knowledge. However, improvement of device performance 
as a practical equipment is essential.

Although a multispectral image provides limited information, it provides a device 
that can display data with realistic accuracy and speed within the scope of currently 
available technology based on rapid measurement and analysis. The technology 
introduced in this report included an example of controlling the light source of an 
endoscopic system, but the development of a multispectral camera was already 
considered. The system, which is equipped with the function of capturing multis-
pectral information and displaying diagnostic support information, will be able to 
expand its field of application. For example, the system is expected to provide 
important monitoring information for evaluating oxygen delivery to selected tissues, 
such as the esophagus, stomach, and rectal mucosa. Moreover, the actively available 
areas of this technique for local hemoglobin concentration and oxygenation have also 
been applied in the field of surgical and radiologic vascular assessment. The table 
below shows the expected fields that would use blood concentration and SatO2 display 
in the surgical field. Multiple trials are currently seeking practical applications 
(Table 1).



Chiba T et al. Reflectance spectra analysis for mucous assessment

WJGO https://www.wjgnet.com 831 August 15, 2021 Volume 13 Issue 8

CONCLUSION
Research on the analysis of spectral information of the human gastrointestinal mucosa 
was advanced, and hemoglobin concentration and SatO2 changes were detected in 
blood, the main spectral component in the visible region. A practical endoscopic 
system was reported to allow real-time quantitative 2D display of hemoglobin concen-
tration and SatO2 of human gastrointestinal mucosa, indicating information for the 
detection and diagnosis of diseased areas.
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