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Abstract
The malfeasant role of the hypoxic tumour microenvironment (TME) in cancer 
progression was recognized decades ago but the exact mechanisms that augment 
the hallmarks of cancer and promote treatment resistance continue to be 
elucidated. Gastroesophageal cancers (GOCs) represent a major burden of 
worldwide disease, responsible for the deaths of over 1 million people annually. 
Disentangling the impact of hypoxia in GOCs enables a better overall understan-
ding of the disease pathogenesis while shining a light on novel therapeutic 
strategies and facilitating precision treatment approaches with the ultimate goal of 
improving outcomes for patients with these diseases. This review discusses the 
underlying principles and processes of the hypoxic response and the effect of 
hypoxia in promoting the hallmarks of cancer in the context of GOCs. We focus 
on its bidirectional influence on inflammation and how it drives angiogenesis, 
innate and adaptive immune evasion, metastasis, and the reprogramming of 
cellular bioenergetics. The contribution of the hypoxic GOC TME to treatment 
resistance is examined and a brief overview of the pharmacodynamics of hypoxia-
targeted therapeutics is given. The principal methods that are used in measuring 
hypoxia and how they may enhance prognostication or provide rationale for 
individually tailored management in the case of tumours with significant hypoxic 
regions are also discussed.

Key Words: Esophageal cancer; Gastric cancer; Tumor hypoxia; Tumour microenviron-
ment; Gastroesophageal cancer

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Improved methods in measuring the oxygen status in the tumour microenvir-

https://www.f6publishing.com
https://dx.doi.org/10.4251/wjgo.v13.i5.312
http://orcid.org/0000-0002-7209-155X
http://orcid.org/0000-0002-7209-155X
http://orcid.org/0000-0002-7209-155X
http://orcid.org/0000-0003-2791-039X
http://orcid.org/0000-0003-2791-039X
http://orcid.org/0000-0003-2791-039X
http://orcid.org/0000-0001-9373-2662
http://orcid.org/0000-0001-9373-2662
http://orcid.org/0000-0002-2816-5064
http://orcid.org/0000-0002-2816-5064
http://orcid.org/0000-0003-2278-5497
http://orcid.org/0000-0003-2278-5497
http://orcid.org/0000-0002-4073-3896
http://orcid.org/0000-0002-4073-3896
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:donlonn@tcd.ie


King R et al. Hypoxia and gastroesophageal cancer

WJGO https://www.wjgnet.com 313 May 15, 2021 Volume 13 Issue 5

Manuscript source: Invited 
manuscript

Specialty type: Oncology

Country/Territory of origin: Ireland

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: December 27, 2020 
Peer-review started: December 27, 
2020 
First decision: February 14, 2021 
Revised: February 24, 2021 
Accepted: April 14, 2021 
Article in press: April 14, 2021 
Published online: May 15, 2021

P-Reviewer: Wang ZK 
S-Editor: Gao CC 
L-Editor: A 
P-Editor: Ma YJ

onment have allowed for a better understanding of the role of hypoxia and how it 
contributes to tumour progression and treatment resistance. These methods include 
non-invasive imaging techniques as well as validated hypoxic molecular signatures. 
Specific hypoxia-targeted therapies have not matched their expectations but may have 
potential application in combination with traditional treatment approaches in gastroeso-
phageal cancer.
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INTRODUCTION
One of the major turning points in the study of solid tumours arose with the 
realization that a critical regulatory influence in the process of angiogenesis was an 
environmental feature; hypoxia[1,2]. Many studies have since demonstrated the 
oncogenic transforming power of hypoxia in the microenvironment of different 
tumour types and the observation that tumour oxygenation status could disrupt the 
anti-tumour effects of radiation therapy was published over 60 years ago[3-8]. This 
review will discuss the role of hypoxia in the tumour microenvironment (TME) of 
gastroesophageal cancers (GOCs) including gastric cancer (GC) and oesophageal 
cancer (OC), how it augments disease, and additionally its relevance in the setting of 
prognostication and therapeutic targeting.

GOC is a substantial cause of morbidity and mortality, responsible for 1.2 million 
deaths per year globally[9-12]. An improved understanding of the risk factors for GC 
has seen a steady decline in both the incidence and mortality which is in sharp contrast 
to the rising incidence of OC, particularly oesophageal adenocarcinoma (OAC) 
globally[13,14]. GOCs develop insidiously and consequently, are commonly diagnosed 
at an advanced stage where chemotherapy with or without radiation remains the 
treatment of choice in the neoadjuvant setting[15]. Treatment at this stage is rarely 
curative and several mechanisms account for this resistance to treatment including 
tumour cell-intrinsic and extrinsic mechanisms. Hypoxia is a characteristic feature of 
the TME and a key mediator in conferring and enhancing treatment resistance[16-18]. 
The TME being the complex reciprocity between both the cellular (resident and infilt-
rating) and non-cellular components that surround, envelop, and make up the tumour 
mass, the components of which are summarized in Figure 1[19-21]. The exact 
mechanisms underlying resistance continue to be elucidated and as such, interest in 
the role of hypoxia in translational oncology research has garnered increasing interest 
recently as shown in Figure 2.

Hypoxia mediates aggressive, metastatic, and treatment-resistant disease by 
augmenting the hallmarks of cancer through various cellular and physiological events 
including; enhanced tumour cell proliferation, survival, immune evasion, inflamma-
tion, induction of angiogenesis, and activation of invasion[16,17,22]. In large part these 
events are influenced or orchestrated by the relationship between oxygen availability 
and the genes encoding hypoxia-inducible factors (HIF) and von Hippel Lindau 
protein (pVHL)[23,24]. HIFs are a family of heterodimeric transcription factors 
consisting of a labile α subunit and a stable β subunit. There are several HIF isotypes 
but the most well-studied is HIF1. HIF1-α contains domains amenable to post-transla-
tional modifications thereby mediating interactions with the molecular machinery 
responsible for cellular degradation[25,26]. When induced, HIF1-α associates with the 
constitutively expressed HIF1-β subunit and together act to bring about the 
transcription of a multitude of genes involved in complex signalling pathways with a 
diverse degree of roles. There exists a whole host of HIF target genes that are 
transcribed in response to hypoxia that have been implicated in driving tumour 
progression. The roles of these target genes range from receptors to enzymes to further 
transcription factors and more (Table 1), which are involved in the enhancement of 
inflammation, angiogenesis, immune evasion, and the other remaining hallmarks of 
cancer.

https://www.wjgnet.com/1948-5204/full/v13/i5/312.htm
https://dx.doi.org/10.4251/wjgo.v13.i5.312
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Table 1 Hypoxia induces the transcription of a range of genes that mediate diverse roles in promoting the hallmarks of cancer[178-180]

Function Gene

Enzymes MMP1, MMP3, LOX, ADAMST1, ACE

Transcription factors Twist1, Snail, Slug, β-Catenin, c-Myc, Oct4, NF-κB

Receptors CXCR4, c-Met, TLR4, Notch

Growth factors VEGF, TGFα

Transporters Glut-1, MDR1

Intracellular signalling Cdc42, Rac1, RhoE

Bioenergetics LDHA, PGK1, PKM2, GAPDH, GPI, ALDOC

In the setting of normoxia, HIF1-α is regulated by two principal mechanisms; 
oxygen-dependent pVHL-dependent degradation, and oxygen-dependent non-pVHL-
dependent inactivation (Figure 3)[25,27,28]. Hydroxylation by oxygen-dependent 
prolyl hydroxylase domain enzymes trigger recognition by the E3 ubiquitin ligase, 
pVHL, ensuring proteasomal degradation. In the non-pVHL dependent pathway, 
induction of factor inhibiting HIF leads to hydroxylation of an asparagine residue 
preventing HIF1-α from localizing with the co-activators p300 and CBP, hence 
disabling transcriptional activation[29].

The contribution of hypoxia to disease progression makes it an attractive thera-
peutic target and potential prognostic aide. However, in the setting of GOC, there are 
currently no agents specifically targeting hypoxia, nor are there any biomarkers that 
assess the extent of tumour hypoxia, to guide treatment choice or to indicate the 
likelihood of treatment response. In this era of precision medicine, a validated 
biomarker would improve the standard of care for this group of patients.

HYPOXIA PROMOTES THE HALLMARKS OF CANCER WITHIN THE TME
Inflammation
Cancer has long been described as a “wound that never heals”, in part due to inflam-
mation, one of the enabling characteristics of cancer originally described by Hanahan 
and Weinberg[30-31]. Hypoxia and inflammation are intricately intertwined as 
illustrated through the fact that hypoxia has been shown to directly induce signalling 
via the inflammatory master transcription factor nuclear factor-kappa light chain 
enhancer of activated B cells (NF-κB), and likewise NF-κB induces HIFs[32-37]. In the 
context of malignancy, there exists a multitude of cancer implicated genes that are 
regulated by both HIFs and NF-κB, such as cyclooxygenase 2 and interleukin-6 (IL-
6)[38]. This illustrates the complex crosstalk between signalling pathways and the 
difficulty involved in unravelling the net influence of certain factors in the network. In 
the setting of GOC, OAC has been described as “a model of inflammatory driven 
upper gastrointestinal cancer”[39,40]. The paramount importance of inflammation in 
the aetiology of OC is further validated by the risk reduction conferred by adminis-
tration of the non-steroidal anti-inflammatory drugs such as aspirin, as demonstrated 
in a meta-analysis of 9 observational studies by Corley et al[41] and Farrow et al[42]. In 
a retrospective study of 53 patients with OAC and the metaplastic precursor lesion, 
Barrett’s oesophagus (BO), immunohistochemical staining of specimens revealed a 
significant increase in the expression of HIF1-α in OAC and BO compared to normal 
tissue but no further elevation between BO and OAC[43]. Furthermore, histological 
assessment of specimens’ inflammatory status, based on recruitment of neutrophils 
(reflecting acute inflammation) and monocytes (reflecting chronic inflammation) 
(known as the Sydney System), demonstrated a significant correlation with HIF1-α 
expression from normal tissue to metaplastic tissue but no association between other 
stages or between inflammatory status[43].

Angiogenesis
As previously mentioned, one of the defining discoveries involved in the study of the 
TME was the effect of hypoxia on angiogenesis[44-46]. This was originally 
demonstrated in HIF1-β deficient hepatoma cells having markedly reduced vascular 
endothelial growth factor (VEGF) mRNA levels when cultured under hypoxic 
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Figure 1 The components of the tumour microenvironment are affected by hypoxia in numerous ways. Important cellular components of the 
tumour microenvironment include immune cells including macrophages, dendritic cells, myeloid-derived suppressor cells, T cells, natural killer cells, as well as 
cancer-associated fibroblasts. Non-cellular aspects include the extracellular matrix and signalling molecules such as vascular endothelial growth factor, adenosine, 
and cytokines and chemokines including interleukin-6, interferon-γ, CXCL1, CXCL3, CCL28[12-14,40]. CAF: Cancer associated fibroblasts; OxPhos: Oxidative 
phosphorylation; ROS: Reactive oxygen species; VEGF: Vascular endothelial growth factor; NFκB: Nuclear factor-kappa light chain enhancer of activated B cells; 
HIF: Hypoxia inducible factor; ECM: Extracellular matrix; EMT: Epithelial-mesenchymal transition.

conditions[24,47]. In the setting of GOC, a study of 92 oesophageal biopsy samples 
found a significant increase in the expression of HIF1-α in OAC vs dysplastic and 
metaplastic tissues but not between normal and metaplastic tissues[48]. These findings 
also reflected an increase in VEGF and HIF2-α expression in OAC vs dysplastic tissue. 
Several studies have revealed how hypoxia appears to drive tumour cell plasticity and 
hence vasculogenic mimicry, a process that allows malignant cells to impersonate 
endothelial cells and form a network of vessels, and in a sense bypass true angiogenic 
activity[49-54]. In an in vitro analysis of oral squamous cell carcinoma (OSCC) cells, 
transfection with siRNA targeting HIF1-α was shown to inhibit both vasculogenic 
mimicry (through three-dimensional culture) and proliferation (as measured by MTT 
assay)[55]. Validation of these results in a xenograft implant model was then 
performed; the HIF-1α knockout mice showed a longer time to tumour formation and 
had smaller tumours. In an experiment conducted by Chai et al[56] of 160 OSCC 
tumour tissues, both HIF1-α and the degree of vasculogenic mimicry correlated 
negatively with overall survival (OS). In a separate study, OSCC cell lines cultured 
under conditions of severe hypoxia (0.5% oxygen) for 5 d secreted exosomes which 
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Figure 2  The amount of research investigating the role of hypoxia in cancer has increased over the past 20 yr as seen as a proportion of 
PubMed listed articles[177].

through tube formation assays, were shown to increase the angiogenic capacity of 
human umbilical vein endothelial cells when cultured together[57]. Vessel formation 
was significantly increased compared to umbilical vein endothelial cells cultured with 
exosomes obtained from OSCC cells exposed to normoxic conditions. When assessed 
in an in vivo implant model, findings reflected those found in the in vitro assay. As a 
consequence of these described phenomena, the blood vessels formed in tumours do 
not resemble those found in non-malignant tissues. The resulting network is 
disorganized and highly permeable and this limits the supply of blood and hence 
oxygen, nutrients, and anti-cancer drugs, further contributing to tumour hypoxia.

Immune evasion
The cancer-immune set point refers to the equilibrium between factors that promote or 
suppress the anti-cancer immune response[58]. This is of great interest in GOC given 
the yet unrealized efficacy that was predicted of immune checkpoint inhibitor drugs in 
treating these cancer types, which are generally characterized as having high tumour 
mutational burden and evident immune cell infiltration[59]. A hypoxic TME promotes 
an immunosuppressive phenotype through actions on the diverse array of cellular and 
non-cellular entities across innate and adaptive immune arms and thus constitutes a 
vital host factor that may be contributing to a high cancer-immune set point and 
treatment failure. For example, in the context of cancer, the recruitment of myeloid-
derived suppressor cells (MDSCs) is associated with less favourable patient outcomes 
which are likely mediated by their potent dampening of the anti-tumour immune 
response[60-62].

MDSCs are defined as “a heterogenous population of cells of myeloid origin that 
consist of myeloid progenitors, immature macrophages, immature granulocytes, and 
immature dendritic cells” (DCs)[63,64]. In a murine model of OSCC, intratumoural 
MDSC percentages were shown to correlate with the tumour progression 
sequence[65]. The role of IL-6 was then explored in the context of MDSCs and tumour 
progression. In patients with OSCC compared to healthy controls, serum IL-6 was 
significantly increased. Also, the percentage of intratumoural MDSCs correlated with 
general serum IL-6 levels. Delving further into this, the murine model of OSCC was 
utilized with 3 cohorts; IL-6 knockout, IL-6 stimulation (via 100 ng intraperitoneal 
injection twice weekly for 6 wk), and normal wild type. The cohort receiving IL-6 had 
a significant 3-fold increase in the percentage of MDSCs compared to the IL-6 deficient 
cohort (15% to 5% respectively). These findings were analogous when examining 
tumour invasiveness. As mentioned previously, HIF has been shown to upregulate the 
transcription of inflammatory factors including IL-6, and overall, the results 
demonstrate the importance of hypoxia in driving the pro-tumour immunosup-



King R et al. Hypoxia and gastroesophageal cancer

WJGO https://www.wjgnet.com 317 May 15, 2021 Volume 13 Issue 5

Figure 3 Regulation of hypoxia-inducible factor 1-α by oxygen levels and von Hippel Lindau protein. Hydroxylation by oxygen-dependent prolyl 
hydroxylase domain enzymes triggers recognition by the E3 ubiquitin ligase von Hippel Lindau, ensuring proteasomal degradation. In the non-von Hippel Lindau 
protein dependent pathway, induction of Factor Inhibiting hypoxia-inducible factor (HIF) leads to hydroxylation of an asparagine residue preventing HIF1-α from 
localizing with the co-activators p300 and CBP, hence disabling transcriptional activation[30]. The HIF pathway functions to conduct and orchestrate the cellular 
response to low oxygen availability[24,25]. HRE: Hypoxia response element; ARNT: Aryl hydrocarbon receptor nuclear translocator; PHD: Prolyl hydroxylase domain 
enzymes; VHL: Von Hippel Lindau; HIF1-α: Hypoxia-inducible factor 1-α; FIH: Factor inhibiting hypoxia-inducible factor.

pressive functions of MDSCs[38,66]. Others have shown the hypoxic TME to drive 
MDSC differentiation to tumour associated macrophages (TAMs), again in a manner 
that is orchestrated by HIF1-α[67].

TAMs comprise a large part of the cellular TME and as such are gaining further 
infamy for their role in driving tumour progression[68,69]. Studies have demonstrated 
how TAM recruitment and infiltration into the TME is in part mediated by the hypoxic 
response and HIF-driven regulation of chemoattractant including CCL2, CCL5, and 
receptors such as CXCR4[70-73] (Figure 4). There is strong evidence that macrophage 
infiltration and density are associated with worse patient outcomes in the setting of 
malignancy[74-76]. A meta-analysis of 16 OC cancer studies (n = 2292), found that M2-
polarised pro-tumour macrophage density to be predictive of worse OS and disease 
stage[77,78]. In addition, in vitro evidence suggests that TAM density is significantly 
associated with an increase in programmed death-ligand 1 expression on OSCC 
cells[78]. Once infiltrated into the TME, low oxygen tension enhances the oncogenic 
role of TAMs via the promotion of proliferative and angiogenic growth signalling 
pathways[79,80]. Notably, while two studies have characterized the correlation 
between HIF1-α expression, TAM infiltration, and patient survival in the setting of 
gastric malignancy, the impact of hypoxia on the biology of TAMs could be further 
expanded in the context of GOC[81,82].

Signifying the potential of innate immune research in cancer, Gilead recently 
invested $4.8 billion for ownership of magrolimab[83], a monoclonal antibody that 
works through the disruption of CD47 which is expressed on cancer cells and acts to 
downregulate the anti-tumour phagocytic capability of macrophages. Targeting 
hypoxia-mediated CD47 function may also extend to cancers of the alimentary tract. 
Immunohistochemical staining and reverse transcription quantitative real-time 
polymerase chain reaction (RT-qPCR) of OSSC specimens taken from 14 patients 
demonstrated a significant increase in expression of CD47 while another preclinical 
study revealed an augmented response to immune checkpoint inhibition in 
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Figure 4 The effects of hypoxia on immune evasion. Hypoxia has been shown to impair antigen uptake and migration in dendritic cells while at the same 
time increasing vascular endothelial growth factor production thus impairing the bridge between the innate anticancer immune response and the adaptive response 
while also enhancing angiogenic signalling. Hypoxia-inducible factor-mediated transcription of the cytokine interleukin-6 and FoxP3 results in the subsequent 
recruitment of immunosuppressive myeloid derived suppressor cells and in increased proportion of protumourigenic Tregs respectively. Low oxygen status is also 
linked with decreased tumour expression of the natural killer (NK) cell receptor ligand MHC class I chain-related molecule A, as well as its receptor NKG2D on NK 
cells. Hypoxia-dependent transcription of chemokines such as CCL2 and CCL5 enhance the recruitment of tumour associated macrophages through receptors such 
as CXCR4. DC: Dendritic cell; MDSC: Myeloid derived suppressor cell; NK cell: Natural killer cell; TAM: Tumour associated macrophage; Treg cell: T regulatory cell; 
VEGF: Vascular endothelial growth factor; HIF: Hypoxia inducible factor; IL: Interleukin; MICA: MHC class I chain-related molecule A.

combination with CD47 antagonism[84,85]. CD47 expression has also been shown to 
predict prognosis in OSCC[86].

Natural killer (NK) cells are a type of innate lymphoid cell that are capable of 
recognizing tumour cells through two principal mechanisms; altered expression of self 
or missing-self[87,88]. For example, in the absence of cellular stress, MHC class I chain-
related molecules (MICA and MICB) are not normally expressed on cells. In one study 
of prostate cancer cells, culture under hypoxic conditions is shown to result in the 
shedding of MICA hence characterizing an immune evasive phenotype[89]. Hypoxia 
also affects both resting and activated NK cells directly by curtailing the expression of 
costimulatory NKG2D and other NK cell receptors (NKp46, NKp30) which enable NK 
cell function[90]. Furthermore, a low oxygen environment has revealed impaired NK 
cell differentiation in one in vitro study[91]. The density of infiltrating NK cells has 
been shown to be prognostic in OSCC[92]. In a study of OSCC xenografts implanted in 
nude mice, NK cell depletion was shown to restore tumour growth following 
treatment with an anti-PD-1 (programmed death-1) agent illustrating the important 
anti-tumour role of NK cells which is tightly regulated by the PD-1 pathway[93]. In 
human OC, NK cells that demonstrate high expression of a novel inhibitory regulator 
protein, T cell immunoglobulin domain and mucin domain 3 (Tim-3) are predisposed 
to apoptosis and hence fail to combat tumour progression[94]. Increased expression of 
Tim-3 in this context occurs through NF-κB signalling thus linking hypoxia to NK cell-
mediated anti-tumour dysfunction. NK cells are also an important entity in GC. 
Tumour infiltrating NK cells expressing high levels of Tim-3 have been correlated with 
adverse prognosis in a study of 62 patients with the disease[95].
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DCs present antigens to T cells including CD4+ T helper cells, resulting in the 
initiation of the adaptive anti-tumour immune response[96]. In cancer, impaired DC 
function is associated with defective anti-tumour immune responses and hence cancer 
progression[97-99]. While there are contrasting studies, the net effect of the hypoxic 
TME may be skewed towards a tolerogenic DC phenotype[100,101]. An in vitro study 
of peripheral blood mononuclear cells isolated from a healthy human cohort and 
cultured under hypoxic conditions (1% oxygen) showed that hypoxia impairs DC 
uptake of antigens and causes modulation of their cytokine expression patterns in both 
resting and activated states[100]. Hypoxia increased VEGF production and CXCR4 
expression and lead to a reduction in DC production of tumor necrosis factor-α 
thereby revealing the pro-angiogenic and immunosuppressive effect of reduced 
oxygen tension on DCs. Lysosomal-associated membrane protein (LAMP3) is a marker 
of mature DCs and it has been shown to be induced by hypoxia in breast cancer both 
in vitro and in vivo[102]. It is thought to be implicated in metastasis[103]. RT-qPCR 
analysis of 157 OSCC tissues as well as immunohistochemical staining of 46 specimens 
reveal its expression to be correlated with poor patient outcomes, further emphasizing 
the tolerogenic capacity of DCs[104]. Again, in the context of OAC, co-culture with 
DCs has been shown to induce Treg (T regulatory) differentiation supporting the 
tolerogenic DC phenotype in these malignancies[105]. Given that successful activation 
of adaptive T cell responses is dependent on DC migration to peripheral lymphoid 
organs, further research and investigation of the effect of hypoxia in the TME on DCs 
is required to fully dissect the potential clinical impact regarding patient outcomes and 
treatment resistance[106].

Hypoxia-induced HIF1-α expression is also associated with the upregulation of the 
transcription factor Forkhead Box Protein P3 (FoxP3), highlighting the role of hypoxia 
in regulating the abundance and function of Treg cells, further illustrating the 
potential immunosuppressive effect of a hypoxic TME on anti-tumour immuni-
ty[107,108]. In a study of GC, the frequency of Treg cells was significantly higher in the 
tumour compared with peripheral circulation wherein, intratumoural levels of FoxP3 
correlated with TNM stage[109]. In a complementary study, elevated Treg/CD8+ cell 
ratio was shown to be an independent predictor for worse OS in a study of 133 
patients with GC. Tregs are also crucially important in OC; one study found an 
increased percentage of peripheral Treg cells in OC patients vs healthy controls and 
they further demonstrated that a higher proportion of Tregs was inversely correlated 
to survival[110]. The administration of an agent that disrupts Treg recruitment to a 
hypoxic TME may represent a potential therapeutic target capable of improving 
outcomes[111].

Invasion, migration, and metastasis
The activation of cancer-associated fibroblasts (CAFs) in hypoxic TMEs has been 
implicated in the altered deposition, remodelling and degradation of the extracellular 
matrix (ECM) and hence invasion, migration, and metastasis[112-114]. In a study of 
183 patients with OAC, characteristic expression of CAF marker α-SMA was found to 
be correlated with worse OS[115]. It was initially hypothesized that increased collagen 
production and fibrosis would present an obstacle to tumour cell invasion and 
metastasis, but evidence suggests that this is a lot more complex. In one study of 
pancreatic carcinoma cells, collagen has been shown to increase expression of the key 
epithelial to mesenchymal transition (EMT) transcription factor Snail in a transforming 
growth factor-β-mediated manner[116]. Thus, this series of events is thought to be 
involved in the activation of CAFs thereby, ensuring enhanced migratory capacity, 
invasiveness, survival, and ECM deposition in a positive feedback loop[117,118]. In the 
area of GOC, an in vitro assay revealed extracellular matrix metalloproteinase inducer 
(EMMPRIN) promoted EMT and hence invasion and migration of an OC cell 
line[119]. The authors followed up this study by showing, through HIF1-α interference 
and culture under hypoxic (1% oxygen) conditions, that EMMPRIN was regulated by 
HIF1-α. Further research probing the relationship between traditionally neglected 
components of the TME like CAFs and hypoxia in upper gastrointestinal cancers is 
required.

Altered energetics
Cells deprived of oxygen promote tumour proliferation and survival through 
reprogramming of energy metabolism[30]. The observation that neoplastic cells shift 
their metabolism from aerobic to anaerobic respiration was first observed nearly 100 
years ago by Otto Warburg[120,121]. This shift is orchestrated by the hypoxia master 
regulator HIF which upregulates enzymes involved in glycolysis such as pyruvate 
dehydrogenase kinase 1, and ultimately the production of lactate from pyruv-
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ate[122,123]. Immunoblot analysis of both gastric and OSCC specimens has 
demonstrated reductions in the expression of the β catalytic subunit of a key protein 
involved in oxidative phosphorylation, ATP synthase, further implicating the role of 
metabolic reprogramming in upper gastrointestinal malignancies[124]. It is also 
probable that an altered bioenergetic phenotype contributes to treatment resistance in 
a hypoxia-driven manner. In one study, the expression of 4 proteins involved in 
metabolic respiration in the setting of OAC (n = 23), were assessed prior to 
chemoradiation[125]. Increased levels of the oxidative phosphorylation protein ATP5B 
were significantly increased in those with poor response to chemoradiation as defined 
per tumour regression grade. This suggests that tumours that retain some sense of 
metabolic plasticity may predict treatment-refractory disease.

Lactate dehydrogenase is responsible for converting pyruvate to lactate under 
hypoxic conditions[126]. In a study of 152 patients with GC, immunohistochemical 
staining for lactate dehydrogenase (LDH) isoenzyme 5 demonstrated significant 
associations between immunoreactivity and a number of different tumour features 
such as tumour size, venous and lymphatic invasion, and tumour stage[127]. 
Inoculation of mice with LDH knock-out pancreatic cancer cells has been shown to 
result in reduced tumour size[128]. Furthermore, the quantity of MDSCs isolated from 
the LDH knock-out cancer mice both in tumour and spleen was significantly less in 
controls, and they demonstrated lower suppressive activity.

The effects of these processes are not restricted to neoplastic cells, as the evidence 
implicates hypoxia-driven metabolic shifts in other cellular components of the TME, 
particularly immune cells. Tissue hypoxia in cancerous or non-cancerous cells results 
in the build-up of the purine adenosine, extracellularly which augments a plethora of 
the hallmarks of cancer[129-134]. Evidence suggests this is conferred predominantly 
through the release and metabolism of ATP by the surface membrane nucleotidases 
CD39 and CD73[133,135,136]. In one in vitro experiment, an epithelial cell line 
demonstrated increased CD73 expression when exposed to hypoxic conditions, and 
examination of the CD73 gene has identified a binding site for HIF1[137]. Subsequent 
binding to purinergic receptors and adenosinergic signalling is known to mediate an 
anti-tumour immunosuppressive phenotype through effects on Tregs, MDSCs, TAMs, 
and B lymphocytes across various solid tumours types including OC[135,138-141]. In 
the context of GOC, a gene expression study of several radiotherapy resistant OC cell 
lines, CD73 expression was shown to be increased in TE-2, TE-13, and KYSE170 when 
compared to parent cell lines[142]. Once again, given the hypoxia-driven mechanism, 
this highlights the pro-inflammatory, tumour-promoting effect of the adenosine axis, 
thereby signifying another potential method of clinically targeting hypoxia pathways 
in the treatment of GOC.

Also, hypoxia (oxygen of 1.5%) driven reprogramming of energetic metabolism is 
linked to PD-1 immune checkpoint blockade resistance[143]. In vivo treatment with 
metformin, decreases OCR in tumour cells, while increasing consumption in T cells 
resulting in reduced hypoxia. The authors further examined the effect of anti-PD-1 
agents in concert with metformin administration in vivo in a melanoma tumour type 
that traditionally fails to respond to immune checkpoint blockade. The synergistic 
effect demonstrated substantially increased tumour elimination[143]. These intricately 
woven hypoxia-mediated effects exist in concert with one another to contribute to an 
aggressive phenotype characterized by treatment resistance and poor prognosis.

MEASURING HYPOXIA
Measuring tissue and tumour hypoxia is challenging. There are four principal 
methods for measuring oxygen levels in vivo; the Eppendorf oxygen electrode, 
exogenous markers, endogenous markers, and imaging techniques. The Eppendorf 
electrode quickly became the gold standard for measuring oxygen tension when it was 
introduced at the beginning of the millennium after studies confirmed that low 
tumour oxygenation status was associated with worse outcomes in cervical as well as 
head and neck cancer[144,145]. However, it fell out of favour just as quickly for a 
variety of reasons. It was notably limited to tumours that were accessible and it was 
steadfastly invasive. It was additionally prone to sampling error[146]. Although 
hypoxia can be arbitrarily classified as acute/perfusion limited or chronic/diffusion-
limited, there remains significant spatiotemporal variation in tumour oxygen tension 
and hence multiple sampling observations must be taken[147]. The literature on the 
use of endogenous hypoxia markers in GOC is extensive and is discussed in the 
context of prognosis and treatment and resistance[148-152]. Exogenous markers such 
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as pimonidazole are administered to a patient and undergo chemical modification in 
hypoxic cells and are then amenable to visualization in specimens. A summary of the 
major methods used to measure tumour hypoxia and their associated advantages and 
disadvantages can be found in Table 2.

In the last decade, several studies have characterized gene expression signatures 
corresponding to oxygenation status[153-155]. Using a 15 gene expression panel 
derived from these studies, Ye et al[156] classified 24 cancer types from The Cancer 
Genome Atlas into a hypoxia score of high, low, and intermediate after adjusting for 
confounding factors such as sex and ethnicity. They were further able to validate this 
categorization with independent proteomic data where hypoxic status was known. 
135/193 (70%) of GC samples had high hypoxic status while only 34/124 (27%) of OC 
samples fell into this category. There may be differences between OSCC and OAC but 
they were grouped together in this study. They further built on these findings by 
comparing molecular characteristics such as miRNA expression, highly mutated 
genes, and significant copy number alterations between the hypoxia score high and 
low tumours. In both OC and GC samples that had molecular signatures of high 
hypoxic status, a number of miRNAs that target the tumour suppressor gene tumour 
protein p53 inducible nuclear protein 1 (TP53INP1), were significantly 
downregulated[156].

TREATMENT RESISTANCE AND PROGNOSIS
Ionizing radiation generates free radicals from molecules of oxygen which then induce 
double-stranded DNA breaks resulting in mitotic catastrophe. This is one of the key 
mechanisms for radiation-induced tumour cell death and it is reliant on the presence 
of oxygen within the TME[144,157]. GC and OC cells cultured in vitro under hypoxic 
conditions (1% oxygen) were more resistant to radiation-induced cell death compared 
to GC and OC cells cultured under normoxic conditions, as assessed by colony 
formation assay[158]. The contribution of hypoxia to radiotherapy treatment resistance 
is relatively well established but its role in conventional chemotherapy and 
molecularly targeted therapy is less clear cut, particularly in GOC. Functional 
inactivation of HIF1-α in GC cell lines demonstrated increased susceptibility to 5-
fluorouracil and cisplatin as determined by proliferation and apoptosis assays which 
lends support to the use of HIF1-α in predicting response to therapy[159]. Analysis of 
cell cycle distribution patterns following treatment with 5-fluorouracil revealed a 
greater proportion of senescent HIF1-α deficient cells compared with controls. 
Likewise, the apoptotic cell fraction as determined by caspase 3 cleavage of HIF1-α 
deficient cells was greatly increased. The mechanism for this is thought to be mediated 
by HIF1-α dependent suppression of P53 induction in response to 5-fluorou-
acil[159,160]. Another potential mechanism is suggested by a different study, using 
RT-PCR and Western blot to demonstrate the HIF1-α dependent upregulation of p-
glycoprotein in GC cells incubated at 1% oxygen levels[161]. P-glycoprotein is a 
transporter protein that augments the efflux of drugs from cells and hence is 
associated with chemoresistance in GOC[162,163].

There are a large number of studies that have investigated the prognostic value of 
hypoxia in OC. A systematic review carried out by Peerlings et al[152] evaluated 22 
studies assessing various hypoxia-related markers and established that increased 
expression of HIF1-α in early-stage OSCC was associated with increased resistance to 
chemoradiotherapy treatment. They also conclude that radiologically, the positron 
emission tomography (PET) marker 18F-FETNIM was significantly predictive for 
response to combined chemoradiation in the setting of OSCC[164]. In brief, these 
tracers work by diffusing into cells non-specifically. In the absence of oxygen, they 
undergo a chemical reaction and their resultant physicochemical properties do not 
allow diffusion out of the cell[165]. PET with 18F-FAZA (18F-fluoroazomycin 
arabinoside) has been shown to predict radiotherapy response in OAC murine 
xenografts[166]. Validation of the tracer 18F-HX4 has been performed in OC but is yet 
to be studied as a potential prognostic factor[167]. Overall, imaging of hypoxia 
continues to be an attractive approach for studying the TME and subsequent patient 
outcomes.

The markers assessed in the systematic review by Peerlings et al[152] included HIF1-
α, VEGF, carbonic anhydrase IX, GLUT1, Beclin-2, HIF2-α, as well as PET. The most 
common method used to assess these markers was immunohistochemical staining of 
surgical or biopsied specimens i.e. an invasive technique. The authors indicate that 
HIF1-α overexpression was associated with worse outcomes for OS and disease-free 
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Table 2 Techniques used in the measurement of tissue oxygenation and their associated advantages and disadvantages[10,181-183]

Technique Advantages Disadvantages

Instrumental in establishing the link between hypoxia and treatment 
failure

Prone to sampling error due to poor spatial 
resolution

Needle Electrodes

Real time direct measurement Invasive and requires direct access to tumours

More sensitive than electrodes at lower oxygen levels Requires biopsy and immunohistochemistry

Reproducible

Exogenous Markers

Precise spatial resolution

Precise spatial resolution Requires biopsy and immunohistochemistry

Can be serological such as Osteopontin

Endogenous 
Markers

Can be tissue based such as HIFs or carbonic anhydrase IX

Non-invasive Expensive

Reproducible Radiation exposure

Radiological

Precise spatial resolution Relatively less well established

HIF: Hypoxia inducible factor.

survival in OSCC but the evidence for its association in OAC was inconclusive, mainly 
due to the absence of data. VEGF expression correlated with patient outcomes in 
OSCC but not OAC[152]. In contrast, carbonic anhydrase IX appears to be an 
independent predictor of survival in OAC. Carbonic anhydrase IX is a glycoprotein 
expressed on the cell surface and its primary function is the catalytic conversion of 
carbon dioxide to bicarbonate and protons[150,168]. Under the transcriptional control 
of HIF1-α, the metalloenzyme is thought to contribute to tumour growth and prolif-
eration through the regulation of pH, ECM degradation, and EMT[168,169]. In the 
majority of studies assessing endogenous markers, the determination of what 
constituted “hypoxic” was based on relatively arbitrary thresholds of immunohisto-
chemical expression, with very little in the way of standardized protocols across 
studies. For example, Munipalle et al[151] defined “high” HIF-1α expression as greater 
than 10% of OSCC cells showing positive staining. Birner et al[170] devised a score 
based on intensity and percentage of cells showing positive expression in a cohort of 
333 OCs. Anything above the median was then considered a "high" expression while 
those below were considered a "low" expression.

In a more recent systematic review and meta-analysis, Luo et al[148] examined the 
clinical predictive value of HIF2-α. It included 40 studies with 4345 cancer cases but 
only 2 of these studies assessed upper gastrointestinal cancers. Of these 2 studies, 1 
was solely GC (n = 127), while the other was both GC and OC (n = 177)[149,171]. Based 
on the Newcastle Ottawa score, the authors determined that both of these papers were 
of high quality. Both of these studies demonstrated a statistically significant 
association between HIF2-α and OS on univariate analysis but not multivariate. In the 
pooled analysis, the authors conclude that high HIF2-α expression was associated with 
a lower OS.

While there is a non-insignificant aggregate of clinical evidence denoting a statist-
ically significant association between endogenous markers of tumour oxygenation and 
clinical outcomes, the heterogeneity in study methods and contrasting results 
ultimately indicates a need for more prospective research with greater adherence to 
the standardization of reporting. The REMARK recommendations for tumour marker 
prognostic studies published by the Equator Network lay out a checklist for 
researchers to improve both quality and transparency in research[172]. The wealth of 
data as discussed above, demonstrating the correlation between outcomes or treatment 
resistance and tumour hypoxia further illustrates the importance of the development 
and clinical implementation of new techniques in measuring tumour hypoxia such as 
non-invasive imaging[148,149,151,170,171].
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HYPOXIA-TARGETED THERAPIES
Hypoxic areas of the TME inherently suffer from poor perfusion and disorganized 
vasculature and this has been one of the primary limitations to systemically 
administered therapeutics[173]. Nevertheless, a number of agents have been tested in 
clinical studies. Hypoxia-targeted therapies mainly consist of bioreductive prodrugs 
(hypoxia-activated prodrugs) but molecularly targeted agents that inhibit effectors in 
hypoxia-responsive pathways such as HIF1-α target genes or receptor tyrosine kinases 
like the VEGF receptor could be grouped here as well[173].

Bioreductive agents such as tirapazamine work in a similar manner to exogenous 
markers of hypoxia; they undergo chemical modification in hypoxic cells resulting in 
hypoxia-selective cytotoxicity. The bioreductive alkylating agent apaziquone 
demonstrated efficacy as a first-line agent in early clinical studies of bladder cancer but 
in a phase II study in 20 patients with GC, there was no clinical benefit[174,175]. In a 
preclinical murine model of OSCC and OAC, administration of the bioreductive 
prodrug evofosfamide was shown to delay tumour growth in combination with 
radiotherapy vs radiotherapy alone[176]. This came with the added benefit of no 
additional toxicity. As of the time of writing, there have been no clinical trials invest-
igating the potential use of evofosfamide or other bioreductive prodrugs in OC and 
although the efficacy of these agents has largely been disappointing as first-line 
treatment in other cancer types, they may potentially improve sensitivity when used in 
combination with conventional chemoradiation.

CONCLUSION
The myriad of components that comprise the TME and the effects imposed on them by 
oxygen deprivation ensures that researchers have yet to scratch the surface in 
disentangling the key processes amenable to overcoming treatment-refractory disease 
and prognostication. Hypoxia plays a role in promoting immunosuppressive cells and 
subverting anti-tumour immune responses within the TME. Hypoxia also promotes 
the additional hallmarks of cancer including inflammation, angiogenesis, and 
reprogramming of metabolism. The intricate nature of these hypoxia-mediated effects 
is very complex and further research is required to elucidate the mechanisms as they 
pertain to GOC. Standardization of methodology in hypoxia focused basic research 
and clinical reporting would be conducive to driving this area forward. This deeper 
understanding will hopefully reveal novel therapeutic targets to control disease 
progression in GOC but currently, this remains out of reach. However, hypoxia as a 
clinical marker to stratify patients into certain treatment pathways or aid prognosis is 
something that is firmly within our grasp.
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