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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to emerge as the second 
leading cause of cancer-related death after 2030. Extreme treatment resistance is 
perhaps the most significant factor that underlies the poor prognosis of PDAC. To 
date, combination chemotherapy remains the mainstay of treatment for most 
PDAC patients. Compared to other cancer types, treatment response of PDAC 
tumors to similar chemotherapy regimens is clearly much lower and shorter-
lived. Aside from typically harboring genetic alterations that to date remain un-
druggable and are drivers of treatment resistance, PDAC tumors are uniquely 
characterized by a densely fibrotic stroma that has well-established roles in 
promoting cancer progression and treatment resistance. However, emerging 
evidence also suggests that indiscriminate targeting and near complete depletion 
of stroma may promote PDAC aggressiveness and lead to detrimental outcomes. 
These conflicting results undoubtedly warrant the need for a more in-depth 
understanding of the heterogeneity of tumor stroma in order to develop 
modulatory strategies in favor of tumor suppression. The advent of novel 
techniques including single cell RNA sequencing and multiplex immuno-
histochemistry have further illuminated the complex heterogeneity of tumor cells, 
stromal fibroblasts, and immune cells. This new knowledge is instrumental for 
development of more refined therapeutic strategies that can ultimately defeat this 
disease. Here, we provide a concise review on lessons learned from past stroma-
targeting strategies, new challenges revealed from recent preclinical and clinical 
studies, as well as new prospects in the treatment of PDAC.

Key Words: Stroma; Pancreatic cancer; Treatment resistance; Cancer-associated 
fibroblasts; Clinical trials
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Core Tip: Stromal desmoplasia is not only a prominent histological hallmark of 
pancreatic cancer, but also a biological barrier to therapies. Various strategies aimed at 
targeting the stroma to improve therapeutic outcomes have been largely unsuccessful. 
Here we comprehensively reviewed the rationales and lessons learned from various 
stromal-targeting strategies and provide prospects on improving these approaches in 
future clinical trials.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is currently the seventh leading cause of 
cancer related death in the industrialized world[1]. In the United States, PDAC is 
projected to be the second leading cause of cancer death by 2030[2]. The current 5-year 
survival rate of PDAC is 9%, making it one of the deadliest cancers[3].

There are several factors that contribute to the poor outcomes of PDAC. First, non-
specific symptoms and lack of PDAC specific markers and screening lead to late 
detection[4]. Less than 10% of PDAC is resectable at the time of diagnosis. Second, 
PDAC cells are highly metastatic, evidenced by the fact that most patients develop 
local or distal recurrences even after seemingly successful surgical resection. Third, 
PDAC is extremely resistant to chemotherapy and radiation. For example, the triple 
therapy of folinic acid, 5-fluorouracil (5-FU), irinotecan, oxaliplatin (as FOLFRINOX or 
FOLFOXIRI) has been used as a first line regimen in the treatment of various 
gastrointestinal malignancies. A phase III trial conducted by The Groupo Oncoligico 
Nord Ovest used FOLFOXIRI as a first line treatment in patients with metastatic 
colorectal cancer. The objective response rate (ORR) to FOLFOXIRI in these patients 
was 60%[5]. A phase II trial of FOLFIRINOX in patients with advanced gastro-
esophageal cancer showed an ORR of 61%[6]. This is in contrast to a response rate of 
only 31.6% in patients with metastatic PDAC receiving FOLFIRINOX[7]. For patients 
with localized PDAC who have undergone R0 or R1 surgical resection upfront and 
have postoperative CA19-9 of less than 180 U/mL, treatment with FOLFIRINOX 
resulted in a 3-year disease free survival rate of 39.7% as opposed to 21.4% with 
gemcitabine[8]. While these results demonstrate that strong combination chemo-
therapy can potentially cure additional patients, it is also worth noting that a 
significant subset (approximately 60%) of patients will still succumb to disease relapse 
despite having received adjuvant FOLFIRINOX, clearly demonstrating that PDAC 
tumors are highly chemo-resistant even at the micro-metastatic stage. Another 
regimen that is commonly used in patients with advanced inoperable PDAC is 
gemcitabine plus nab-paclitaxel (GnP). A phase III trial including 842 patients with 
metastatic PDAC (MPACT trial) in 2013 showed the benefit of GnP over gemcitabine 
alone [median overall survival (OS) 8.5 vs 6.7 mo; 95% confidence interval (CI) 0.62-
0.83; P < 0.001], and response rate to GnP was 23%[9]. For patients with locally 
advanced PDAC, the response rate to FOLFIRINOX was 19% and to GnP was as low 
as 6%[10]. However, these two regimens are associated with significant toxicities, 
therefore escalation of these regimens by adding additional cytotoxic agents is 
expected to be clinically challenging and prohibitive.

PDAC is driven by mutations of multiple genes including KRAS, TP53, CDKN2A 
and SMAD4[11], which are also present in other cancer types such as non-small cell 
lung and colorectal cancers. However, PDAC tumors are characterized by a profound 
desmoplastic tumor microenvironment (TME), which accounts for 80%-90% of the 
tumor architecture[12]. Major components of the TME include a dense fibrotic matrix 
deposited by cancer-associated fibroblasts (CAFs), and significant infiltration of 
various subsets of immunosuppressive myeloid cells, vascular cells, and nerve 
cells[13-15]. The dense stroma plays an important role in tumor growth, proliferation, 
epithelial-mesenchymal transition (EMT), immune evasion and resistance to various 
therapies[16]. The low vascularity combined with elevated interstitial pressure 
dramatically limits vascular delivery and diffusion of therapeutic agents to tumor 

http://creativecommons.org/Licenses/by-nc/4.0/
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cells[17-19]. Therefore, targeting the stroma to improve therapeutic response has been 
fervently pursued in recent years, albeit with limited success. Importantly, the role of 
stroma in PDAC progression and treatment resistance has become increasingly contro-
versial. Preclinical mouse models suggest that depletion of stromal fibroblasts alone 
carries a risk of reverting PDAC cells to a more progenitor-like and aggressive state, 
with corresponding inferior outcomes[20,21]. These observations underscore the 
critical need to delineate the diverse interplay between different components of the 
tumor stroma in order to develop therapies that can modify the tumor stroma in favor 
of tumor suppression[22]. Herein, we focus specifically on stroma-targeting clinical 
trials, discuss the outcomes and provide future prospects of this strategy.

COMPONENTS OF THE PANCREATIC TME
Pancreatic stellate cells (PSCs) are star-shaped cells that resemble their hepatic 
counterparts and were first discovered in 1998[23]. PSCs are found in the exocrine 
component of healthy pancreas, which when in their quiescent state are characterized 
by the presence of desmin intermediary filaments, vitamin A and fat droplets. During 
neoplastic progression, PSCs become activated, acquire a myofibroblast-like 
phenotype, express α-SMA and secrete extracellular matrix (ECM) proteins (collagen I, 
collagen III, collagen IV and fibronectin)[24]. These activated PSC are termed CAFs. 
The ECM proteins secreted/deposited by CAF form a three-dimensional stiff mesh 
which, along with high molecular weight glycosaminoglycans such as hyaluronan 
(HA), raises the interstitial pressure that leads to vascular collapse, forming a hypoxic 
and nutrient poor TME[25,26].

Transcriptomic profiling shows that CAFs consist of at least three distinct subpopu-
lations: Myofibroblast-like (myCAF), inflammatory (iCAF) and antigen-presenting 
(apCAF, Figure 1)[27,28]. The myCAFs are the most abundant subtype, characterized 
by high α-SMA expression and hypothesized to have a favorable tumor-restrictive 
role, potentially explaining paradoxical PDAC progression in genetically engineered 
mouse models (GEMM) when CAFs are globally depleted[29]. The iCAFs are rich in 
expression of multiple inflammatory chemokines including interleukin (IL)-6 and 
proposed to be pro-tumorigenic. The least abundant apCAFs are characterized by 
abundant expression of MHC class II and therefore may be able to bind and present 
antigens to CD4+ cytotoxic T-cells. However, due to a lack of co-stimulatory molecules 
on apCAFs, apCAFs actually dampen, instead of activating the interacting CD4+ T 
cells[30]. Importantly, it appears that these subtypes are interchangeable, providing an 
avenue to reprogram these CAFs for therapeutic purposes.

The other predominant cellular components of the pancreatic tumor stroma include 
endothelial cells, inflammatory cells and nerve cells which have complex interactions 
with CAFs. Angiogenesis in PDAC is regulated by CAFs, PDAC cells, inflammatory 
cells and endothelial cells. The hypoxic microenvironment of PDAC acts as a trigger 
for the transcription factor hypoxia induced factor 1 expression which leads to 
increased vascular endothelial growth factor (VEGF) production and angio-
genesis[31]. VEGF has been identified as an important negative prognostic marker in 
PDAC which has led to multiple preclinical and clinical studies targeting this 
pathway[32]. In addition, PDAC stroma is rife with various types of immune cells of 
myeloid lineages, T cells, B cells that are collectively rendered pro-tumorigenic by 
various environmental clues[33,34]. Targeting the immune compartment of PDAC, 
especially the suppressive myeloid cells including macrophages and monocytes, is a 
rapidly emerging therapeutic strategy, and is outside the scope of this review.

The acellular ECM proteins include collagen I, II, IV, XI-A, fibronectin, laminin, 
tenascin C and HA. While the dense ECM may physically restrict PDAC progression, 
ECM proteins have been shown to be protective to PDAC cells. PDAC cells detached 
from ECM proteins, especially laminin and fibronectin, are prone to apoptosis and 
necrosis as a result of mitochondrial depolarization and release of cytochrome c and 
Smac/DIABLO[35]. Various ECM proteins are also capable of promoting EMT and 
hence therapeutic resistance of PDAC cells[16]. These studies provide solid rationale 
for targeting these acellular ECM proteins as a therapeutic strategy. The ECM also 
contains a group of enzymes known as matrix metalloproteinases (MMP), which play 
a role in degradation of ECM components. The turnover of ECM is a dynamic process 
and is regulated by tissue MMP inhibitors secreted by stromal cellular structures[36].

Therapies targeting PDAC cells such as chemotherapy, radiation and surgery when 
used alone or in combination have only provided limited benefit in patients with 
advanced/metastatic PDAC, rarely improving survival beyond one year. This shifts 
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Figure 1 Illustration of the complex pancreatic ductal adenocarcinoma tumor microenvironment that consists of various cell types and 
acellular extracellular matrix proteins and proteoglycans. Therapeutic strategies that have recently been tested or are being tested in clinical trials are 
highlighted in red. PDAC: Pancreatic ductal adenocarcinoma; ATRA: All trans retinoic acid; apCAF: Antigen-presenting cancer-associated fibroblasts; iCAF: 
Inflammatory cancer-associated fibroblasts; myCAF: Myofibroblast-like cancer-associated fibroblasts; IL: Interleukin; TGF: Transforming growth factor; TGFBR: 
Transforming growth factor β receptor; PEGPH20: Pegylated PH20; NF-κB: Nuclear factor-κappa β; ECM: Extracellular matrix; FAK: Focal adhesion kinase.

the focus to the TME which plays a crucial role in inhibiting the effectiveness of 
cytotoxic therapies, making them less effective by providing a drug free sanctuary 
enabling them to thrive and proliferate[37]. A number of preclinical studies involving 
GEMM targeted the tumor stroma showing a beneficial effect toward better drug 
delivery and overall disease progression. A number of novel therapeutic strategies 
targeting the complex interaction of various cellular and acellular components of the 
PDAC microenvironment were first studied in the pre-clinical setting. The promising 
results of these in-vitro and in-vivo experiments resulted in clinical translation in an 
effort to alter the tumor micro-environment to improve outcomes of PDAC patients. 
Herein we review the effectiveness of these therapies and lessons learned from them, 
which provides guidance towards future treatments.

TARGETING STROMA-PROMOTING PATHWAYS IN PDAC CELLS
Sonic hedgehog pathway
Cancer stem cells (CSCs) are a small population of cancer cells responsible for tumor 
initiation, recurrence, growth and metastasis. Like normal stem cells, pancreatic CSCs 
are regulated by several common signaling pathways, one of which is the Sonic 
hedgehog (SHH) pathway. The SHH signaling pathway is regulated by a few critical 
nodes: the HH ligand, the Patched (PTCH) transmembrane receptor, the integral 
smoothened (SMO) protein and the Glioma Associated Oncogene (GLI) transcription 
factors. In the absence of SHH, PTCH binds and destabilizes SMO, leading to its 
degradation. Binding of SHH ligand to PTCH results in internalization and lysosomal 
degradation of both SHH and PTCH, thereby relieving SMO and allowing it to 
contribute to the activation of the GLI transcription factors. The GLI factors control 
several genes that participate in developmental patterning and also production of 
more SHH[38]. Compared to normal pancreatic stem cells, expression of SHH is 
upregulated in PDAC CSCs[39]. Olive et al[39] showed that targeting SMO with 
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sarigedib (or IPI-926) depletes the stromal tissue and transiently improves the delivery 
and therapeutic effect of gemcitabine in an orthotopic transplantable mouse model, 
suggesting that the SHH pathway may contribute to stromal fibrosis and hindrance of 
therapeutics in PDAC. In January 2012, a phase II trial involving the SHH pathway 
inhibitor saridegib (IPI-926) was halted due to detrimental outcomes of patients in the 
gemcitabine plus saridegib arm compared to the gemcitabine plus placebo arm 
(NCT01130142). This also resulted in early closure of another trial evaluating the 
efficacy of saridegib with modified FOLFIRINOX (NCT01383538)[40]. Vismodegib (or 
GDC-0449) is a competitive SMO inhibitor that is FDA-approved for treatment of 
advanced or metastatic basal cell carcinoma, in which loss-of-function mutations of 
PTCH1 gene are common. A pilot study involving 25 patients showed downregulation 
of GLI and PTCH1 expression in patients receiving combination of gemcitabine and 
vismodegib (NCT01195415)[41]. However, a larger phase IB/II trial evaluating 106 
patients showed no improvement in response rate, OS or progression free survival 
(PFS). Importantly, contrary to the results reported by Olive et al[39] (NCT01064622), 
vismodegib did not improve intratumoral delivery of gemcitabine, and when 
combined with gemcitabine also did not statistically improve the survival of autoch-
thonous PDAC mice[42]. A later Phase II trial (NCT01088815) evaluating 67 patients 
with untreated metastatic PDAC showed that addition of vismodegib to GnP did not 
improve PFS or OS compared to historical data of chemotherapy alone[43]. Sonidegib 
is another orally bioavailable SMO receptor antagonist approved for the treatment of 
recurrent locally advanced basal cell carcinoma[44]. This drug was studied in patients 
with PDAC in combination with both gemcitabine and GnP. Two small phase I trials 
showed good tolerance but no improvement in OS or PFS compared to standard 
chemotherapy (NCT01487785), (NCT02358161)[45,46]. These clinical studies show that 
targeting the SHH pathway in combination with standard chemotherapy is ineffective 
in PDAC. Furthermore, these studies underscore the need to obtain on-treatment 
correlative data to allow investigation into mechanisms of resistance and treatment 
failure.

Transforming growth factor β pathway
Enhanced intratumoral transforming growth factor β (TGF-β) signaling promotes 
tumor fibrosis, progression and poor patient survival in PDAC[47,48]. Importantly, 
more than half of PDAC cases carry inactivating mutations of SMAD4, which encodes 
a growth-inhibitory transcription factor downstream of the TGF receptor. Unlike other 
cellular components in the PDAC stroma, pancreatic cancer cells are often deficient in 
SMAD4. This leads to upregulation of TGF-β ligand and has far reaching effects on 
other cellular components of PDAC that remain SMAD4 proficient in the stroma. In 
these cells, TGF-β acts as a driver for desmoplasia. Galunisertib is a small molecule 
serine/threonine kinase inhibitor of the TGF-β receptor. A phase Ib/II study 
comparing galunisertib plus gemcitabine vs placebo plus gemcitabine was carried out 
in patients with advanced PDAC including 104 patients in the treatment arm and 52 
patients in the placebo arm. There was a modest survival benefit in the treatment 
group. The median OS was 8.9 mo (95%CI: 7.3-11.1) for the galunisertib group and 7.1 
mo (95%CI: 5.8-9.0) for the placebo group. The overall response rate was numerically 
superior in the galunisertib group, however, the differences were not statistically 
significant. No significant difference in PFS was observed in the two groups. Patients 
in the galunisertib group did not experience increased toxicity (NCT01373164)[49]. 
This modest but encouraging benefit of TGF-β receptor inhibition has led to further 
clinical trials evaluating the effect of galunisertib with the anti PD-L1 (programmed 
death ligand 1) monoclonal antibody durvalumab (NCT02734160). To date, the results 
of this trial are pending.

The angiotensin II receptor blockers losartan and olmesartan have been evaluated in 
animal models based on their TGF-β pathway inhibitor effects[50,51]. A retrospective 
study was carried out at Massachusetts General Hospital evaluating PDAC patients 
taking or not taking angiotensin pathway inhibitors. These investigators found that 
patients chronically taking angiotensin pathway inhibitors with non-metastatic PDAC 
had superior OS independent of chemotherapy[52]. A single arm phase II trial enrolled 
patients with locally advanced pancreatic cancer (LAPC) and treated with total 
neoadjuvant therapy of FOLFIRINOX and losartan followed by individualized 
chemoradiotherapy (NCT01821729). This study showed a high rate of R0 resection 
(69%) as well as prolonged OS among all patients (31.4 mo) including those who 
underwent resection (33 mo)[53]. This led to a large multicenter trial using losartan 
with FOLFIRINOX followed by SBRT and nivolumab in LAPC (NCT03563248). To 
date, the results of this clinical trial are pending.
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Focal adhesion kinase
Enhanced focal adhesion kinase (FAK) activity is commonly found in PDAC cells and 
CAFs and is a determinant of stromal fibrosis and immune evasion[54,55]. Targeting 
FAK using small molecule inhibitors dramatically attenuated stromal fibrosis, greatly 
potentiated chemotherapy and immune checkpoint blockade in several preclinical 
mouse models including the highly aggressive autochthonous KPC (p48-Cre/p53f/f/LSL-
KRASG12D) mouse model[54]. These findings provided a solid rationale for combining a 
FAK inhibitor (defactinib) with gemcitabine and anti-PD-1 (programmed death 1) in a 
clinical trial of patients with PDAC after progression on frontline 5FU-based 
chemotherapy (NCT02546531). Results of this study are pending.

IL-1 receptor pathway
Constitutive activation of the canonical nuclear factor-κappa β (NF-kB) pathway is a 
major mechanism that contributes to stromal fibrosis, chemoresistance and poor 
prognosis in PDAC[56]. In PDAC, activation of the canonical NF-kB cascade is driven 
both by KRAS-MAPK cascades and reciprocal IL-1β signaling, which drives IRAK4-
TPL2 and IKK kinases[56-58]. Targeting IKK kinases has proven to be clinically 
challenging due to lack of safe and effective agents, but other strategies are being 
developed to target this pathway. For instance, targeting IRAK4 using small molecule 
kinase inhibitors was shown to reduce stromal fibrosis and potentiate the efficacy of 
chemotherapy in preclinical mouse models[56,58]. Currently, the IL-1 receptor 
antagonist Anakinra is being tested in combination with nab-paclitaxel, gemcitabine 
and cisplatin in patients with resectable or potentially resectable PDAC (NCT 
02550327). To date, the results for this clinical trial are pending.

Connective tissue growth factor
The PDAC TME is rife with a myriad of pro-tumorigenic and pro-fibrotic growth 
factors. One of these is connective tissue growth factor (CTGF). Interestingly, in 
preclinical models, treatment with pamrevlumab (or FG-3019), a humanized 
monoclonal antibody targeting CTGF, potentiates the effect of gemcitabine by 
downregulating X-linked inhibitor of apoptosis protein, rather than promoting 
delivery of gemcitabine[59]. In other PDAC pre-clinical studies pamrevlumab was 
shown to attenuate tumor growth, metastasis and angiogenesis[60]. These studies 
collectively suggest that the therapeutic effect of pamrevlumab is predominantly 
through targeting tumor cells. A phase I/II study evaluated pamrevlumab with 
gemcitabine and nab-paclitaxel in patients with LAPC. After 6 cycles/months of 
therapy, more patients treated with pamrevlumab and chemotherapy underwent 
resection compared to patients receiving chemotherapy only (33.3% vs 7.7%). The 
higher resection rate translated into improved OS (non-estimable vs 18.56 mo, P = 
0.0141). However, it was unclear whether the higher resectability among patients 
treated with pamrevlumab and chemotherapy was due to higher response rates or 
lower incidence of disease progression during the six cycles of treatment. Importantly, 
addition of pamrevlumab did not increase perioperative adverse events or delay in 
surgical wound healing[61]. A phase III trial is currently underway evaluating the 
safety and efficacy of pamrevlumab in combination with gemcitabine and nab-
paclitaxel for patients with locally advanced PDAC (NCT03941093).

TARGETING STROMA-PROMOTING PATHWAYS IN CAFs
Vitamin D receptor
The role of vitamin D in the risk of developing pancreatic cancer is highly con-
troversial, with studies showing high serum vitamin D levels to be protective, 
detrimental or have no impact on pancreatic cancer development[62-64]. However, the 
role of vitamin D repletion in PDAC patients after initial diagnosis and during 
treatment is actively being pursued in clinical studies. This is based on observational 
studies showing that higher pre-diagnostic serum vitamin D levels were shown to be 
associated with better survival in PDAC patients[65], and overwhelming preclinical 
studies demonstrating protective effects of vitamin D. Specifically, in mouse models 
ligation of vitamin D receptor with the vitamin D receptor ligand calcipotriol 
markedly impeded PSC activation, leading to stromal remodeling that augmented 
intratumoral gemcitabine, reduced tumor volume and prolonged the survival of KPC 
mice by 57% compared to mice treated with gemcitabine alone[66]. However, it is 
critical to emphasize that although calcipotriol impedes activation of PSCs, it fails to 
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block a-SMA expression or collagen I production of fully activated PSCs[67], raising 
the concern for the modest efficacy of stromal effect of vitamin D receptor ligands. 
However, vitamin D receptor ligands could have tumor-intrinsic effects. In PDAC 
cells, calcipotriol lowered the expression of low-density lipoprotein receptor-related 
protein 6 and inhibits autocrine Wnt signaling[68]. Paricalcitol was also shown to 
impede PDAC cell proliferation by upregulating cell cycle inhibitors p21 (Waf1/CIP1) 
and p27 (Kip1)[69]. On these premises, multiple phase I or II studies testing the impact 
of paricalcitol are currently opened. These include in combination with cisplatin, 
gemcitabine and nab-paclitaxel for patients with treatment-naïve metastatic PDAC 
(NCT04054362); in combination with hydroxychloroquine, gemcitabine and nab-
paclitaxel for patients with treatment-naïve metastatic PDAC (NCT04524702); in 
combination with 5-FU/Liposomal irinotecan for patients who have progressed 
through frontline gemcitabine-based therapies (NCT03883919); and in combination 
with anti-PD-1 (pembrolizumab) as maintenance treatment for patients who have 
achieved partial response or stable disease for at least two months on chemotherapy 
(NCT03331562).

All-trans retinoic acid
There is an association with lower levels of fat-soluble vitamin A and risk of pancreatic 
cancer, theorized to be due to impaired absorption of fat-soluble vitamins[70]. 
Preclinical data has shown that vitamin A deficiency leads to activation of PSC, while 
repletion of vitamin A in culture media converts the PSCs from an activated to a 
quiescent state. Using the KPC model of human PDAC, treatment with all-trans 
retinoic acid (ATRA) induced quiescence of PSC, reduced proliferation of PDAC cells 
and led to increased apoptosis of PDAC cells in part by down-regulating Wnt 
signaling[71]. Based on this data, a phase I clinical trial was conducted enrolling 27 
patients with unresectable PDAC, treated with GnP in combination with ATRA using 
the established dose for acute promyelocytic leukemia. This study demonstrated the 
safety and tolerability of the regimen, and diffusion weighted-magnetic resonance 
imaging identified signals of stromal modulation. This has led to the possibility of 
repurposing ATRA as a stromal targeting agent in PDAC. Based on these data, the 
combination of ATRA along with GnP is currently being studied in the Phase II 
randomized STAR_PAC trial (NCT03307148) enrolling patients with locally advanced 
or metastatic disease[72].

Other agents targeting PSCs
Pirfenidone is an anti-inflammatory and anti-fibrotic agent that is clinically used for 
treatment of idiopathic pulmonary fibrosis, however with an unknown mechanism of 
action. In primary human lung fibroblasts, pirfenidone inhibits proliferation, TGF-β-
induced myofibroblast differentiation and pro-collagen expression[73]. Pirfenidone 
also blocks proliferation, production of collagen, fibronectin and periostin by PSCs in 
vitro and in vivo, and potentiates the anti-tumor effect of gemcitabine by reducing 
stromal fibrosis[74].

Halofunginone (HF) is another anti-fibrotic drug that is of interest in pre-clinical 
studies. The exact mechanism of action of this agent is unclear however it has shown 
to cause resolution of pathologic liver fibrosis. In animal models, HF works by 
inhibiting the activation of PSC’s which in-turn decreases the deposition of ECM 
proteins such as collagen and HA. HF inhibits the downstream signaling of TGF-β by 
inhibiting SMAD2 and SMAD3 receptors. HF not only improves drug delivery by 
decreasing fibrosis, but it also fosters favorable immune response by augmenting 
cytotoxic T-cells and stimulatory myeloid cells in the tumor stroma[75]. To date, no 
clinical trials are opened yet incorporating these two agents for PDAC patients.

TARGETING ECM
HA
HA is a high molecular weight glycosaminoglycan that is synthesized by HA 
synthases (HAS1, HAS2, and HAS3) in PDAC cells and CAFs and deposited into the 
ECM framework[76]. Intratumoral HA undergoes constant turnover via degradation 
by hyaluronidases (HYAL1-4, HYALP1, and PH20). Excessive HA deposition, which is 
common in PDAC tumors, causes elevated water retention and consequently high 
interstitial pressure that collapses tumor vasculature and limits delivery of 
therapeutics[19]. High expression of HA in tumors has been associated with shorter 
survival post-surgical resection in patients with PDAC[77]. Importantly, aside from 
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being an important structural component of the ECM, HA has an active signaling 
function. CD44 is a well-established cellular receptor for HA. Engagement of CD44 on 
PDAC cells enhances invasion, metastasis, angiogenesis and survival[78]. In PDAC 
mouse models, addition of hyaluronidase such as pegylated PH20 (PEGPH20) reduces 
intratumoral HA content and interstitial pressure, thereby permitting re-expansion of 
the microvasculature. In mouse models, this results in improved delivery of 
chemotherapy into the PDAC TME and prolongation of survival[19,79].

The above promising preclinical data led to incorporation of PEGPH20 with 
gemcitabine in a phase Ib clinical trial. Patients with high intratumoral HA content 
had improved PFS (7.2 mo vs 3.5 mo) and OS (13 mo vs 5.7 mo) compared to patients 
with low HA[80]. This encouraging data led to a larger randomized placebo-controlled 
phase II study (HALO 202) comparing gemcitabine/nab-paclitaxel plus either 
PEGPH20 (PAG arm) or placebo (AG arm). Again, patients with high HA level 
(defined as HA staining of > 50% of tumor surface at any intensity) had improved PFS 
[9.2 mo vs 5.2 mo, hazard ratio (HR), 0.51; 95%CI: 0.26-1.00; P = 0.048] and OS (11.5 mo 
vs 8.5 mo, HR, 0.96; 95%CI: 0.57-1.61) compared to patients with low HA tumors[81]. 
Unfortunately, these promising results failed to be recapitulated in a subsequent larger 
randomized phase III study (HALO 109-301). In this study, only patients with high 
HA tumors were enrolled, and 492 patients were included in intention-to-treat 
analysis. Median OS for PAG vs AG was 11.2 mo vs 11.5 mo (HR, 1.00, 95%CI: 0.80-
1.27; P = 0.97); median PFS was 7.1 vs 7.1 mo (HR, 0.97, 95%CI: 0.75-1.26); confirmed 
ORR was 34% vs 27% (NCT02715804)[82]. In this study, all patients treated with 
PEGH20 were anticoagulated with low molecular weight heparin to prevent venous 
thromboembolism. In another phase Ib/II study (SWOG S1313), PEGPH20 was tested 
in combination with modified FOLFIRINOX vs modified FOLFIRINOX alone for 
treatment naïve PDAC patients. This study had to be halted after interim futility 
analysis showing inferior outcomes in the PEGPH20 group. Median OS and PFS was 
strikingly inferior in the PEGPH20 group with a HR of 2.07 (7.7 mo vs 14.4 mo, 95%CI: 
1.28-3.34, P < 0.01) and 1.74 (4.3 mo vs 6.2 mo, 95%CI: 1.14-2.66, P = 0.01). ORR in 
PEGPH20 group was also lower, although this difference did not reach statistical 
significance (33% vs 45%, P = 0.2) (NCT01959139)[83]. A critical factor leading to the 
poor outcome of PEGPH20 group was the unexpectedly increased gastrointestinal 
toxicity and thromboembolic events, which likely resulted in dose reduction of 
chemotherapy or treatment interruptions[84]. These setbacks led to the cessation of 
further development of PEGPH20 in cancer clinical trials.

ECM-remodeling enzyme lysyl oxidase-like 2
The ECM-remodeling enzyme lysyl oxidase-like 2 (LOXL2) is a secreted enzyme that 
maintains the stromal microenvironment in PDAC. Preclinical data identified LOXL2 
to be upregulated in cell lines with high invasive potential, and furthermore in human 
tissue, elevated LOXL2 expression correlates with greater depth of tumor invasion, 
lymph node involvement, and inferior OS[85]. Simtuzumab, an immunoglobulin G4 
monoclonal antibody against LOXL2, was studied in a phase II randomized double-
blind placebo-controlled study in combination with gemcitabine in metastatic PDAC 
patients (NCT01472198). The 240 patients were divided into three groups and received 
simtuzumab 700 mg, simtuzumab 200 mg or placebo along with gemcitabine. Unfortu-
nately, despite encouraging preclinical and correlative clinical data, when 
prospectively evaluated, the addition of simtuzumab to gemcitabine did not prolong 
OS in either cohort of patients with metastatic PDAC compared to gemcitabine 
alone[86].

Integrins
Integrins are cell surface receptors that mediate surface adhesion of various 
components of ECM including fibronectin, laminin, collagen and fibrinogen[87]. They 
play an important role in tumor angiogenesis and lymphangiogenesis, and hence are 
attractive therapeutic targets[88]. Cilengitide is a low molecular weight anti-
angiogenic molecule that acts by inhibiting the integrin surface receptors of 
endothelial cells[89]. A randomized multi-center phase II trial enrolled patients with 
unresectable PDAC and treated them with cilengitide and gemcitabine vs gemcitabine 
alone. There were no signs of efficacy, including a median OS of 6.7 mo for those 
receiving cilengitide and gemcitabine vs 7.7 mo for those receiving gemcitabine alone 
(ISRCTN13413322)[90].

Drugs targeting MMPs
The MMPs are proteolytic enzymes that play an important role in remodeling of ECM 
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proteins and modifying the tumor stroma in favor of tumor proliferation, invasion and 
metastasis. MMP inhibitors have been evaluated in multiple solid tumors based on 
their fundamental role in modulating tumor stroma, with encouraging preclinical 
data[91]. However, clinical outcomes have been disappointing in PDAC. Specifically, 
the MMP inhibitors marimastat and BAY12-9566 were studied in comparison to 
gemcitabine as first line therapy in advanced PDAC patients. These studies both 
demonstrated superior outcomes with gemcitabine compared to the MMP 
inhibitors[92,93].

LESSONS AND PROSPECTS
The histologic predominance and tumor-modulating role of stroma continues to 
propel preclinical and clinical research into stromal-targeting strategies for PDAC 
(Figure 1). However, clinical success remains limited (Table 1). Until the present time, 
clinical progress in PDAC has been the result of increasingly aggressive combination 
chemotherapies, demonstrating that targeting PDAC cells with cytotoxic agents 
remains a viable strategy, although not ideal, as it is no longer clinically feasible to add 
further cytotoxic agents to current regimens considering treatment-limiting toxicity. 
For this reason, stroma-targeting approaches are gaining significant attention. The 
excitement surrounding stromal targeting is well deserved, given that in preclinical 
models these approaches permit effective immunotherapy and durable tumor control. 
As described above, these mechanisms include re-activating T cell and myeloid 
compartments with or without directly altering the physical immunosuppressive 
stroma. In contrast to many other solid tumors, clinical efficacy has not yet been 
realized in PDAC. Studies to date have taught us that PDAC is a very unique tumor 
type, such that findings in other solid tumors cannot be extrapolated to PDAC. Thus, a 
more in depth understanding of the different cellular and acellular components of the 
pancreatic stroma is needed, in order for subsets of cellular or acellular components to 
be targeted. We have learned that oversimplified preclinical models, especially the 
widely used GEMM such as KPC mice, which consists of merely two mutations (KRAS 
and TP53), are clearly inadequate in PDAC, with findings that do not faithfully 
translate to patients.

Numerous challenges remain ahead in pancreatic cancer. In the design of future 
clinical trials, several factors should be taken into consideration. First, the robustness 
of preclinical data needs to be evaluated carefully before proceeding into the clinical 
setting. The most pertinent questions to ask are, what type of models were used 
(patient-derived xenograft, organoid, GEMM)? How many different models were 
studied to confirm results? How predictive is the current model, in light of prior 
investigations? What endpoints were considered as significant and meaningful anti-
tumor activities (survival, tumor shrinkage)? How was suppressed tumor growth or 
tumor shrinkage in the animal models defined? Was any synergistic effect seen 
between the agent of interest and cytotoxic agents? How dramatic is the effect that was 
seen preclinically? Given that the effect seen in patients is nearly always more modest 
than that seen in preclinical studies, only those combinations with profound 
preclinical efficacy, rather than those that meet statistically significant P values, should 
be advanced into the clinic. Despite all of these considerations, the apparent discrep-
ancies between preclinical and clinical success in PDAC research should remind us of 
the fact that none of the current experimental models are by themselves adequate. 
Multiple models, both human and mouse-based, must be tested, and ultimately better 
preclinical models need to be developed.

The phase I trial is a great opportunity for pharmacokinetic and pharmacodynamic 
(PD) investigation; however, a recent trend has arisen that shifts the focus of the phase 
I trial to identifying an early efficacy signal, such that subsequent investigations can 
directly move into the phase III setting. Tissue biopsy collection is essential for PDAC 
trials for two important reasons. First, rigorous collection of tissues or surrogate 
biospecimens for the purpose of in-human verification of PD target effects is critical. 
This will verify in vivo on-target activity of the agent being evaluated, which is 
necessary to confirm relative dose sufficiency and appropriate frame treatment 
failures. Second, tissue collection will allow an initial assessment of in vivo 
mechanisms of resistance and correlative analyses. Finally, every effort should be 
made to enroll PDAC patients in appropriate clinical trials to allow patient access to 
the most advanced therapeutics, optimizing their outcome to the greatest extent 
possible. Recent failed clinical trials based on impressive preclinical data have 
provided us with an undesired but valuable opportunity to reexamine the challenges 
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Table 1 Summary of stromal-targeting clinical trials in pancreatic cancer

Drug Mechanism of action Backbone therapy Outcome
Targeting stroma-promoting pathways in PDAC cells

Saridegib (IPI-926) SHH pathway inhibitor Gemcitabine; mFOLFIRINOX No improvement in OS or PFS (NCT01130142); 
No improvement in OS or PFS (NCT01383538)

Vismodegib SHH pathway inhibitor Gemcitabine; Gemcitabine + nab-paclitaxel No improvement in OS or PFS (NCT01064622); 
No improvement in OS or PFS (NCT01088815)

Sonidegib SHH pathway inhibitor 
(SMO receptor antagonist)

Gemcitabine; Gemcitabine + nab-Paclitaxel No improvement in OS or PFS (NCT01487785); 
No improvement in OS or PFS (NCT02358161)

Galunisertib TGF-β receptor inhibitor Gemcitabine; Gemcitabine + Durvalumab Ongoing trial (NCT01373164); Ongoing trial 
(NCT02734160)

Losartan TGF-β ligand inhibitor FOLFRINOX; Nivolumab + FOLFRINOX Ongoing trial (NCT01821729); Ongoing trial 
(NCT03563248)

Defactinib Focal Adhesion Kinase 
inhibitor

Gemcitabine + Pembrolizumab Ongoing trial (NCT02546531)

Anakinra IL-1 receptor inhibitor GnP + Cisplatin Ongoing trial (NCT02550327)

Targeting stroma-promoting pathways in CAFs

Pamrevlumab Antibody against CTGF Gemcitabine + nab-paclitaxel Ongoing trial (NCT03941093)

Paricalcitol Vitamin D agonist; 
Inactivation of PSC

GnP + Cisplatin; GnP + Hydroxychloroquine; 
5FU/Leucovorin/liposomal Irinotecan; 
Pembrolizumab (2nd line)

Ongoing trial (NCT04054362); Ongoing trial 
(NCT04524702); Ongoing trial (NCT03883919); 
Ongoing trial (NCT03331562)

ATRA Inactivation of PSC Gemcitabine + nab-paclitaxel Ongoing trial (NCT03307148)

Targeting ECM

PEGPH20 Hyaluronan degradation Gemcitabine + nab-paclitaxel; mFOLFIRINOX No improvement in OS or PFS (NCT02715804); 
Poor OS due to poor tolerance (NCT01959139)

Simtuzumab Antibody against LOXL2 Gemcitabine No improvement in OS (NCT01472198)

Cilengitide Integrin inhibitor Gemcitabine No improvement in OS (ISRCTN13413322)

Marimastat MMP inhibitor Gemcitabine No improvement in OS

Bay-12-9566 MMP inhibitor Gemcitabine No improvement in OS

Others

Halofunginone PSC/CAF and SMAD2,3 
inhibitor

- Positive pre-clinical outcomes

Pirfenidone Cell cycle inhibitor of CAF - Positive pre-clinical outcomes

SHH: Sonic hedgehog; OS: Overall survival; PFS: Progression free survival; SMO: Smoothened; TGF: Transforming growth factor; IL: Interleukin; GnP: 
Gemcitabine plus nab-paclitaxel; CTGF: Connective tissue growth factor; CAF: Cancer-associated fibroblasts; PSC: Pancreatic stellate cell; ECM: 
Extracellular matrix; LOXL2: Lysyl oxidase-like 2; MMP: Matrix metalloproteinases.

of PDAC and re-iterate the importance of more rigorously designed and scientifically-
based clinical investigations. In summary, much progress has been made in recent 
years understanding the pancreatic tumor stroma, however, lack of subsequent clinical 
success is evidence that much work remains to be done.

CONCLUSION
The poor response of PDAC to standard cytotoxic regimens has directed attention 
towards the dense fibrous stroma. The stroma is thought to be a fortress that protects 
PDAC cells from immune invasion, leads to chemotherapeutic resistance, and thereby 
provides a sanctuary for these cells to proliferate[16]. There are multiple pre-clinical 
and in vitro studies wherein stroma depletion led to decreased progression and 
improved survival among animal models. Based on these a variety of novel 
approaches have been adapted in human trials for clinical translation[35,37,79]. Some 
of these approaches were initially promising, however, most if not all have led to 
negative outcomes, financial waste and frustration in the clinic. This has made stromal 
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targeting in PDAC a much controversial subject. It has been established time and again 
that indiscriminate targeting and near complete depletion of tumor stroma can cause 
more harm than good[40,94]. However, these attempts have enhanced our 
understanding of the tumor micro-environment. There is increased need for caution 
when targeting these matrix components as we have discovered cellular and acellular 
components of the stroma that in fact restrain tumor growth and progression[95].

A better understanding of plasticity of the stroma will lead to development of 
therapeutics that can accurately modulate the tumor micro-environment in favor of 
tumor suppression. The discovery of heterogeneity among CAF and their paradoxical 
role in tumor growth further delineates the importance of development of targeted 
therapies that downregulate subsets of CAF (such as iCAF or possibly apCAF) by 
selectively modifying the stroma[27,30]. Furthermore, vigorous evaluation of pre-
clinical data, comparison of its effectiveness in multiple models and assessment of 
synergistic response of these novel therapeutics with existing cytotoxic therapy in both 
human and mouse models is vital to avoid detrimental clinical outcomes. There is a 
need for development of more standardized pre-clinical models and critical analysis of 
the data in relation to tumor response in these models before we can translate 
preclinical findings into clinical success. Such agents once developed may synergist-
ically improve the efficacy of currently available cytotoxic and immune modulating 
therapies.
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