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Abstract
Aim of this frontier review has been to highlight the role of microbiota in healthy 
subjects and in patients affected by renal diseases with particular reference to 
renal transplantation. The microbiota has a relevant role in conditioning the 
healthy status and the diseases. In particular gut microbiota is essential in the 
metabolism of food and has a relevant role for its relationship with the immune 
system. The indigenous microbiota in patients with chronic renal failure is 
completely different than that of the healthy subjects and pathobionts appear. 
This abnormality in microbiota composition is called dysbiosis and may cause a 
rapid deterioration of the renal function both for activating the immune system 
and producing large quantity of uremic toxins. Similarly, after renal trans-
plantation the microbiota changes with the appearance of pathobionts, principally 
in the first period because of the assumption of immunosuppressive drugs and 
antibiotics. These changes may deeply interfere with the graft outcome causing 
acute rejection, renal infections, diarrhea, and renal interstitial fibrosis. In 
addition, change in the microbiota may modify the metabolism of immuno-
suppressive drugs causing in some patients the need of modifying the 
immunosuppressant dosing. The restoration of the indigenous microbiota after 
transplantation is important, either to avoiding the complications that impair the 
normal renal graft, and because recent studies have documented the role of an 
indigenous microbiota in inducing tolerance towards the graft. The use of 
prebiotics, probiotics, smart bacteria and diet modification may restore the 
indigenous microbiota, but these studies are just at their beginning and more data 
are needed to draw definitive conclusions.

Key Words: Gut commensals; Microbioma; Microbiota; Renal disease; Renal trans-
plantation; Transplant outcomes
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Core Tip: Recent studies on the microbiota have documented that a microbiota 
modification, related to the assumption of immunosuppressive drugs and of antibiotics, 
as happens in the first period after transplantation may modify the outcomes of the 
graft. Indeed, dysbiosis may cause acute rejections and reduce the possibility of a 
tolerance status. In addition, dysbiosis if often the cause of infections and renal 
fibrosis. Dysbiosis may also cause diarrhea that is a frequent and severe complication 
in the transplanted patient. Modification of dysbiosis is possible with an appropriate 
treatment, but studies on this topic are just at their beginning.
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INTRODUCTION
The microbiota is defined as the micro-organisms that live in the human body without 
damaging it in healthy conditions. The most important and the best studied is the 
microbiota of the digestive system. In particular, the urinary microbiota has also been 
studied in studies concerning renal diseases and renal transplants.

In recent years the function of the microbiota, particularly the gut microbiota has 
been extensively examined and the relationship between the microbiota and diseases 
has been elucidated with particular reference to organs such as the kidney. In this 
frontier review, the definition of the microbiota and its variety will be provided, along 
with descriptions of its functions and relationship with the immune system. In 
addition, the relationship between an abnormal microbiota or pathobionts and renal 
diseases and renal transplantation has been documented in several studies[1-5]. The 
relationship between the microbiota and its alterations in patients with kidney disease 
will be elucidated with particular references to the relationship between the microbiota 
and renal transplantation.

DEFINITIONS
The words microbiota and microbioma are often mutually used, but they have a 
different meaning.

The term microbiota refers to all the microorganisms inhabiting some specific niches 
as gut, skin, lungs and other organs and encompasses bacteria, viruses, fungi and 
archea. In this review the term microbiota refers principally to bacteria even if in 
general it strictly refers also to other microorganisms. In a recent study the estimated 
total number of bacteria for a 70 kg man is approximately 3.8 × 1013 and is 
approximately of the same order of the number of human cells[6]. The gut microbiota is 
the most important community because of its quantity and its relationship with kidney 
disease. The gut microbiota is already present within the first few years of life, and its 
composition should remain stable in adults, where the dominant bacteria are 
Bacteroides, Firmicutes and Actinobacteria[7-9]. In the healthy subject the resident 
microbiota is also called indigenous microbiota. When the indigenous microbiota, due 
to genetic or environmental factors, cause inflammatory disorders or other diseases, is 
generally called pathobionts and this condition is called dysbiosis. Pathobionts should 
be distinguished from acquired infectious agents also called pathogens[10].  Due to the 
relevance of microbiota both in healthy status and diseases, several national and 
international scholars performed studies of gut microbiota, such as the Canadian 
Microbioma Initiative, The Human Meta Genome Consortium Japan, the My New Gut 
Project of the European Union and the International Human Microbioma 
Consortium[11-13]. The composition of the gut microbiota under standard conditions is 
shown in Table 1.

As mentioned above, the term microbioma has a different meaning than the 
microbiota and refers to all the microbiota genes and is approximately 150 times larger 
than the human genome[14,15]. In healthy subjects the gut microbioma is stable and 

https://www.wjgnet.com/2220-3230/full/v11/i3/16.htm
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Table 1 Distribution of normal gut flora in different parts of intestine

Intestine sections Function Normal flora

Stomach Acid production, pepsin, amylase, CFU < 103

/mL
Lactobacillus; Streptococcus; Helycobacter pylori

Small intestine: duodenum, 
jejunum

Pancreatic enzymes, bicarbonate ions, bile salts, 
CFU: 103-104/mL

Lactobacilli; Enterococci; Streptococci; Actinobacteria

Small intestine: ileum CFU: 103-109/mL Enterococcus; Bacteroidetes; Lactobacillus; Clostridium; Corynebacteria

Large intestine: caecum, 
colon

Mucus and bicarbonate, CFU:1010-1012/mL Bacteroidetes; Clostridium; Eubacterium; Ruminococcus; Streptococcus; 
Enterococcus; Lactobacillus; Fusobacteria

CFU: Colony forming units.

exerts important functions throughout the body as shown in Table 2.

FUNCTIONS OF THE MICROBIOTA
Metabolic functions
Dietary fibers produce energy when metabolized, but not all dietary fibers are 
metabolized by digestive enzymes[16]. The gut microbiota of the large intestine contains 
enzymes that are able to metabolize these fibers and recover additional energy[17,18].

Undigested proteins are degraded into peptides, amino acids and other metabolites 
in the large intestine. Some of these metabolites are dangerous to the body and could 
cause diseases as colorectal cancers and kidney dysfunction[19]. The MEROPS database 
documented that the composition of the large intestine microbiota may contains 
different proteases responsible for inducing the production of different meta-
bolites[20,21]. The gut microbiota also exerts important actions on lipids, bile salts and 
polyphenols.

Structural functions
The structural integrity of the intestinal epithelium is essential to avoid a dangerous 
increase in permeability. The maintenance of structural integrity is essential for the 
microbiota. In normal conditions, cytokines produced in the gut may back diffuse in 
small quantities passing through the gut barrier. The barrier function of the tight 
junction in dysbiosis condition, may be weakened by several endotoxins of some 
pathogens as Escherichia coli (E. coli), Clostridium difficile and Clostridium perfrigens. In 
this condition of dysbiosis, the diffusion of citokines such as interleukin 4, interleukin 
1 beta, tubular necrosis factor alpha and interferon gamma is increased[22-26].

Protective function
The gastrointestinal tract represents a bidirectional barrier between the gut microbiota 
and the gut immune system[27]. The barrier is composed of three layers: the mucus 
layer, the antimicrobial peptides (AMPs) and the IgA system.

Mucin glycoproteins secreted by goblet cells form a layer over the epithelia to 
restrict bacterial adhesion. This layer prevents the adherence of commensal microbiota 
to gut epithelial cells, limiting the bacterial adhesion[28]. A second layer is represented 
by AMPs secreted by epithelial cells. AMPs include α and β defensins secreted by the 
epithelium and mediated by cytosolic nucleotide-binding oligomerization domain-
containing protein 2[29,30]. C-type lectins activate Toll-like receptors to limit bacterial 
penetration through the gut barrier[31].

The third layer is composed of the IgA system. Dendritic cells (DCs) located beneath 
the epithelial dome of Peyer’s patches take up bacteria, migrate to mesenteric lymph 
nodes and induce B cells to differentiate into IgA plasma cells that  secrete IgA[32,33].

THE MICROBIOTA AND THE IMMUNE SYSTEM
The indigenous microbiota, pathobionts and pathogens promote in the gut the 
generation of several Th cells among which Th1, Th2, Th17 and Treg. At mucosal sites 
this may also be due to the production of microbiota metabolites. In particular, the 
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Table 2 Functional activities of normal gut flora

Protective function Metabolic function Structural function

Nutrient competition; Barrier fortification; 
Innate and adaptive immunity activation; 
Antimicrobial compounds secretion

Vitamin and amino acid biosynthesis; Bile acid 
biotransformation; Dietary fiber fermentation; Short 
chain fatty acids production

Mucus layer properties; Crypt and villi 
development; Villi microvascularization; Tight 
junction regulation

Seven division of bacteria (Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Verrucomicrobia, Actinobacteria, Cynobacteria), 300-1000 species.

microbiota stimulate epithelial cells to the generation and accumulation of Treg by 
increase of TGFβ, stimulate macrophages to induce Th17 cells by increase of 
interleukin 1 beta, and through DNA methylation can induce proliferation of colonic 
Treg cells. Other actions on immune cells are due to microbiota metabolites as 
butyrate. Butyrate down regulates IL-10 production from neutrophils and generates an 
anti-inflammatory activity. Butyrate, down regulating IL-6 from macrophages, induces 
increased levels of histone acetylation. On the other hand, butyrate, by inhibition of 
histone deacetylase, inhibits the activation of NF-kB inducing a Th1 cell response[34,35]. 
The balance of Treg cells and the effector T cells in the intestinal mucosa is related to 
the ratio between the indigenous microbiota and the pathobionts. In particular the 
subset of Th1 and Th2 cells activation is characterized by the expression of 
proinflammatory cytokines including  IFNγ, IL4, IL5 and IL13, and IL23[22]. Th 17 cells 
are characterized by the synthesis of IL-17, which stimulates cells to express the 
proinflammatory cytokines as IL-6, IL-8, and Il-22[36,37].

The indigenous microbiota plays a fundamental role in the induction, education and 
function of the immune system (Figure 1).

The microbiota composition may be modified by several conditions, among which 
the use of antibiotics, immunosuppressants or diet alterations. In such conditions 
pathobionts appear and modify the immune system and promote the development of 
inflammatory diseases[38].

Microbiota-derived Toll-like receptors and NOD ligands and metabolites [such as 
short-chain fatty acids (SCFAs) and aryl hydrocarbon receptors] may act on local gut 
cells but also penetrate beyond the mucosa to tune immune cells in peripheral 
tissues[39].

SCFAs promote DC precursor activation and release into the bloodstream. 
Microbiota- derived NOD1 Ligands induce mesenchymal cells to produce hemato-
poietic growth factors as IL7, stem cell factor (SCF), thrombopoietin, recombinant 
human flt3-Ligand, IL6[40-42].

In addition, microbiota-derived riboflavin metabolites promote the development of 
mucosal- associated invariant T cells[43], and commensal bacterial-induced cytokines 
IL1β and IL23 promote IL17A production from gamma delta T cells[44,45].

Finally, commensal bacterial colonization promotes effector and regulatory T cell 
responses.

Clostridia colonization promotes retinoic acid receptor-related orphan nuclear 
receptor gamma (RORγt)[46], and Foxp3+  Treg cell accumulation, which in turn limits 
colonic Th2 and Th17 cell responses.

Foxp3+ Tregs cells localize in Peyer’s patches and promote B class switching and the 
production of IgA, which fosters a different microbiota and ensures commensal 
bacteria compartmentalization from the intestinal epithelium[47].

Under healthy conditions, a balance between antigenic stimuli exists due to the 
microbiota and the immune response.

However, an aggressive immune response due to the appearance of pathobionts or 
pathogens in some subjects may cause inflammatory diseases, and a weak response 
may cause the overgrowth and diffusion of the pathobionts themselves.

Commensal bacteria induce CD4+ cells to differentiate into 4 main subtypes: Th1, 
Th2, Th17 and Treg. The indigenous microbiota contributes to normalizing the ratio of 
these subtypes.

Additionally, IgA production contributes to controlling excessive microbiota growth 
and limiting the growth of pathobionts.

In healthy conditions, segmental filamentous bacteria induce the growth and 
differentiation of Th17 and Th1 cells[48]. In animal studies has been documented that 
this is impaired in animals treated with antibiotics while is normal in germ free 
conditions. Still in the animals, in healthy conditions, Clostridia promote the 
accumulation of Tregs and production of IL10, which exerts anti-inflammatory 
effects[49].



Salvadori M et al. Microbiota and the kidney

WJT https://www.wjgnet.com 20 March 18, 2021 Volume 11 Issue 3

Figure 1 Role of microbiota in the induction, education and function nof the immune system.

Bacterioides fragilis also contributes to maintaining a correct equilibrium between 
the microbiota and immune system by producing of polysaccharide A and inducing 
the production of IL10 and Tregs[50].

When the microbiota loses its richness and its correct composition, pathobionts 
appear and dysbiosis occurs. This change may lead to diseases and kidneys and 
kidney grafts are among the main targets.

THE INTESTINAL MICROBIOTA AND THE KIDNEY
Communication between the gut and kidney occurs either by the activation of the 
immune system and by microbiota-derived metabolites.

Several studies have documented that the activation of Th17 cells in the gut by the 
microbiota leads to activation of Th17 cells in the kidney[51]. Chemokine ligand 20/C-
C[52] recruits Th17 cells to the kidney.

In animals, the addition of antibiotics reduces Th17 levels and renal damage[53]. The 
crucial role of Th17 cells in inducing tissue injury is also evidenced by the high levels 
of Th17 cells in humans with auto-immune kidney diseases and in glomeru-
lonephritis[54].

This phenomenon is bidirectional because acute kidney injury (AKI) determines 
intestinal dysbiosis and T helper Th17 cells, neutrophils and M1 macrophages mediate 
intestinal inflammation, as well as leaky gut with bacterial translocation. On the other 
hand, dysbiotic microbiota may exert an adverse effect on kidney injury and the 
depletion of the pathobionts may mitigate kidney injury[55].

Microbiota-derived metabolites may affect kidney and other organ functions. 
Indeed, the microbiota may interact with a large number of vital functions in the 
health body via several metabolites. The targets are host metabolism and immunity as 
well as cardiovascular and brain functions. Additionally, the microbiota metabolism 
utilizes enzymes not encoded by the human genome and generates biological products 
relevant to the host’s health as bile acids, choline, vitamins and SCFAs[56].

SCFAS are among the most relevant metabolites produced by microbiota[57].
SCFAs activate G protein-coupled receptors (GPR) including GPR41, GPR43 and 

GPR109A.
The binding of SCFAs to their receptors exerts beneficial effects on the kidney. 

Indeed, this signaling pathway regulates energy homeostasis[58], stimulates glucagon-
like peptide 1 secretion[59], and inhibits the progression of atherosclerosis in mice[60]. 
The binding of SCFAs to another receptor, Olfr78 exerts beneficial effects on blood 
pressure[61]. These and other data support a beneficial effect of SCFAs on kidney injury 
(Figure 2).

In addition, SCFAs also regulate cytokine expression in T cells and the generation of 
Tregs through histone deacetylase inhibition.

Overall, SCFAs exert a beneficial effect on AKI by reducing the production of 
cytokines and chemokines such as IL1β, IL6, TNFα and monocyte chemoattractant 
protein 1[62].

In addition, SCFAs have also extraintestinal actions controlling appetite regulation, 
glucose and lipid metabolism. This is due to the fact that the above mentioned 
receptors have also been found in cells as adipocytes, neurons and immune and 
vascular cells[63].

Equol, produced by certain microbiota subtypes has several beneficial effects, 
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Figure 2 Short-chain fatty acids and the receptors in the kidney. Olfr78: Olfactory receptor 78; GPR41: G protein receptor 41; GPR43: G protein receptor 
43; GPR109A: G protein receptor 109A; SCFA: Short chain fatty acid.

including antiapoptosis, antioxidation, and anti-atherosclerosis, the production of 
nitric oxide in endothelial cells, antiproliferation and/or migration, and promotion of 
vascular smooth cells relaxation[64].

On the contrary, negative effects on vascularization are exerted by metabolites as 
indoxylsulfate and trimethylamine N oxide (TMAO).

Indoxylsulfate produced by pathobionts as E. coli has deleterious effect on the 
vascular system. Indoxylsulfate induces apoptosis, senescence, prothrombotic events, 
proliferation and/or migration and modulation of vascular tone in vascular smooth 
muscle cells. Similar negative vascular effects are exerted by TMAO.

TMAO is a product of gut bacterial metabolism of choline. Differently from SFCAs 
it promotes renal interstitial fibrosis[65].

The different effects of these metabolites are shown in Figure 3.
The gut microbiota may also produce uremic toxins that, in the case of dysbiosis, 

may be produced in high quantities and may damage the kidney[66].
The quorum sensing signals (QS) may be produced either by pathobionts or by 

indigenous microbiota. Indeed, QS may be divided into two types. Those produced by 
GRAM- bacteria such as Pseudomonas aeruginosa have negative immune-related 
processes such as IkK phosphorilation, and activation of mitogen activated protein 
kinase (MAPK) pathways. These induce NF-kB signaling and chemotaxis. As a result 
they increase inflammatory genes expression. Differently, the QS signals induced by 
Bacillus subtilis, have beneficial effects through the induction of p38 MAPK on protein 
kinase B[57].

Dysbiosis may facilitate AKI either by modifying the SCFAs composition or 
generating higher quantites of TMAO and uremic toxins. This modification may 
facilitate the transition from AKI to chronic renal disease (CKD). Indeed, a cross-talk 
between the intestinal microbiota and the kidney has been observed. During 
experimental AKI, gut pathobionts may modify immune cells and other 
pathophysiological mediators to alter the course of AKI. AKI may in turn modify the 
gut bacterial composition[67,68]. This topic has been extensively studied by Vaziri et al[68] 
who observed substantial differences in the gut microbiota composition between 
patients with end stage renal disease and control patients.

This result has been confirmed by Cigarran Guldris et al[69], who substantially found 
dysbiosis in patients affected by end stage renal disease, due to the presence of 
pathobionts. Pathobionts modify protein absorption, reduce the utilization of 
alimentary fibers and are frequently associated with the use of antibiotics[70,71].

In summary, in the healthy subject the indigenous microbiota provides benefits to 
our health. Indigenous microbiota affects the host by production of metabolites and 
gut neuropeptides. By sending the informations about the state of inner organs to the 
brain, they control many important functions as mood, immune response, digestion 
and heart rate. By this way a bidimensional communication between the gut, its 
microbioma and the nervous and neuroendocrine systems is established[72].

THE MICROBIOTA AND RENAL TRANSPLANTATION
Different factors, including immunosuppressant and antibiotic therapy, lifestyle and 
diet, may alter the microbiota and lead to generation of pathobionts and dysbiosis. 
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Figure 3 Dysbiosis during acute kidney injury. TMA: Trimethylamine; TMAO: Trimethylamine N oxide; AKI: Acute kidney injury; SCFA: Short chain fatty 
acid; LPS: Lipopolysaccharide.

Dysbiosis disrupts the gut epithelial barrier, induces a loss of barrier integrity and 
leads to pathogen overgrowth. The leaky gut and increased permeability facilitate the 
translocation of bacteria and their components into the inner environment. In this 
dysbiosis situation, the proinflammatory response triggers the elimination of 
pathogens by intestinal epithelial cells (IL-1, IL-6 and IL-18 secretion), DCs and 
macrophages that induce the development of the effector CDE4+ cells, Th1 and Th17. 
Innate immune responses lead to a systemic and allograft inflammation. Moreover, 
dysbiosis decreases the number of regulatory T cells and increases the number of 
effector T cells that activate innate immunity. On the other hand, in the colon and liver, 
dysbiotic gut-derived uremic toxins are further metabolized to TMAO. The 
accumulation of p-cresyl sulfate in the kidney generates reactive oxygen species that 
lead to the production of inflammatory cytokines and profibrotic factors. In addition, 
indoxylsulfate induces inflammation and nephrotoxicity[73-77].

Characteristics of the microbiota after renal transplantation
Renal transplant patients, in addition to receiving relevant immunosuppressive 
therapy in the first period after transplantation, receive several antibiotic treatments as 
a prophylactic measure to avoid infections.

All these drugs extensively modify the human microbiota, principally at the gut and 
urinary tract levels. Historically, since the initiation of renal transplantation, when 
very high doses of cyclosporine A were used, gingival overgrowth was observed as an 
important side effect. This change was related to modifications of the oral microbiota 
and generation of pathobionts[78].

In a pilot study, Lee et al[79], performed polymerase chain reaction in samples from 
26 kidney transplant recipients and documented a change in the microbiota between 
the pre- and posttransplant periods. The results are shown in Table 3.

Firmicutes were the most abundant bacteria detected pre- and posttransplantation, 
but their quantity posttransplantation was lower than in healthy subjects[80]. The same 
study reported posttransplantation an increase in the abundance of Bacteroides that 
included infective pathogens such as E. coli and Klebsiella pneumoniae[81].

Overall, the study by Lee and colleagues documented a dysbiosis that was later 
confirmed by other studies. A recent review from Xiao et al[82] on microbiota 
modifications in response to solid organ transplantation highlighted an increase in the 
abundance of pathogenic Proteobacteria, which might represent the cause of infectious 
diseases occurring after transplantation.

These data were confirmed by a recent study by Swarte et al[83] that confirmed a 
reduction in the abundance of Firmicutes with variability among the species. The most 
significant reduction was observed for Streptococcus thermophilus and Blautiawexlerae.

Overall these authors observed an increase in the abundance of Proteobacteria (E. 
coli) and a decrease in the abundance of Actinobacteria posttransplantation. The 
increase in Proteobacteria has already been proposed as a marker of dysbiosis[84]. 
Additionally, the same study observed a reduction in SFCAs producing bacteria after 
transplantation. In particular, reductions in the abundance of Eubacterium rectale, 
Coprococcuscatus and Roseburia were observed. All these bacteria produce SCFAs[85] that 
exert beneficial effects on the kidney and increase the number of  Tregs, reducing 
systemic inflammation[86,87]. The use of proton pump inhibitors, of MMF and aging 
were the prevalent determinants of this form of dysbiosis[88,89].

Another study[90] analyzed the gut microbiota in 142 kidney transplant recipients. 
The authors detected potential pathogens, such as Clostridium difficile and E. coli in 30% 
of patients. These pathogens were not associated with diarrhea, as expected.
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Table 3 Alterations in the gut microbiota following kidney transplantation according phylum and order

Phylum Pre Tx cohort Post Tx cohort
Firmicutes 91.8% 87.7%

Actinobacteria 2.0% 7.6%

Proteobacteria 0.9% 4.1%

Bacteroidetes 2.8% 0.6%

Order

Clostridiales 64.8% 64.3%

Lactobacillales 19.1% 12.0%

Erysipelotrichales 5.6% 10.2%

Bifidobacteriales 1.6% 6.6%

Enterobacteriales 0.4% 3.9%

Bacteroidales 2.8% 0.6%

A different study[91] observed that major changes in the microbioma occur in the first 
month after transplantation, with substantial differences among patients. The authors 
concluded that longitudinal analyses should be performed to provide more 
information.

In conclusion, dysbiosis after renal transplantation is related to an imbalance 
between the indigenous microbiota and the pathobionts. This imbalance is related 
principally to the need for immunosuppressant and prophylactic and therapeutic 
antimicrobial agents[92].

The metabolic and clinical consequences of dysbiosis are represented by a higher 
incidence of acute rejections, acute infections, interstitial fibrosis, posttransplant 
diarrhea, reduced production of protective agents such as SCFAs by the gut 
microbiota, and modification of immunosuppressant levels in the blood.

Dysbiosis and acute rejection
Several experimental studies conducted in animals have documented en effect of the 
gut microbiota on immune responses that lead to transplant rejection[93].

Few studies have been conducted in the humans on this topic.
In the aforementioned study by Lee et al[79], the differences in the fecal bacteria 

composition of patients with and without rejection are shown in Table 4.
In one recent study[84], the microbiota was evaluated pre- and posttransplant in 60 

patients who received a renal transplant.
Samples from urine, oral swabs, rectal swabs and blood were evaluated for up to 6 

mo after transplantation.
In the study, the most relevant changes in the microbiota principally verified in the 

first month after transplant, when the immunosuppressive treatment was heavier 
because of the induction therapy. Further modifications in the microbiota were 
verified in the first six months after transplantation. In urine samples and in oral swab 
samples, changes were verified principally in the phylum Proteobacteria. In the rectal 
swab samples, Firmicutes were the bacteria whose composition changed more 
frequently.

Significant changes in Leptotrichia, Neisseria and Actinobacteria were observed in five 
patients who experienced acute rejection. Four patients experienced late acute rejection 
and displayed significant changes in Anaerotruncus, Coprobacillus and Coprococcus.

Dysbiosis and infections
The same authors of the study on acute rejection[94] documented that similar changes in 
the microbiota were also associated with a higher incidence of urinary tract infections.

In particular, in four patients with posttransplant infections, the abundance of the 
genus Anaerotruncus of Firmicutes was markedly decreased compared to the other 
patients.

Several factors may cooperate with dysbiosis to generate infections, as shown in 
Table 5. This higher incidence of both urinary and gastrointestinal infections was also 
reported in the aforementioned studies by Lee et al[79] and Chan et al[95].

In a recent study[96], a transplant patient with recurrent urinary infections recovered 
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Table 4 Microbial composition of fecal specimens from patients with or without acute rejection, by Philum and Order

Phylum No AR cohort AR cohort P value
Firmicutes 91.4% 76.6% 0.40

Actinobacteria 3.7% 8.2% 0.60

Proteobacteria 1.3% 15.2% 0.33

Bacteroidetes 3.1% 0.02% 0.03

Order

Clostridiales 63.1% 16.9% 0.01

Lactobacillales 12.7% 49.9% 0.04

Erysipelotrichales 13.3% 9.2% 0.32

Bifidobacteriales 3.1% 7.9% 0.44

Enterobacteriales 1.0% 14.7% 0.17

Bacteroidales 3.1% 0.02% 0.03

AR: Acute rejection.

Table 5 Potential transplant associated factors that may lead to changes in the gastrointestinal microbiota and cause infections

Risk factors Microbiota changes Consequences Interventions

Dietary patterns Increase in bacteria translocation Gastrointestinal upset e.g., diarrhea Diet

Changes to colonic and bowel transit time Increase in metabolic endotoxemia Urinary tract infections Prebiotics

Immunosuppression Increase in gut-derived microbial toxin formation Other infections not yet explored Probiotics

Antibiotics Synbiotics

Lifestyle (sedentary, smoking, alcohol)

after fecal microbiota transplantation (FMT), which induced a marked decrease in the 
abundance of E. coli in the urinary microbiota.

In conclusion, according to these studies, some microbial species may exert a 
protective effect on the mucosal surface under normal conditions, and when the 
microbiota changes, pathobionts and aggressive phenotypes appear to induce renal 
dysfunction.

Dysbiosis and interstitial fibrosis
The hypothesis that urinary dysbiosis is principally responsible for the development of 
interstitial fibrosis of the graft was based on the findings that patients affected by 
interstitial fibrosis/tubular atrophy (IF/TA) had abnormalities in the urinary 
microbiota with appearance of pathobionts and, consequently, in the immune 
response. Two studies, conducted in humans[97,98] detected antibodies directed against 
E. coli LPS, a powerful activator of the immune system via TLR4 receptor in the 
biopsies of patients affected by IF/TA.

In a recent study of transplant patients, Modena et al[99] collected urine samples from 
25 patients at two time points after kidney transplantation (approximately 1 mo and 6 
mo after transplantation). All these patients demonstrated developed IF/TA in 
surveillance biopsies collected 6 mo after transplantation.

These samples were compared with 23 patients with normal surveillance biopsies 
and stable renal function at 6 mo after transplantation.

At six months after transplantation, patients affected by IF/TA displayed decreased 
abundances in the Lactobacillus and Streptococcus genera along with an increase in the 
abundance of no dominant species.

The authors concluded that the urinary microbiota, modified posttransplantation, 
may contribute to IF/TA development by altering the host immune response.

IF/TA is associated with a loss of the indigenous dominant resident urinary 
microbiota and an increase in the abundance of pathobionts or nonresident, 
pathogenic bacteria.
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The phenomenon of IF/TA may be mediated by myofibroblasts, as has already been 
documented in the gut, where gut dysbiosis potentially leads to intestinal fibrosis[100]. 
Myofibroblasts may be derived from transdifferentiation processes such as the 
epithelial to mesenchymal transition or endothelial to mesenchymal transition. These 
processes may be induced and aggravated by modifications in the indigenous 
microbiota.

In conclusion, myofibroblasts may play a relevant role in inducing IF/TA either at 
the gut or renal level, and the indigenous microbiota might have regulatory and 
protective functions under normal conditions.

Dysbiosis and diarrhea
Diarrhea represents a severe complication after kidney transplantation, affecting 
approximately 20% of patients[101], and it represents an important cause of graft loss 
and death[102]. However, its etiology is still being discussed, and a clear diagnosis not 
available for approximately 85% of transplanted patients affected by diarrhea. With 
the exception of the few cases that are ascribed to a specific infection and the presence 
of pathogens, the diarrhea etiology is often ascribed to the use of immuno-
suppressants, in particular MMF. However, a reduction in the MMF dose is dangerous 
and may lead to an increased risk of allograft rejection[103].

In the pilot study by Lee et al[79], the authors observed a reduction in the commensal 
indigenous microbiota, such as Ruminococcus, Dorea and Coprococcus, in 26 renal 
transplant patients affected by diarrhea. In addition, they did not detect pathogens 
such as Clostridium difficile or norovirus in fecal specimens. These findings prompted 
the hypothesis that in the majority of patients, gut dysbiosis rather than the presence 
of pathogens may represent an important cause of posttransplant diarrhea. In a recent 
study by Lee et al[104], fecal specimens from 25 patients presenting diarrhea in the first 
three months after transplantation were compared with 46 patients who did not 
develop diarrhea. In the diarrhea group, the abundance of the genera Eubacterium, 
Anaerostipes, Coprococcus, Romboutsia, Ruminococcus, Dorea, and Faecalibacterium were 
significantly decreased, while the abundance of the genera Lachnoclostridium, 
Escherichia and Enterococcus were significantly increased. Table 6 provides a detailed 
description of the data. Many of the bacteria that were present at lower abundance in 
the diarrhea group belong to the Lachnospiraceae and Ruminococcaceae families[105] and 
contribute to metabolic functions essential for gut health[106]. Utilizing the Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved States Analysis[107], 9 
metabolism-related pathways were decreased in the diarrhea group. The decrease in 
the abundance of these indigenous microbiota bacteria in the subjects affected by 
diarrhea contributes to the development of an abnormal metabolic status, which might 
lead to diarrhea.

Interestingly, a similar decrease in the abundance of protective bacteria was also 
observed in nontransplant patients affected by diarrhea[108].

Notably, the specimens from transplanted patients with diarrhea were negative for 
known bacterial and protozoan pathogens that cause diarrhea.

Finally, two transplanted patients affected by persistent diarrhea underwent FMT 
from allogeneic donors. Diarrhea resolved in the first month after FMT, and the 
abundances of 13 protective bacteria taxa increased with a simultaneous decrease in 
the abundances of the 3 identified pathobionts or pathogenic bacterial taxa[96,108].

Short Chain Fatty Acids and other metabolites in renal transplantation
SCFAs are produced in the gut by the indigenous microbiota and have a trophyc 
action on the gut epithelium. In addition, these substances exert an anti-inflammatory 
effect on the whole body and regulate immune cells.

Ninety-five percent of SFCAs are represented by acetic acid, propionic acid, butyric 
acid and valeric acid, all of which are derived from saccharolytic fermentation. Under 
normal conditions with a microbiota producing normal quantities of SCFAs, several 
beneficial effects have been documented after transplantation both in animals and in 
humans.

In humans, SCFAs increase the expression of antimicrobial peptides secreted to the 
external surface by epithelial cells[109]. Studies in vitro or in animals documented that 
SCFAs modulate the production of immune mediators, including IL-18 and other 
cytokines and chemokines[110], regulate the differentiation, recruitment and activation 
of immune cells, including neutrophils[111], DCs, macrophages[112] and T lympho-
cytes[113].

Finally, Wu et al[114] documented, in a murine kidney transplantation model, that 
SCFAs are able to induce  donor-specific tolerance by inducing the production of T 
regulatory cells[114].
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Table 6 Most significant genus level composition in the fecal specimens from the diarrhea group and the no diarrhea group

Bacterial Taxonomy 
Genus

Median relative abundance in the diarrhea 
group

Median relative abundance in  the no diarrhea 
group

P 
value

Eubacterium 0.002 0.017 1.5E-09

Anaerostipes 0.000 0.005 2.7E-08

Coprococcus 0.000 0.004 3.0E-08

Romboutsia 0.000 0.014 4.2E-06

Ruminococcus 0.007 0.025 8.3E-06

Dorea 0.000 0.007 3.4E-05

Enterococcus 0.002 0.000 1.3E-04

Faecalibacterium 0.000 0.019 1.4E-04

Fusicatenibacter 0.000 0.006 0.001

Oscillibacter 0.001 0.008 0.001

Ruminiclostridium 0.005 0.021 0.002

Andrade-Oliveira et al[115] evaluated the effect of SFCAs on a mouse model of 
ischemia-reperfusion[115].

In the animals, the treatment with SCFAs improved renal function after ischemia-
reperfusion injury, reduced the apoptosis, inhibited NFkB activation and nitric oxide 
production and reactive oxygen species production. All these actions of SCFAs are 
summarized in Table 7.

In mice, SCFAs decrease the activation of bone marrow-derived DCs and inhibit 
their function as antigen presenting cells[115].

In conclusion, the authors showed that SFCA supplementation reduces 
inflammation in their model and improves ischemia-reperfusion injury.

To our knowledge, few studies have been conducted in humans. A recent study by 
Lee et al[116] studied 168 kidney transplant recipients and divided the patients according 
to whether they had higher levels of butyrate-producing bacteria (BPG) or low levels 
of BPG. The posttransplant administration of antibiotics was associated with a 
decrease in BPG levels. These patients have a higher incidence of respiratory tract 
infections.

For the first time, the clinically beneficial effects of higher butyrate levels and 
posttransplant-induced dysbiosis were documented in transplanted men and may 
induce higher infection rates.

Similarly, in another study on transplanted humans, 51 renal transplanted recipients 
have been followed up to 12 mo after transplantation to study the serum levels of 
uremic toxins as p cresyl sulfate, p cresyl glucoronide, indoxyl sulfate, TMAO and 
phenylacetylglutamine. The results were compared with CKD control patients with 
similar renal function. The study documented that after transplantation the colonic 
microbiota derived uremic retention solutes decreases. As the urinary excretion is 
lower in transplanted patients, this fact suggests an independent effect after 
transplantation on intestinal uptake and a different colonic microbial metabolism and 
absorption[117].

The microbiota and tolerance
The aforementioned hypothesis that gut microbioma metabolites such as SCFAs could 
induce donor-specific tolerance through the induction of regulatory T cell 
differentiations[114], introduces the chapter on the relationship between microbiota and 
tolerance.

This relationship is well known in the development of immune tolerance in 
children. Indeed, in the first 1000 d of life, the early exposure of food allergens to 
indigenous intestinal microbiota induces tolerance through activation of Tregs and 
subsequent production of TGFβ and IL-10[118].

In a recent study, Colas et al[119] examined the urinary microbiota of 86 renal 
transplant patients. Patients were divided into 3 groups: Normally immuno-
suppressed with stable renal function, minimally immunosuppressed, and 
spontaneously tolerant patients. Differences in microbiota profiles were observed, and 
a unique and specific urinary microbiota was detected in patients with spontaneous 
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Table 7 Actions of short-chain fatty acids on a model of ischemia reperfusion syndrome

Actions

SCFAs improve renal function

SCFAs decrease apoptosis and increase tubular proliferating cells

SCFAs decrease activation of bone marrow derived dendritic cells and inhibit their function as antigen presenting cells

SCFAs inhibit NFkB activation and nitric oxide production

SFCAs inhibit ROS production

SCAF:  Short chain fatty acid; ROS: Reactive oxygen species; NFkB: Nuclear factor kappa-light-chain-enhancer of activated B cells.

tolerance characterized by a clear Proteobacteria profile. The profile was different in 
patients stratified according to gender (higher in males) and inversely correlated with 
the quantity of immunosuppressive drugs.

The Proteobacteria detected in tolerant subjects included Janthinobacterium, Clostridia 
and Firmicutes. Janthinobacterium is known to produce an indole-derived peptide with 
antiproliferative and anti-inflammatory activities[120,121]. Clostridia exert an anti-
inflammatory effect by producing SCFAs[122]. Firmicutes produce indole derivatives[123] 
and polyphosphate[124] with anti-inflammatory activities.

In conclusion, the indigenous microbiota may favor the induction of tolerance, but 
the use of immunosuppressants modifying the microbiota may represent an obstacle 
to the development of the tolerance state.

Interactions between the microbiota and immunosuppressants
Bilateral actions between the microbiota and immunosuppressive drugs have been 
identified. On one hand, the microbiota may modify the absorption and the meta-
bolism of immunosuppressants; on the other hand, immunosuppressants may modify 
the indigenous microbiota.

The vast majority of studies on this issue have been conducted on calcineurine 
inhibitors.

Several studies have extensively documented that factors such as age, gender, race 
and CYP3A5 polymorphisms influence the absorption and metabolism of immuno-
suppressants and account for interindividual variability such that the individual 
dosing is not the same for all patients.

Recently, the gut indigenous microbiota or the pathobionts have been suspected to 
exert a powerful effect, justifying the different metabolism from one patient to another 
and in the same subject.

The assumption of other drugs, such as antibiotics, modifying the indigenous 
microbiota may account for this variability[125-128].

Lee et al[129] examined the microbiota in the fecal specimens of 19 patients who 
received a kidney transplant and were on tacrolimus (TAC) as the principal immuno-
suppressive therapy. All patients received the same prophylactic antibiotic therapy to 
avoid biases. Patients were divided into two groups according to the need to receive 
increasing TAC doses (Dose Escalation Group) or not (Dose Stable Group). By 
examining the microbiota, the authors found a significantly higher level of 
Faecalibacterium prausnitzii in patients from the Dose Escalation Group than in patients 
from the Dose Stable Group. In addition, Faecalibacterium prausnitzii was the most 
significant factor justifying the need to increase the TAC dose. Even if a large quantity 
of TAC is absorbed by the small intestine, it may also be absorbed in the colon[130]. 
Although the Lee’s study is a pilot one, the results raise the question of the relevance 
of microbiota and of Faecalibacterium prausnitzii, particularly on TAC trough levels, 
which are also important due to the narrow therapeutic index of TAC.

In a different study, Guo et al[131] incubated  Faecalibacterium prausnitzii cells in vitro 
with TAC. The authors detected a compound named M1 that is a cheto-produced 
metabolite of TAC with a less powerful immunosuppressant. The authors measured a 
large quantity of M1 in the stool samples of patients with a larger quantity of 
Faecalibacterium prausnitzii in the stool.

In addition, the same study documented that other bacteria, such as Clostridia and 
Bacteroidales, are able to convert TAC into M1 metabolites. The authors conclude that 
several commensal microbiota may metabolize TAC in the gut to less powerful 
compounds, explaining the differences in TAC exposure in transplant recipients.
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On one hand, the microbiota may alter the metabolism of immunosuppressants; on 
the other hand, immunosuppressants may alter the gut indigenous microbiota. The 
study by Gibson et al[132] reviewed this topic extensively. Unfortunately the vast 
majority of studies have been conducted on calcineurine inhibitors and very few have 
examined renal transplantation.

The studies by Zhang et al[133] and by Lee et al[129] documented the effect of TAC on 
the gut microbiota in renal transplant recipients. Other studies[134] analyzed the same 
phenomenon in liver transplant recipients. Zaza et al[135] examined the microbiota in 
patients receiving TAC + MMF or everolimus + MMF, but they did not observe any 
difference.

In the pilot study by Lee et al [79], patients with early corticosteroid withdrawal had 
fewer Clostridiales and Erysipelotrichaeles in the microbiota, but the difference was not 
statistically significant.

Finally, a recent study[136]  documenting that encapsulated cyclosporine A does not 
change the composition of the human indigenous microbiota is worth mentioning.

MICROBIAL THERAPIES IN KIDNEY HEALTHY, DISEASE AND 
TRANSPLANTATION
The treatment of gut dysbiosis may be divided into probiotics, smart bacteria, 
prebiotics, a high-fiber diet and fecal microbiota transplantation.

Several of these therapies have been used in patients affected by chronic kidney 
disease.

Probiotics are defined by the World Health Organization as live organisms that, 
when administered in adequate amounts, confer a health benefit to the host[137].  
Probiotics such as Lactobacilli and Streptococci[138,139] have been used to treat CKD. They 
are able to enhance gut barriers, improve mucosal immunity and modulate the host 
signaling pathways by reducing the activation of NFkB and the MAPK[140,141]. Smart 
bacteria are genetically modified bacteria that are able to remove toxic molecules in 
animal studies[142,143].

Prebiotics are nonviable food components that confer health benefits to the host 
associated with the modulation of the microbiota[144]. A prebiotic must be resistant to 
gastric acid and digestive enzymes, allowing it to reach the small and the large 
intestines to stimulate the activity of beneficial microbes. To date, only insulin and 
trans-galacto-oligosaccharides have these characteristics and may be considered 
prebiotics[145].

The principal mechanisms of action of prebiotics are to increase the production of 
SCFAs and to decrease the intestinal pH[146].

Unfortunately, the vast majority of studies using these therapies have been 
conducted in animal models of CKD.

Few studies have assess probiotics in humans, particularly kidney transplant 
recipients and most studies were conducted in liver transplant patients[5,95].

Currently, the most effective treatment for renal transplant recipients appears to be 
FMT, principally in patients affected by infection and/or diarrhea due to resistant 
Clostridium difficile or E. coli[79,96].

FUTURE PERSPECTIVES
Two main issues are involved in the search for new perspectives: the search for new 
therapies and an improved knowledge of gut microbiota and pathobionts.

New therapies: Potential benefits of nutritional and supplementation approaches 
may target microbiota in CKD patients. In CKD, nutritional management and 
supplementation, including salt and protein restriction, vegetable intakes, and the use 
of pro-, pre-, and synbiotics, has several benefits. Modulate gut microbiota dysbiosis, 
decrease colonic production of proteolytic derived uremic toxins and reduce 
inflammation and oxidative stress[147].

Strategies targeting the microbial source of immune regulation are also promising. 
The presence of Lactobacillales in the gut microbiota promotes Treg cells and 
suppresses Th17 in the kidney. The oral administration of Lacidophilus ATCC4356 in 
the animals attenuates atherosclerotic progression[148].

Lubiprostone, a synthetic derivative of prostaglandin, in a rat model of CKD is 
associated with reduction of kidney inflammation and improvement of microbioma 
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profile with proliferation of saccarolytic bacteria.
Similarly, the trimethylamine inhibitor 3,3-dimethyl-1-butanol inhibits the 

atherosclerotic lesions in mice[149].
The identification of causative bacteria in the context of kidney disease and the 

distinction of indigenous microbioma from pathobionts is a technical challenge.
Sequencing techniques and a wide application of metabolomics allowed us for an 

improved understanding of microbioma in health and diseases.
The National Institute of Diabetes and Digestive and Kidney Diseases is conducting 

a study (ClinicalTrials.gov Identifier: NCT02572882)[150] aimed to Characterize the Gut 
Microbiome of Individuals With End-stage Renal Disease Treated With Maintenance 
Hemodialysis, and to Explore Effects of P-inulin on the Gut Microbiome.

Future studies should explore the interaction of microbioma with human genoma 
and how the microbioma should be treated in the case of renal disease and renal 
transplantation[137].

CONCLUSION
In the last decade, relevant importance in conditioning both the healthy status and 
several diseases has been assumed by the microbiota. The microbiota is defined as the 
microorganisms that live in our body.

Gut microbiota has an important function because can metabolize food and produce 
substances as SCFAs extremely useful for the body. In addition, the microbiota has 
important relationship with the immune system and, when modified may induce 
abnormal activation of the immunity that may cause disease.

Renal diseases may be induced by dysbiosis both for the activation of the immune 
system and for the production of an excess of uremic system.

In several renal diseases and in particular in the case of end stage renal disease the 
normal microbiota changes with development of pathobionts and the consequent 
dysbiosis is responsible for the further deterioration of the renal function.

In the case of renal transplantation, the microbiota has a relevant function.
After transplantation, because of the assumption of immunosuppressive drugs and 

of prophylactic antibiosis, the gut indigenous microbiota profile modifies, particularly 
in the first month after transplantation. This modification may influence the graft 
outcomes causing acute rejection, infections, renal fibrosis and modifications of the 
drug metabolism, immunosuppressants included. It is possible to modify an abnormal 
microbiota with the use of prebiotics, probiotics and diet modification.

It should be highlighted that all the studies referring to the microbiota in renal 
transplantation are few, refer to small number of patients, often retrospectives. In 
addition, many of these studies have been conducted in animals. Because of this fact 
the microbiota in general and in solid organ transplantation in particular may be 
considered a new frontier in medical studies.
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