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Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction 
of insulin-producing β-cells of the pancreatic islets by autoreactive T cells, leading 
to high blood glucose levels and severe long-term complications. The typical 
treatment indicated in T1D is exogenous insulin administration, which controls 
glucose levels; however, it does not stop the autoimmune process. Various 
strategies have been implemented aimed at stopping β-cell destruction, such as 
cellular therapy. Dendritic cells (DCs) as an alternative in cellular therapy have 
gained great interest for autoimmune disease therapy due to their plasticity to 
acquire immunoregulatory properties both in vivo and in vitro, performing 
functions such as anti-inflammatory cytokine secretion and suppression of autore-
active lymphocytes, which are dependent of their tolerogenic phenotype, 
displayed by features such as semimature phenotype, low surface expression of 
stimulatory molecules to prime T cells, as well as the elevated expression of 
inhibitory markers. DCs may be obtained and propagated easily in optimal 
amounts from peripheral blood or bone marrow precursors, such as monocytes or 
hematopoietic stem cells, respectively; therefore, various protocols have been 
established for tolerogenic (tol)DCs manufacturing for therapeutic research in the 
treatment of T1D. In this review, we address the current advances in the use of 
tolDCs for T1D therapy, encompassing protocols for their manufacturing, the data 
obtained from preclinical studies carried out, and the status of clinical research 
evaluating the safety, feasibility, and effectiveness of tolDCs.

Key Words: Type 1 diabetes; Dendritic cells; Autoimmunity; Immune tolerance; Cell 
therapy; Immunotherapy.
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Core Tip: Autoimmunity in type 1 diabetes (T1D) is severe and leads to pancreatic 
dysfunction; therefore, therapies that can lessen this process are required. Cell therapy 
with tolerogenic dendritic cells (tolDCs) is a promising strategy. Various protocols 
have been implemented for tolDC generation, using stimuli such as cytokines, growth 
factors, and drugs. These cells are also subjected to treatments with antisense oligonuc-
leotides, liposomes, toll-like receptor ligands, and peptides of the pancreatic islets, for 
optimization as T1D immunotherapy. Preclinical and clinical trials have demonstrated 
effectiveness of tolDC-based therapy. This review aims to give a detailed 
understanding of current advances in tolDC-based T1D treatment.
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INTRODUCTION
Type 1 diabetes (T1D) is an autoimmune disease characterized by the dysfunction and 
destruction of insulin-producing β-cells in the pancreatic islets of Langerhans[1,2]. 
Genetic susceptibility contributes to the loss tolerance of β-cells antigens, such as 
insulin, glutamic acid decarboxylase 65 (GAD65), insulinoma-associated-2 autoanti-
bodies, and ZnT8 by autoreactive CD4+ and CD8+ T cells, leading to islet destruction, 
insulin deficiency, and elevated blood glucose levels[3-7].

Some current therapeutic strategies for T1D treatment include the exogenous insulin 
replacement therapy and the use of immunosuppressive drugs, leading to the 
amelioration of several aspects inside the pathology, but not the causal factors[8], as 
well as other different conditions[9]. Furthermore, serious side effects, like chronic 
infections or malignant transformation, may be driven by the use of immunosup-
pressive drugs. Therefore, alternative therapeutic strategies are necessary to reach the 
maintenance, restoration, or induction of autoantigen-specific immunological 
tolerance. In this line, cellular immunotherapy is emerging as a promising approach 
for the treatment of a T1D, inside which the use of tolerogenic dendritic cells (tolDCs) 
has attracted special attention[10].

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) specialized in 
the initiation of both immunogenic and tolerogenic response[11]. For immunogenic 
activities, DCs mature in response to inflammatory stimuli. During this maturation 
process, DCs markedly increase the expression of major histocompatibility complex 
(MHC)-peptide complexes and costimulatory molecules, secrete a wide variety of pro-
inflammatory [tumor necrosis factor alpha (TNF-α), interleukin (IL)-1α, and IL-6] and 
immunomodulatory [interferon (IFN)-α, -β and -γ, and IL-12] cytokines, augmenting 
their ability to prime T cells[12,13]. On the other hand, for tolerogenic functions, both 
in central and peripheral tolerance[13], DCs acquire tolerogenic properties, named as 
“tolerogenic DCs or tolDC” with the capacity to regulate potential harmful adaptive 
responses[14,15]. Such tolerogenic properties result from their low capability to 
stimulate T cells, their high secretion of immunoregulatory factors such as anti-inflam-
matory cytokines [IL-10 and transforming growth factor (TGF) -β], indolamine 2,3-
dioxygenase, and the expression of surface inhibitors like programmed death-ligand 1 
(PD-L1)[15-17].

In addition, T1D-associated genetic factors are expressed in DCs affecting their 
tolerogenic properties in vivo[18], and the hyperglycemic state, as well as the control 
degree of patients, may affect the optimal regulatory functions of tolDCs[19]; by this 
reason, the immunoregulatory characteristics of tolDCs have made them potential 
tools for therapeutic research for T1D[20]. In this line, several protocols have har-
nessed DC plasticity to respond to external immunomodulatory agents modifying 
their phenotype, cytokine profile, and stimulatory ability, with the aim of developing 
manufacturing of tolDCs as a method to control T cell-mediated immunopathologic 
processes occurring in T1D and, simultaneously, as a replacement mechanism that 
might lead to the restoration of innate tolerance control. However, owing to several 
aspects concerning the efficacy, safety, and feasibility, essentially about the per-

https://www.wjgnet.com/1948-9358/full/v12/i5/603.htm
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formance of the protocols to obtain tolDC with stable tolerogenic phenotype, the 
therapeutic use of tolDCs requires further analysis. This review approaches advances 
in the investigation of protocols for tolDC manufacturing, as well as the underlying 
tolerogenic mechanisms described from their pre-clinical and clinical use in T1D.

STRATEGIES FOR TOLDCS MANUFACTURING: ALTERNATIVELY AND 
EX VIVO GENERATED
DCs endowed with tolerogenic properties have been widely characterized for 
presenting a semimature state accompanied with high antigen uptake ability, a 
reduced antigen presentation capability owing to an attenuated antigen processing, 
and a reduced expression of MHC-II/MHC-I and costimulatory molecules, which in 
turn limits their competence to stimulate naïve or effector/memory T cells. Addi-
tionally, tolDCs produce reduced o null levels of pro-inflammatory cytokines such as 
IL-12p70; in contrast, they secrete a high level of anti-inflammatory cytokine like IL-
10[21]. Nevertheless, the expression of some markers may be variable depending on 
the protocols used for tolDC generation. Concerning their functionality, tolDCs avoid 
the activation of autoreactive T cells by inducing various tolerance mechanisms, such 
as apoptosis, skewing phenotype, anergy, and expansion or induction of regulatory T 
cells (Tregs)[13,21]; a general view of tolerogenic features of tolDCs is shown in 
Figure 1.

Several protocols have been established for the differentiation and propagation of 
tolDCs. In humans, tolDCs are generated from peripheral blood monocytes (altern-
atively generated tolDC) and in murine models from bone marrow progenitors (ex vivo 
generated tolDC)[22,23]. The manufacturing of tolDC is carried out by exposing the 
cells to growth factors like granulocyte-macrophage colony-stimulating factor (GM-
CSF) and cytokines like IL-4, which induce differentiation to immature DC, and the 
simultaneous use of immunomodulatory agents such as anti-inflammatory cytokines 
(IL-10 and/or TGF-β) or pharmacological agents (dexamethasone, rapamy-cin, and 
vitamin D3) that allow obtainment of tolerogenic properties[24-27] (Table 1 and 
Figure 2).

At first, typical protocols for alternative and ex vivo tolDC generation are carried out 
in the presence of GM-CSF alone or plus IL-4 (GM-CSF/IL-4). GM-CSF is important in 
the functional regulation of DCs; studies in a murine model revealed that generation of 
bone marrow-derived DCs with low concentrations of GM-CSF possess an immature 
phenotype, resistant to maturation and restore T cell tolerance in vivo and in vitro[28]. 
It has been reported that GM-CSF provides protection against diabetes in non-obese 
diabetic (NOD) mice. DCs of these GM-CSF-protected mice express low levels of 
MHC-II, CD80, and CD86, produce IL-10, and are less effective in stimulating 
diabetogenic CD8+ T cells[29]. Additionally, DCs that are treated to express IL-4 can 
delay or prevent the onset of autoimmune diabetes in NOD mice, maintaining stable 
glucose levels for a long time[30]. Strikingly, it has been documented that GM-CSF/IL-
4 combination synergistically improved the regulatory roles of DCs, demonstrating 
optimal prevention of diabetes in NOD mice[22,31].

Besides using GM-CSF/IL-4, tolDCs have been generated in vitro by adding 
immunomodulatory agents during the process of differentiation. Our research group 
demonstrated that tolDC inducing antigen-specific tolerance may be generated when 
they are alternatively differentiated in the presence of cytokines such as IL-10/TGF-β1 
together, displaying enhanced efficiency to generate anergy and Tregs[24]. These 
tolDC displayed lower expression of CD40, enhanced endocytic ability, increased 
secretion of IL-10 and prostaglandin E, and lowered secretion of IL-12 and IL-23. On 
the other hand, tolDCs have also been generated by only using a suppressive 
modulator like IL-10[24,32] or TGF-β[33]; such cells show increased secretion of IL-10 
and IL-6, reduced IL-12p70 production, and a semi-mature phenotype demonstrated 
by intermediate expression of CD80, CD86, CD40, CD83, and MCH-II. Another 
protocol for tolDC generation is GM-CSF/IL-10. TolDC obtained by this route 
modulate the autoimmunity in a specific form when they are differentiated in the 
presence of autologous serum[34]. It has also been demonstrated that tolDC (GM-
CSF/IL-10) in animal models of T1D suppress insulitis and spontaneous diabetes in 
NOD mice. These results suggest that IL-10-treated DC acquire tolerogenic character-
istics and induce tolerance in pancreatic islets in a non-antigen-specific way[35]. 
Likewise, DCs induced by TGF-β display tolerogenic phenotype and func-tions. The 
addition of these TGF-β-treated tolDC to grafted islets led to graft survival in 
autoimmune diabetic recipient mice[33].
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Table 1 Tolerogenic dendritic cells manufacturing for type 1 diabetes therapy

Protocol Treatment DC phenotype Therapeutic effects in T1D Ref.

Apoptotic bodies-
loaded

↓ Costimulatory molecules (CD40, 
CD86); ↓ IL-6; ↓ TNF-α

Reduces disease incidence in NOD mice. 
Reduces insulitis

Marin-Gallen 
et al[62], 2010

GM-CSF

Liposomes-loaded ↑ TIM4, CD36; ↓ MHC-II; ↓ 
Costimulatory molecules (CD40, 
CD86); ↑ CCR7, CCR2; ↑ DC-SING; 
↓ IL-6; ↑ Anti-inflammatory 
cytokines (IL-10, TGF-β1)

Decreases CD8+ T cell proliferation. Reduces 
disease incidence in NOD mice. Reduces 
insulitis

Pujol-Autonell 
et al[64], 2015

Machen et al[50], 
2004

Di Caro et al[51], 
2014

Di Caro et al[52], 
2012

Phillips et al[53], 
2008

Giannoukakis et al
[54], 2011

NIH[68], 2007

Antisense 
oligonucleotides

↓ Costimulatory molecules (CD40, 
CD80, CD86); ↓ NO; ↓ TNF-α, IL-
12p70

Prevents diabetes in NOD mice. Reduces 
insulitis. Promotes Tregs. Increases B cells. 
Suppresses T cells proliferation: 
Clinicaltrials.gov identifier: NCT00445913; 
Clinicaltrials.gov identifier: NCT02354911

NIH[69], 2015

Nikolic et al[70], 
2020

Antigen-loaded: 
Proinsulin

Tolerogenic phenotype (not 
specifically described)

Delays or halts progressive destruction of β-cell 
and loss function. -Clinicaltrials.gov identifier: 
NCT04590872

FACT[71]

Rodriguez-
Fernandez 
et al[61], 2019

Liposomes-loaded ↓ Costimulatory molecules (CD40, 
CD86); ↑ PDL1 expression; ↑ VEGF 
secretion

Arrests autoimmunity in the model of 
experimental diabetes

Rodriguez-
Fernandez 
et al[63], 2018

GM-CSF/IL-4

TLR´s ligand: 1Z1 ↑ PD-L1; ↑ IRAK-M; Minimum 
increases of MHC-II, CD40, CD80, 
CD83, CD86

Suppresses T cell activation and proliferation. 
Delays insulitis in NOD mice

Kim et al[67], 2012

Haase et al[34], 
2005

GM-CSF/IL-10 ↓ Costimulatory molecules; ↓ IL-12, 
IL-23, IL-6; ↑ IL-10

Reduces insulitis. Prevents spontaneous 
diabetes in murine models. Induces Tregs. 
Induces hyporesponsiveness of T cells. Inhibits 
T cells proliferation Tai et al[35], 2011

Torres-Aguilar 
et al[24], 2010

Boks et al[32], 2012

GM-CSF/IL-4 + IL-10 
or TGF-β

Intermediate expression of MHC-
II, CD40, CD80, CD86, CD83; ↓ IL-
12p70, IL-23, TNF-α; ↑ IL-10; ↑ IL-6; 
↑ PD-L1

Decreases T cells infiltration. Reduces T cells 
proliferation. Induces Tregs. Prolongs the 
survival of syngeneic Islet graft in NOD mice

Thomas et al[33], 
2013

Torres-Aguilar et 
al[44], 2010

GM-CSF/IL-4 + IL-
10/TGF-β

Antigen-loaded: 
Insulin; GAD65

↑ CD1a; ↓ Costimulatory molecules 
(CD40, CD86); ↓ CD83; ↓ MHC-II; ↓ 
IL-12; ↓ IL-23; ↑ PGE

Suppresses effector/memory T cells. Induces T 
cells anergy. Induces Tregs. Induces IL-10 
production by T cells. Suppresses T cells 
proliferation. Induces hyporesponsiveness of T 
cells

Segovia-Gamboa 
et al[58], 2014

Suwandi et al[55], 
2020

Antigen-loaded: -
Proinsulin

↓ MHC-II; ↓ IFN-γ; ↓ CD86; ↑ IL-10; 
↑ PD-L1

Controls autoimmunity. Induces Tregs. Inhibits 
effector T cells. Eliminates CD8+ T cells

Gibson et al[56], 
2015

Phillips et al[20], 
2017

GM-CSF/IL-4 + 
Vitamin 
D/Dexamethasone

-GAD65 ↓ Costimulatory molecules (CD40, 
CD86); ↓ CD83; ↓ MHC-II; ↑ CD14; 
↑ TLR-2; ↑ PD-L1; ↑ IL-10; ↓ IL-6, 
TNF-, IL-23, IL-12p70

Decreases Th1/Th17 responses. Suppresses 
antigen-specific T cell activation and 
proliferation. Prevents onset diabetes in NOD-
SCID mice. Decreases IFN-γ production by T 
cells

Funda et al[57], 
2018

Boks et al[32], 2012

Navarro-Barriuso 

GM-CSF/IL-4 + 
Rapamycin

↓ Costimulatory molecules (CD40, 
CD80); ↓ IL-6, IL-23; ↑ PD-L1

Induces Tregs. Inhibits T cell proliferation. 
Reduces Th17 cells
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et al[39], 2018

T1D: Type 1 diabetes; IL: Interleukin; TNF-α: Tumor necrosis factor alpha; NOD: Non-obese diabetic; GM-CSF: Granulocyte-macrophage colony-
stimulating factor; MHC: Major histocompatibility complex; TGF-β1: Transforming growth factor-β1; VEGF: Vascular endothelial-derived growth factor; 
TLR: Toll-like receptor; PD-L1: Programmed death-ligand 1; IRAK-M: IL-1 receptor-associated kinase M; PGE: Prostaglandin E; IFN-γ: Interferon-γ; DC: 
Dendritic cell; Treg: Regulatory T cell; GAD65: Glutamic acid decarboxylase 65.

Figure 1 Phenotypic and functional hallmarks describing the immunobiology of the tolerogenic state of dendritic cells. Tolerogenic dendritic 
cells (tolDCs) display a semimature state with high antigen uptake capability and bear low/intermediate surface levels of factors essential for T cell priming. In 
contrast, tolDCs bear high surface levels of inhibitory markers, allowing them to inhibit autoreactive T cells. Further, tolDCs display reduced secretion of 
inflammatory/immunomodulatory agents accompanied by the high secretion of anti-inflammatory/suppressive modulators. All those features are essential for inducing 
specific tolerance for self, microbiome, and environmental derived antigens by mechanisms such as anergy, deletion, phenotype skewing, and/or expansion of 
regulatory T cells. Additionally, tolDCs display optimal migratory capability, which has been documented to be essential to inducing periphery tolerance in vivo. HLA: 
Human leukocyte antigen; IFN: Interferon; IL: Interleukin; TGF: Transforming growth factor; tolDC: Tolerogenic dendritic cells; TNF: Tumor necrosis factor; MHC: 
Major histocompatibility complex; PD-L1: Programmed death-ligand 1.

Additionally, one of the major drugs used to induce tolDC differentiation in vitro is 
the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3. These tolDC 
display different morphological features than immunogenic DCs, showing lower 
expression of costimulatory molecules and high CD11c and DC-SIGN expression, 
confirming their semi-mature phenotype, with an increased expression of IL-10 and 
inhibitory molecules like PD-L1[36-39]. Vitamin D3 and dexamethasone combination 
generate tolDC characterized by a low expression of MHC-II, the costimulatory 
molecules CD40 and CD86, and the maturation marker CD83, as well as low levels of 
IL-12p70[40]. Nevertheless, a systematic comparative analysis of tolDC generated with 
vitamin D3, IL-10, dexamethasone, TGF-β, or rapamycin showed that IL-10-generated 
tolDCs are optimal for functional Treg induction, which display strong suppression 
activity[32]. Likewise, several agents of different nature have been used for tolDC 
generation; such agents encompass tissue-derived factors, cytokines, some pathogen-
derived antigens, and pharmacological molecules[41,42].

One significant aspect taking special attention is the notion that tolDCs might not be 
advisable for clinical research, because the in vivo permanence of their phenotype and 
tolerogenic functions might not be guaranteed, especially when they reach tissues with 
chronic inflammation in conditions such as T1D[43]. In this line, several investigations 
have addressed protocols that allow obtaining functionally stable tolDC to keep their 
regulatory properties under pro-inflammatory environments. These protocols include 
addition of maturation stimuli, such as lipopolysaccharide, TNF-α, prostaglandin E2, 
CD40-L, or IL-6 between others[43-45], during or after the tolerogenic stimuli. 
Although the rising idea about the maturation state is not necessarily a fully distin-
guishing feature of immunogenic activity on DCs, a mature state is not opposed to 
their tolerogenic activity either[46]. Besides the stable tolerogenic phenotype, a mature 
state of tolDC may optimize some features for optimal regulatory mechanisms in vivo, 
such as their migratory capability, which is required to promote T cells into regulatory 
control. Moreover, such migratory capability has been considered as a pivotal 
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Figure 2 Tolerogenic dendritic cells in type 1 diabetes therapy: manufacturing and tolerogenic mechanisms described in preclinical and 
clinical trials. A: Tolerogenic dendritic cells (tolDCs) are alternatively generated from peripheral blood monocytes, or bone marrow precursors, which are subjected 
in culture with sequentially stimulation processes. Immature DC differentiation is firstly generated with growth factors, which in turn, owing to their plasticity, are 
subjected to tolerogenic stimulation with immunomodulatory agents to obtain tolDCs. Besides, some protocols perform the manufacturing with additional maturation 
stimuli, such as lipopolysaccharide or tumor necrosis factor-α previous to or after the tolerogenic stimulus to obtain stable tolDCs; B: According to their regulatory 
mechanism, tolDCs may induce an increased frequency of interleukin (IL)-10-expressing T cells and expand the antigen-specific regulatory T cell population, which 
show optimal suppressive activity; further, tolDCs reduce the activation and proliferation of autoreactive naïve and memory CD4+ and CD8+ T cells, otherwise 
becoming anergic. Additionally, the regulatory roles of tolDCs also reach B cells, since a high level of regulatory B cells expressing IL-10 are expanded by tolDCs, 
which are associated to a protective role in type 1 diabetes, being the only described immunoregulatory mechanism obtained from a clinical trial. BMDC: Bone 
marrow-derived dendritic cell; GM-CSF: Granulocyte-macrophage colony-stimulating factor; IFN: Interferon; PGE2: Prostaglandin E2; PB: Peripheral blood; IL: 
Interleukin; tolDC: Tolerogenic dendritic cell; TGF: Transforming growth factor; LPS: Lipopolysaccharide.

tolerogenic feature of DCs[32,45].

Preclinical assays: In vitro and in vivo studies evaluating the promising tolDC 
application for T1D therapy
Several studies have revealed a diversity of regulatory mechanisms employed by 
tolDCs both in vitro and in animal models. Such mechanisms differ according to the 
type of generated tolDC. Hence, this evidence has prompted their use for further 
clinical research (Figure 2).

According to in vitro analysis, IL-10-generated tolDCs have been documented to be 
optimal to induce Tregs with strong suppressive activity[32,45]. Such tolDCs are 
resistant to inflammatory conditions and exhibit strong migratory capacity toward the 
secondary lymphoid organ chemokine CCL21, allowing an optimal migratory 
capability to induce T cell regulatory actions. In line with their regulatory activity on 
autoreactive T cells, ex vivo 1,25-dihydroxyvitamin D3-generated tolDCs derived from 
diabetes-prone (NOD) mice decrease the proliferation and activation of autoreactive 
CD4+ T cells in vitro. Further, these tolDCs are optimal to induce increased IL-10 
expression in T cells and may expand the CD25+ Foxp3+ T cell population[47]. Re-
garding CD8+ T cells’ activity as an independent risk factor governing the detrimental 
destruction of insulin-producing β-cells by their cytotoxic role[48], vitamin 
D3/dexamethasone-modulated DCs (Combi-DCs) loaded with human leukocyte 
antigen class I epitopes were described with the capability to impede priming of 
autoreactive naïve CD8+ T cells and to reduce memory CD8+ T cells[36].

Other studies have displayed the effective regulatory role of tolDCs on T cells, but 
data illustrating further tolerogenic mechanisms are scarce. Additionally, some studies 
have shown that inhibitory roles of tolDC are not limited to T cells, since such effects 
may even reach B cells by increasing their frequency. Ex vivo generated tolDCs appear 
to be capable of inducing the expansion of regulatory B cells, displaying an IL-10-
dependent suppressive effect on T cells through the proliferation of preexisting IL-10-
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expressing B cells as well as by differentiation of their precursors. This mechanism 
performed by tolDCs is mediated in a retinoic acid-dependent manner, favoring the 
FoxP3+ Treg differentiation[49]. These findings describe a novel mechanism of tolDCs 
exerting their regulatory mechanism on other cellular entities different than Tregs.

Regarding the in vivo analysis, the NOD mouse model is a well-established 
approach extensively used to investigate several aspects of the molecular and cellular 
mechanisms underlying T1D as well as to evaluate therapeutic agents. TolDC have 
been shown to prevent and reverse T1D in the NOD mouse model. Ex vivo generated 
tolDCs with impaired costimulatory capability, delay or revert new-onset hyper-
glycemia for the long-term, increasing the expansion of Tregs[50,51]. Additionally, an 
increased number of regulatory B cells (Breg) expressing higher levels of IL-10 has 
been obtained from NOD mice. Such Bregs resulted from the conversion of precursor 
B cells into IL-10-expressing cells, being, in this way, involved in the mechanism of 
tolerogenic reversal of T1D by tolDC[51]. Moreover, ex vivo 1,25-dihydroxyvitamin D3-
generated tolDCs transferred into NOD severe combined immunodeficiency mice 
exhibited the capability to dampen autoreactive T cell proliferation in pancreatic 
draining lymph nodes. This action probably might be an effect of the functional 
migratory capability of tolDC, since these tolDCs exhibited optimal homing to the 
pancreas in adult NOD-SCID mice[47].

Nowadays, there is a diversity of preclinical trial protocols for tolDC aimed at T1D 
immunotherapy. During or after differentiation and propagation of tolDC, different 
strategies have been implemented in order to improve the functional capability of 
tolDC. Within those protocols, there is the use of antisense oligonucleotides targeting 
the expression of costimulatory molecules, tolDCs pulsed or loaded with antigens for a 
specific antigen immune response, liposomes or apoptotic bodies, and the use of Toll-
like receptor (TLR) ligands.

Antisense oligonucleotides: TolDCs may be obtained by genetic modification, 
including transference or silencing of selected genes through several approaches, with 
the aim to modulate their maturation. In T1D immunopathogenesis there are active 
DCs favoring the increase of costimulatory molecules to realize immunogenic 
functions; for this reason, a protocol was implemented to negatively regulate their 
expression through ex vivo treatment of immature DCs from NOD mice with a mixture 
of antisense oligonucleotides targeting the CD40, CD80, and CD86 transcripts[50].

The single administration of these tolDCs promotes a higher prevalence of Tregs, 
conferring protection against T1D[50]. These phosphorothioate-modified antisense 
oligonucleotides confer tolerogenic properties to cells and prevent T1D in NOD mice, 
therefore, some research groups proposed developing microspheres "DC populations 
targeting" of the three antisense oligonucleotides, and this broadens the perspective 
towards a possible vaccine of treated tolDCs[52,53]. This method of antisense oligo-
nucleotides has allowed launching of the first phase I study of autologous tolDC 
administration in T1D therapeutics[54].

Antigen-loaded tolDCs: Immunotherapies with tolDCs can be performed with 
antigen-loaded or -unloaded cells; both methods have shown results preventing T1D. 
However, the antigen-loaded methods promise being more feasible, owing to these, 
should specifically inhibit the action of autoreactive T cells, thereby allowing a 
tolerance restoration to self-antigens and avoiding general immunosuppression.

Proinsulin, insulin, and GAD65 are some target autoantigens involved in T1D 
development and, hence, utilized to load tolDCs. Vitamin D3/dexamethasone-
generated and proinsulin-loaded tolDCs induce antigen-specific Tregs with various 
phenotypes in vitro, expressing regulatory markers, such as Lag-3, CD161, and 
inducible co-stimulator, and effectively suppress effector CD8+ and CD4+ T cells[55]. 
Likewise, in a humanized mouse model of proinsulin autoimmunity, the admini-
stration of proinsulin in vitamin D3-generated tolDCs may control the autoimmunity 
via IL-10 production[56]. Controversially, in another study, the authors tested the 
efficacy of vitamin D2/dexamethasone-generated GAD65-loaded tolDCs to prevent 
the adoptive transfer of diabetes by diabetogenic splenocytes to NOD-SCID receptor 
mice. However, in this study the GAD65-loaded tolDCs decrease the protective effect 
against disease in T1D, compared to tolDCs without antigen-loading[57].

The evidence that the metabolic control of T1D individuals affects the functionality 
of tolDCs takes special relevance in tolDC-based strategies. Alternatively generated 
tolDCs modulated with vitamin D2/dexamethasone were loaded with the antigen 
GAD65 from well- and deficient-controlled T1D patients. Results showed that, in both 
groups, tolDCs induced Tregs in vitro. However, only the tolDCs derived from well-
controlled T1D patients decreased the T helper (Th)1/Th17 responses and suppressed 
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the activation of antigen-specific T cells, unlike the tolDCs derived from patients with 
a deficient metabolic control. Additionally, the functionality of these tolDCs was 
evaluated in an adoptive transfer model of NOD-SCID mice, resulting in a delay in the 
onset of the disease[20].

The relevance of the activation state of each T1D patient in the functionality of 
tolDC strategies is strengthened due to the evidence obtained with human cells by our 
research group. Our results showed that alternatively IL-10/TGF-β1-generated tolDCs 
effectively induce insulin-specific tolerance in autologous effector/memory CD4+ T 
cells derived from T1D individuals, without affecting the proliferative response to an 
unrelated antigen. TolDC-stimulated T cells reproducibly displayed a decrease in 
activation molecules and pro-inflammatory cytokines (IL-2, IFN-γ), with high levels of 
the anti-inflammatory cytokine IL-10 and exhibition of an anergic state. Nevertheless, 
the degree of tolerance induction was dependent on the initial T cell activation state of 
each patient[44]. These results agreed with another study with IL-10/TGF-β-gene-
rated, insulin, or GAD65-loaded tolDCs from T1D patients, which similarly showed 
antigen-specific autoreactive cell hypo-responses, lower IL-2 and IFN-γ secretion, and 
higher IL-10 production by T cells[58]. These studies demonstrate the ability of in vitro-
generated tolDCs to induce antigen-specific tolerance in T cells.

Liposomes or apoptotic bodies: Apoptosis is an effective mechanism to induce 
tolerance. The capture of apoptotic bodies by APCs (macrophages and DCs), also 
called efferocytosis, is due to a specific recognition and phagocytosis through 
phosphatidylserine (PS)[59]. In T1D, the increase in apoptotic pancreatic β-cells or 
defects in efferocytosis contributes to the loss of tolerance[60]. Nevertheless, it has 
been shown that DCs from T1D patients may acquire defective apoptotic bodies’ 
clearance. In a child population with T1D, the tolerogenic functionality of DCs derived 
from monocytes was evaluated using liposomes with PS (PS-liposomes), demon-
strating that the DCs of pediatric patients with T1D phagocyte PS-liposomes function 
in a less efficient way than the controls, which inversely correlated with the evolution 
of the disease. However, the tolerogenic profile in DCs was consistent after effero-
cytosis[61].

DCs acquire a tolerogenic phenotype and functionality after ingestion of apoptotic 
β-cells and prevent T1D when transferred to NOD mice, significantly decreasing its 
incidence and correlating positively with insulitis reduction[62]. However, the 
limitation of a large source of apoptotic autologous β-cells for immunotherapeutic 
application is the wide outlook for a biomimicry alternative consisting of PS-liposomes 
containing β-cell autoantigens (insulin). However, owing to the limitation of having a 
large source of apoptotic autologous β-cells for their immunotherapeutic application, 
the need arises to extend the outlook toward a biomimicry alternative consisting of PS-
liposomes containing β-cell autoantigens (insulin). Liposomes that mimic apoptotic β-
cells have been shown to arrest autoimmunity and prevent T1D through the 
generation of tolDCs. These DCs exposed to PS-liposomes decrease the proliferation of 
autologous T cells, deregulate genes associated with antigen presentation, and increase 
tolerogenic genes as well as anti-inflammatory pathways[63]. A similar study establi-
shes that insulin-loaded PS-liposomes also reduce the severity of insulitis and that the 
administration of PS-free liposomes demonstrates the importance of PS in modulating 
the expansion of antigen-specific CD4+ T cells[64]. Immunotherapy based on the use of 
liposomes constitutes a promising strategy for autoimmune diseases, including T1D.

TLR ligand: Hayashi et al[65] proposed an innate immune response modulator 
generated by conjugating a TLR-7 Ligand to six subunits of polyethylene glycol, 
“PEGylated TLR-7 Ligand”, or 1Z1. DCs treated ex vivo with 1Z1 and injected into 
NOD mice delay the appearance of insulitis, suggesting that 1Z1-treated DCs are 
functionally tolerogenic since these cells suppress the proliferation of antigen-specific 
T cells. Besides, these tolDCs do not promote an inflammatory response in vitro or in 
vivo and show an increase of the expression of PD-L1 and IL-1 receptor-associated 
kinase M.

TLR-2 involvement in T1D development has been shown by the late apoptotic β-
cells ability to stimulate APCs through this receptor, contributing to activate diabe-
togenic T cells. Hence, as a T1D therapeutic alternative, TLR-2 blocking or tolerization 
is proposed. TLR-2 tolerization was carried out with a prolonged treatment of the 
agonist (Pam3CSK4). This treatment attenuates T cell activation mediated by DCs[66]. 
Furthermore, the combination of this therapy with the inhibitor (DA-1229) of 
dipeptidyl peptidase 4, which increases the mass of β-cells, can reverse the appearance 
of diabetes in NOD mice[67].
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Perspective obtained from clinical trials with the use of tolDCs for T1D therapy
Clinical trials with good progress, but limitations and barriers: The first tolDC-based 
clinical trial for T1D treatment supports their safety administration (Clinicaltrials.gov 
identifier: NCT00445913)[68]. In this protocol, alternatively generated tolDCs were 
developed with antisense phosphorothioate-modified oligonucleotides targeting the 
transcripts of the costimulatory molecules CD40, CD80, and CD86. Available data 
show that the administration of these tolDCs upregulate the frequency of a B-
lymphocyte subpopulation that was later discovered to possess immunosuppressive 
capability[49,51]. In this study, the procedures, equipment, and facilities comply with 
recommendations and are approved by the Food and Drug Administration (FDA), and 
no toxicity or adverse effects associated with the tolDC therapy were reported. Hence 
with FDA and Institutional Review Board approval, a new phase 2 study was started. 
This clinical trial in phase 2 (Clinicaltrials.gov identifier: NCT02354911)[69], aims to 
assess the capability of these tolDCs to disrupt the autoimmune process leading to β-
cell destruction in individuals with T1D. To evaluate the expected effect, indirect 
studies will be carried out with C-peptide measurement, glycosylated hemoglobin 
A1c, and basal and postprandial glucose. The investigators will mainly evaluate the 
number of potentially tolerogenic/Tregs, B cells, and DCs and also aim to identify 
molecular signatures of these cell populations and correlate them with the clinical 
response. However, the status of this phase 2 clinical trial is unknown. It is worth 
mentioning that it has been reported that these tolDCs generated with antisense 
oligonucleotide induce T cell anergy[40].

On other hand, as have been reviewed in preclinical section, several preclinical 
studies have documented the ability of tolDCs loaded with antigen to induce antigen-
specific tolerance. In this line, the intradermal administration of proinsulin peptide-
pulsed tolDC, showed no signs of systemic immune suppression, no induction of 
allergy to insulin, no interference with insulin therapy, and no accelerated loss in β-cell 
function in patients with the remaining C-peptide level, assuming the tolDC therapy 
appears to be feasible and safe[70]. Yet, this study shows that the residual β-cells’ 
function assessed by C-peptide detection did not change after tolDC administration. 
However, it´s important to highlight that this study was carried out with long-
standing T1D patients, and this aspect get special attention owing to preclinical data 
point out that the efficacy of tolDC to promote optimal tolerance to specific antigen 
might be useful just in certain subsets of T1D patients, since the extent grade of disease 
(metabolic indicator as uncontrolled glycemia, uncompensated patients, activate state 
of T cells), being a barrier to get optimal effectiveness[20,44,51].

It is worth mentioning that the clinical trials described are carried out according to 
the standards for effector immune cells regulated by the foundation for the accre-
ditation of cellular therapy[71].

Perspectives for TID therapy: Despite the existence of data showing optimal 
regulatory properties of tolDC, which might encourage the rising of additional clinical 
trial studies, important aspect must be considered; for instance, given the uncertainty 
of DCs’ plasticity under inflammatory microenvironment prolonged, the road for the 
safe use of tolDC vaccines in T1D patients has been taken into account. In addition, 
owing to the grade of the disease may reflect distinctive efficacy, spotlighting the 
interest in testing patients with a shorter clinical diagnosis, where tolDC might delay 
the progressive autoimmune process.

In line with the aforementioned, one phase 1 study evaluating the use of tolDC as 
immunotherapy vaccine for the treatment of patients with T1D who use insulin and 
don't have any other diabetes-related health complications, is currently driven (Clinic-
altrials.gov identifier: NCT04590872)[72]. Here, the safety and viability of autologous 
tolDCs loaded with proinsulin peptide “C19-A3” (PIpepTolDC) in new-onset T1D 
patients is evaluated, being C19-A3, a pharmaceutical product regulated by FDA. The 
PIpepTolDC vaccine aims to protect β-cells to lead an efficient insulin production to 
control blood glucose levels and reduce T1D-related complications by reducing the 
autoimmune process. The clinical effect in this study is evaluated by measuring levels 
of glucose, C-peptide, and hemoglobin A1c, and the effect on the autoimmune process 
by analyzing changes in autoantibody of pancreatic islets, T cell responsiveness, CD4+ 
T cells producing IFN-γ and IL-10, the number of autoreactive CD8+ T cells, as well as 
the immune phenotype. Thus, as perspective, the further research should encompass 
the viability of tolDC useful according to the clinical status of the disease.
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CONCLUSION
Based on the fact that there is no specific treatment against the autoimmune process 
underlying T1D, which in the long-term may imply disease complications. The use of 
tolDC as alternative immunotherapy arises as a promising approach for T1D therapy. 
tolDCs have been shown to ameliorate the disease, owing to their capability to 
downregulate several immune cells' hyperactivity in a specific manner. Furthermore, 
this particular focus of tolDCs as T1D therapy is also due to the feasibility for their 
obtainment, since several protocols have been established, which have harnessed the 
DC plasticity to respond to external immunomodulatory agents, modifying in this way 
their phenotype, cytokine profile, and stimulatory ability, endowing them with 
immunoregulatory properties. Hence, various preclinical trials have demonstrated 
their effectiveness. Current clinical trials evaluate the safety and efficacy of tolDC 
administration in patients with T1D, continuing to be a viable and promising 
alternative therapy to reduce the autoimmune process of this disease.
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