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Abstract
The sequencing of complete human genome revolutionized the genomic 
medicine. However, the complex interplay of gene-environment-lifestyle and 
influence of non-coding genomic regions on human health remain largely 
unexplored. Genomic medicine has great potential for diagnoses or disease 
prediction, disease prevention and, targeted treatment. However, many of the 
promising tools of genomic medicine are still in their infancy and their application 
may be limited because of the limited knowledge we have that precludes its use in 
many clinical settings. In this review article, we have reviewed the evolution of 
genomic methodologies/tools, their limitations, and scope, for current and future 
clinical application.
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unprecedented research and clinical application which pushed the time boundaries for 
the coronavirus disease 2019 mRNA vaccines. However the path to unleashing the 
potential from genomic tools is far from perfect. A thorough research with international 
collaboration and cooperation is a necessity and the need of the hour.
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INTRODUCTION
Understanding the human genome has come a long way since the initial discovery of 
DNA structure by Watson and Crick in 1953[1]. The genome study and reference used 
to be a very specialized area, but lately with the advent of the messenger based RNA 
vaccine have brought the concept of genetics even to the lay public. In the 1970s, the 
ability to manipulate DNA with recombinant DNA technology increased the horizon. 
Our understanding of medical genetics began with inheritance patterns of single-gene 
diseases. The database of Mendelian Inheritance in Man (MIM) was initiated in the 
early 1960s by McKusick[2]. As of January 5, 2021, 4368 genes were mapped to 
phenotype-causing mutations[3]. However, only a small portion of diseases have a 
monogenic cause. The majority of the common diseases are polygenic, and elucidation 
of their mechanism has remained elusive.

The human genome project, which was completed in 2003, revolutionized the 
understanding of the human genome and served as a turning point to fast forward the 
genomic methodologies. However, the clinical application of findings from these 
genomic studies is still in its infancy. This is largely because we still have not 
understood or made complete sense of the available information. That is, the sequence 
data have been difficult to correlate to functional outcomes, making it difficult to 
understand the genetic basis of diseases and the complex gene-lifestyle-environment 
influences or their interaction. Moreover, most of the initial focus of the research had 
been on coding regions of DNA which comprises approximately 2% of the DNA and 
the knowledge about specific implications of non-coding DNA regions (98% of DNA) 
are largely unknown[4,5].

Remarkably, the human genome and the closest related species chimpanzees differ 
in single nucleotide alterations by a mere 1.23% and in deletions, insertions, and copy 
number variations by 3%[6]. In humans, the genomes of any two individuals are about 
99.9% identical. However, a mere 0.1% variation allows for changes in a massive 
number of nucleotides because the human genome has approximately 30 billion base 
pairs (3.3 × 109)[7].

In this review, we will discuss the evolution in genomic methodology, limitations, 
and their scope for current and future clinical application.

GENOMIC TOOLS AND THEIR EVOLUTION
DNA sequencing
After the initial DNA sequencing method by Maxam and Gilbert[8] in 1977, the chain-
termination DNA sequencing method developed by Sanger et al[9] in 1977 was used 
for the next few decades. It relied on the template DNA strand and had limited 
capacity for sequencing gene panels. Subsequently, with commercial production of 
high throughput technologies or next-generation sequencing (NGS) revolutionized the 
DNA sequencing by 2007[10]. Also called as massively parallel sequencing, NGS does 
parallel sequencing of millions of small DNA fragments. Each DNA fragment is fixed 
at a unique location on the solid support. While the sample of the patient's DNA 
which serves as a template in NGS is amplified and fragmented, the third-generation 
sequencing uses single DNA molecules rather than the amplified DNA as a template 
thus eliminating errors from DNA amplification processes. The NGS can be used for 
whole-genome sequencing, exome sequencing, or targeted gene panels comprising 

https://www.wjgnet.com/2222-0682/full/v11/i5/231.htm
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Table 1 Characteristics of commonly used genomic tools

Tools for 
genomics Principle of use Pros and application Limitation

Genome-wide 
association 
studies (GWAS)

Gene mapping study using DNA microarray to 
identify the association between SNP and specific 
risk alleles that are more prevalent in cases than in 
controls, via linkage disequilibrium

Has potential for population-based 
application. Example — The Severe 
COVID-19 GWAS Group[34] studied 
patients with respiratory failure from 
severe COVID-19 and narrowed down 
the genetic susceptibility locus to a gene 
cluster on chromosome locus 3p21.31. 
They also verified the potential 
involvement of the ABO blood group 
system

Does not establish causality but only 
an association with SNP; Missing 
heritability- cannot explain variance 
in complex traits or genes with a 
small effect size; Does not account for 
epigenetic changes and epistasis 
(gene-gene interaction); GWAS data 
catalog mostly from individuals of 
European descent  which may limit 
application in minority population
[35]

Expression 
quantitative trait 
loci (eQTL) 
analysis

Links SNPs to changes in gene expression by 
measuring the expression of many genes 
simultaneously in microarrays. Helps to narrow 
down to SNPs more likely to impact the disease 
condition

Provides better insight into specific 
causal mechanisms[36]; Liver eQTL — 
useful in pharmacogenomic studies by 
analyzing Epistatic eQTL Interactions
[37]

Limited tissue interrogation will give 
misleading biological interpretations 
about the gene mediating the 
regulatory effect to increase disease 
risk[38]

Exome sequencing: 85% of known disease-causing 
mutations in Mendelian disorders are found in 
exons. Exome sequencing is a useful tool to find the 
causal genes for Mendelian disorders

Reduced cost and limited data to 
interpret; Linkage study design is 
unsuitable for extremely rare and 
sporadic Mendelian disorders for which 
exome sequencing would be more 
practical[39]

Exome sequencing: It can miss 
pathogenic variants in a non-coding 
region. Repetitive regions (e.g., 
pseudogenes) can confound results in 
whole-exome sequencing[41]; 
Potentiate technical biases regarding 
exon capture limiting its use in 
detecting copy-number variants as 
well as in genomic regions where 
capture is less efficient[42]

Whole-genome sequencing: Can sequence every 
nucleotide base in the human genome 
(approximately 3.3 × 109 base pairs)

Whole-genome sequencing: Avoids 
inherent biases of exome capture

Whole-genome sequencing: Too 
much data but little clinical 
knowledge available to interpret; 
Higher cost compared to clinical 
utility

Deep sequencing 
or Next-
generation 
sequencing

Targeted gene panel: Provides information on 
prespecified disease-associated genes

Examples: Rapid whole-genome 
sequencing to investigate extensively 
drug-resistant (XDR) tuberculosis[40]

RNA-seq Uses NGS to analyze RNA expression patterns or 
transcriptome profiling by reverse transcription of 
RNA sample to complementary DNAs (cDNA) and 
PCR amplification

Can be used: to analyze RNA 
expression profile at single cell level or 
quantify gene expression[43]; to obtain 
data on novel transcripts and is not 
limited by availability of reference 
genome data[44]; to identify 
alternatively spliced genes; to detect 
allele-specific gene expression[44]

cDNA synthesis and PCR 
amplification steps can introduce bias 
and errors[44]

Epigenomics involves methods used to identify 
DNA methylation and histone modifications. 
Sodium bisulfite can identify unmethylated 
cytosines due to its ability to convert unmethylated 
cytosines to uracil. However the methylated 
cytosine is resistant to this conversion. 
Methylation-dependent restriction enzymes are 
used for DNA methylation analysis[45]. Chromatin 
immunoprecipitation (ChIP) is used for the 
investigation of histone modifications

Epigenomics

Immunoprecipitation techniques: ChIP on Chip; 
ChIP-Seq. Chromatin is isolated from the sample 
and the DNA involved in DNA protein cross-
linked complex is isolated using antibodies specific 
to the DNA-bound protein. The isolated DNA is 
amplified using PCR and analyzed using gel 
electrophoresis imaging, microarray hybridization 
(ChIP-chip), or direct sequencing with NGS (ChIP-
Seq)[46]

ChIP allows precise mapping of the 
DNA-protein interaction in living cells. 
Cross-linked protein-DNA complex can 
be treated with exonucleases to remove 
cross-linked DNA sequences that are not 
avidly bound to protein of interest. This 
is called ChIP-Exo. This allows mapping 
of in vivo protein occupancy at single 
nucleotide-level resolution[47]

Needs design of antibodies specific to 
DNA-bound protein of interest which 
could be modified histone or 
transcription factors

Northern blot: RNA molecules separated by gel 
electrophoresis by size and subsequently 
hybridized with labeled complementary ssDNA 
and detected using chemic luminescence or 
autoradiography

Northern blot can both quantify the 
amount of RNA and also determine the 
size of mRNA transcript. Can detect 
transcript variant of genes[49]

Northern blot-need radioactive 
probes and has lower sensitivity

Ribonuclease (RNase) protection assay: Differs 
from northern blot by use of antisense RNA probes 

RNase protection assay: It can 
simultaneously detect and quantify 

RNase protection assay: Does not 
provide information on transcript 

Transcriptomics
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called riboprobes multiple mRNA targets in a single RNA 
sample .It has high sensitivity

size[52]

Real-time RT-PCR: cDNA are synthesized by 
reverse transcription from the sample RNA 
identified. The resulting cDNA is amplified by 
using fluorescently labeled oligonucleotide 
primers. Fluorescence intensity is monitored and 
correlated with several PCR cycles

Real-time RT-PCR: Allows quantitative 
genotyping, detection of SNPs and 
allelic variants or genetic variations even 
when mutation is found in very small 
fraction of cells in the sample. Has 
become clinical standard for diagnoses 
in Infectious diseases and it’s role is 
evolving rapidly in cancer diagnostics
[50]

Real-time RT-PCR: The process is 
complex and any errors in choice of 
reagents, primers or probes will affect 
accuracy. There could be risk for 
errors during data analysis and 
reporting. The process is expensive
[53]

In situ hybridization: Tissue specimen is fixed to 
preserve morphology and then treated with 
proteases. A labeled probe is hybridized to the 
sample and detected using chemiluminescence or 
autoradiography[48]

In situ hybridization: Very useful in 
diagnostic application when there is 
limited tissue sample (in embryos and 
biopsy specimen). Several specific 
hybridizations can be done on the same 
sample. Tissue samples can be freeze for 
future use[48]

In situ hybridization: Low diagnostic 
yield when the sample has low DNA 
and RNA copies[48]

Spotted DNA arrays: Measures relative expression 
levels between 2 samples. cDNA probes amplified 
by PCR are spotted on a glass slide and then 
mRNAs are isolated from the samples. The mRNA 
from each sample is labeled with different 
fluorescent dyes. The samples are mixed, co-
hybridized with cDNA probes on glass slides to 
measure relative gene expression

Spotted DNA arrays: The major 
application of DNA array is 
measurement of gene expression levels
[51]

Spotted DNA arrays: DNA array can 
only detect known sequences, that 
were used to construct the array. It 
only gives relative estimate of gene 
expression and not reliable for 
absolute quantification. When the 
genome has multiple related 
sequences then design of array that 
distinguishes these sequences is 
challenging. Difficult to reproduce 
the array[51]

SNP: Single nucleotide polymorphism; NGS: Next-generation sequencing; PCR: Polymerase chain reaction; RT-PCR: Real-time reverse transcription 
polymerase chain reaction; ssDNA: Single stranded DNA.

tens to hundreds of genes.

Single nucleotide polymorphism
Single nucleotide polymorphism (SNP) is the variation in genetic sequence by a single 
nucleotide. It is the most common type of genetic variation in man[11]. It was detected 
in the 1980s using restriction enzymes[12]. With application of the microarray 
technology to SNPs, the scope of SNP in clinical practice has widened, especially in 
oncology. The first SNP array analysis was done in 1998 and the first application of 
SNP array analysis in cancer was done in 2000[13]. SNP array analysis is used to 
determine loss of heterozygosity, allelic imbalance, genomic copy number changes, 
frequency of homozygous chromosome regions, uniparental disomy, DNA 
methylation alterations and linkage analysis of DNA polymorphisms in cancer cells
[13,14].

DNA amplification
Kary Banks Mullis successfully demonstrated polymerase chain reaction (PCR) in 1983
[15]. PCR is a cost-effective method that can amplify a single DNA exponentially[16]. It 
is a rapid, highly specific, and extremely sensitive method. PCR is being used in SNP 
genotyping, detection of rare sequences, insertion-deletion variants, and structural 
variants like copy-number variants.

Linkage and association analysis
Linkage studies have been used for mapping of genes for heritable traits to their 
chromosomal locations. 1st genetic linkage map was done in 1911 by Sturtevant A[17]. 
Parametric linkage analysis is used to map the disease-causing gene for monogenic 
diseases. Here, the logarithm of the odds (LOD) scores and recombination fractions are 
used to map the gene location. Model-free linkage analysis or non-parametric linkage 
analysis is used for complex or polygenic diseases, or when the model of inheritance is 
not known[18]. Linkage analysis of the whole genome can identify large regions of the 
chromosome with evidence of disease containing the gene[19,20], but this large span of 
chromosomes can have hundreds of candidate genes.

Linkage studies have been used for mapping Mendelian traits with high penetrance 
in families and relatives[20]. They are especially useful to identify rare alleles that are 
present in a small number of families[21], for disease genes with weak effects and 
polygenic diseases, linkage disequilibrium association mapping has proved to be more 
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useful. In genome-wide association studies (GWAS), genotyping of hundreds or 
thousands of SNPs is done in cases and control populations and their association with 
heritability is analyzed. A combination of linkage and association methodologies helps 
to identify and characterize the wider range of disease-susceptibility variants[22].

Fluorescence in Situ Hybridization (FISH) was developed in 1987. It is a cytogenetic 
technique which uses fluorescent DNA probes which are designed to label precise 
chromosomal locations. The advantage of FISH over conventional cytogenetic 
metaphase karyotype analysis is lack of cell culture requirement. It can rapidly 
evaluate interphase nuclei in the fresh or paraffin-embedded sample[23]. However, the 
resolution of this technique is only as good as that of karyotype bands. Cloned DNA 
FISH probes of about 100 kb, called bacterial artificial chromosomes, are now 
available. FISH is being utilized more in making clinical diagnosis among Oncology 
due to its simplicity and reliability to evaluate the key biomarkers in various 
malignancies.

Comparative genomic hybridization
Comparative genomic hybridization (CGH) was developed in 1992. CGH can detect 
DNA copy number changes across the entire genome of a patient sample in a single 
experiment. It compares the hybridization signal intensity of a test sample (for 
example tumor sample) against a reference sample along the chromosomes[13].

HAPMAP AND 1000 GENOME PROJECTS HAVE CREATED A CATALOG 
OF SNPS
The HapMap project was started in 2002 to develop a haplotype map of the human 
genome. It can also describe the common patterns of human genetic variation[24]. The 
1000 Genomes Project comprised a total of 26 diverse population set in which whole-
genome sequencing was performed. It also used deep exome sequencing and dense 
microarray genotyping to give a comprehensive description of common human 
genetic variation[25].

TARGETED GENOME EDITING OR GENOME ENGINEERING
It involves modification of the genome at a precise, prespecified locus using 
programmable nucleases. Examples of some of the programmable nucleases include 
zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), 
and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-
associated) system. These programmable nucleases are designed to impart site-specific 
double-strand breaks (dsBs) in chromosomal DNA. The cell is therefore forced to use 
one of the endogenous DNA repair mechanisms — homologous recombination or 
homology-directed repair (HDR) and nonhomologous end-joining (NHEJ). This 
enables targeted genetic modifications during the repair process in the living cells (in 
vivo) (Table 1)[26]. ZFNs and TALENS recognize the target sequence through protein-
DNA interaction. CRISPR-Cas nucleases recognize target sequences through RNA and 
DNA base pairing[26].

In the year 2013, Cong et al[27] and Mali et al[28] showed successful genome editing 
in mammalian cells using the CRISPR system. In the last 5 years, we have seen a leap 
in the research interest (both animal and human) in CRISPR genomic editing.

While genome editing holds promise to correct the defective genome in vivo, 
therapies can also be designed to alter the gene expression without altering the 
genomic code. For example, anti-sense oligonucleotide can be used to alter the splice 
points of pre-mRNA to correct for a defective gene or suppress its expression. 
Examples of drugs which use splice modulation and approved by Food and Drug 
Administration (FDA) are Eteplirsen (exon skipping, approved for Duchenne 
muscular dystrophy) and nusinersen (exon inclusion, approved for spinal muscular 
atrophy)[29].

Table 1 summarizes the commonly used genomic tools, their working principle, 
advantages/applications and limitations (see Table 1). Table 2 summarizes the major 
genome/gene editing tools their working principle, advantages/applications and 
limitations. Table 3 summarizes gene-based therapies that are either FDA approved 
therapies or investigational therapies showing promise.
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Table 2 Characteristics of genome-editing technologies using programmable nucleases

Gene editing Principle of use Advantages or application Limitation

CRISPR-Cas9 
guided gene 
editing: 
(1)NHEJ; and 
(2)HDR

Cas9 enzyme (an endonuclease) cleaves 
ds- DNA at a specific site as determined 
by the specific sequence of the guide 
RNA. Genome editing is done when the 
cell tries to repair the dsB (either via 
NHEJ or HDR)

Has the potential to edit genes in almost any cell type in vivo; Has 
potential in every field, notably infections[54], genetic disease
[55], cancer[56] etc.; CRISPR-Cas9 can also be used for large scale 
loss-of-function gene screen: Catalytically inactive Cas9 (dCas9) 
can be directed by guide RNA, bind to specific genes to 
reversibly suppress or activate gene transcription (by fusion of 
transcription activators or suppressors with dCas9)[57]; 
Epigenetic modulators (e.g., DNA methylase) can also be fused 
with dCas9 to achieve controlled epigenetic modulations. Cas-9 
NHEJ is simpler and efficient; Cas-9 HDR is more precise but 
lower efficiency than NHEJ. The mutant version of the Cas9 
called Cas9 nickase can be used to minimize the risk of off-
targets

The off-target activity of 
RNA-guided 
endonuclease-induced 
mutations[58]. Off-target 
mutations with a 
frequency below 0.5% 
cannot be detected by 
current off-target 
detection techniques[59]

Augmented 
CRISPR-
Cas12a system

Cas12a cuts target ds- DNA. However, 
unlike Cas9, Cas12a subsequently 
becomes activated and causes 
indiscriminate cleavage of ssDNA 
causing collateral damage. SARS-CoV-2 
RNA DETECTR Assay: samples from 
upper airway swabs are processed using 
simultaneous reverse transcription and 
isothermal amplification with loop-
mediated amplification (RT-LAMP). 
Subsequently the Cas12 enzyme is added

CRISPR-Cas12a system can be used to create new drug or cell 
delivery systems and bio-sensing (e.g., to detect methicillin-
resistant Staphylococcus aureus, Ebola virus[60]. Emergency Use 
Authorization (EUA) Only for qualitative detection of nucleic 
acid from the SARS-CoV-2 in upper respiratory specimens[61,62]

Limited research data and 
application. The 
technology is still in its 
infancy

CRISPR-Cas 
13

CRISPR-Cas 13 system can be used via 
SHERLOCK technique for ultra-sensitive 
detection of RNA or DNA from the 
clinical samples

SherlockTM CRISPR SARS-CoV-2 kit: Emergency Use 
Authorization (EUA) qualitative for detection of nucleic acid 
fromSARS-CoV-2 in upper respiratory specimens[63,64]

Prime editors It uses a catalytically impaired Cas9 
which is fused to an engineered reverse 
transcriptase and prime editing guide 
RNA. The guide RNA specifies the target 
site and encodes the desired sequence

Prime editing is associated with fewer off-target edits when 
compared with conventional CRISPR-Cas system[65]. Anzalone 
et al[66] applied prime editing in human cells to correct the 
primary genetic causes of sickle cell disease and Tay-Sachs 
disease. It does not require double-strand breaks or donor DNA 
templates

Research literature on 
application of prime 
editing is limited. Unlike 
conventional CRISPR-Cas 
system prime editing may 
not be able to provide 
large DNA insertions or 
deletions[65]

Zinc finger 
nucleases

Zinc finger nuclease (dimer of zinc finger 
hybrid bound to restriction 
endonuclease) is a programmable 
nuclease that cleaves specific sites in 
DNA. They recognize the target sequence 
through protein-DNA interaction

Potential for plant genome editing for crop improvement[67] Necessity to engineer 
novel proteins for each 
target site: Expensive; 
Difficult to reproduce

TALENS TAL proteins have TAL effector DNA-
binding domain fused to a DNA cleavage 
domain. TALENs create dsBs that require 
repair by NHEJ or HDR

The DNA-binding specificity of TALEs is easier to engineer than 
zinc-fingerProteins[68]

Necessity to engineer 
novel proteins for each 
target site. TALENs are 
large and pose packaging 
challenge in viral delivery 
systems[69]

HDR: Homology-directed repair; NHEJ: Nonhomologous end-joining; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; TALENs: 
Transcription activator-like effector nucleases; dsBs: Double stranded breaks; ssDNA: Single stranded DNA; TAL: Transcription activator-like; 
SHERLOCK: Specific High Sensitivity Enzymatic Reporter UnLOCKing.

DISCUSSION
The newer genomic technology and tools have broadened the scope and pushed the 
time limits for development of new diagnostic kits, preventive strategies like vaccines, 
therapeutic strategies like gene modulation and gene therapy. A lot is yet to be studied 
in terms of the complex interaction of gene-environment-lifestyle-disease. Knowing 
the impact of genomics on disease pathophysiology and response to medications[30]. 
expands the scope of research and clinical application. While genome editing holds 
promise to correct the defective genome in vivo, therapies can also be designed to alter 
the gene expression without altering the genomic code (example exon skipping, or 
inclusion discussed above).

The newer genomic editing tools have showed great potential and promise but they 
need to be studied extensively before clinical application. Also, uniform international 
ethical guidelines and guiding principles need to be established so that these genomic 
technologies are not misused.
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Table 3 Gene based therapies: List of Food and Drug Administration approved therapies and investigational therapies showing 
promise

Therapy or drug Indication Mechanism of action Approval status

Janssen COVID-19 
vaccine

Prevention of 2019 coronavirus 
disease (COVID-19) for 
individuals 18 yr of age and older

Recombinant, humanadenovirus type 26 vector 
which expresses the SARS-CoV-2 “S” antigen 
after entering human cells thus eliciting 
immune response against COVID-19

Emergency use authorization (EUA) on 
February 27, 2021[70]. Pause placed on 
vaccine use on April 13, 2021[71]. FDA lifted 
vaccination pause on April 23, 2021[72]

Pfizer-BioNTech 
COVID-19 Vaccine
[73-75]

Prevention of COVID-19 for 
individuals 16 yr of age and older

modRNA forumated in lipid particles when 
delivered to host cells express SARS-CoV-2 “S” 
antigen, thus eliciting immune response against 
COVID-19

EUA on December 11, 2020

Moderna COVID-19 
vaccine[76-78]

Prevention of COVID-19 for 
individuals 18 yr of age and older

modRNA forumated in lipid particles when 
delivered to host cells express SARS-CoV-2 “S” 
antigen, thus eliciting immune response against 
COVID-19

EUA on December 18, 2020

Lumasiran[79] Primary hyperoxaluria type 1 HAO1-directed small interfering ribonucleic 
acid

Approved in Nov 2020

Viltolarsen[80] Duchenne muscular dystrophy Antisense oligonucleotide directed to exon 53 
skipping

Approved in August 2020

Brexucabtagene 
autoleucel[81]

Relapsed/refractory mantle cell 
lymphoma

Genetically modified autologous CD19 T cells 
directed against CD19 expressing cancer cells

Approved in July 2020

Golodirsen[82] Duchenne muscular dystrophy Antisense oligonucleotide directed Approved in December 2019

Givosiran[83] Acute hepatic porphyria Double-stranded small interfering RNA that 
degrades the ALAS1 mRNA in hepatocytes via 
RNA interference

Approved in November 2019

Onasemnogene 
abeparvovec-xioi[84]

Spinal muscular atrophy (SMA) AAV9-based gene therapy which encodes the 
human SMN protein

Approved in May 2019

Inotersen[85] Polyneuropathy of hereditary 
transthyretin-mediated 
amyloidosis

Transthyretin-directed antisense 
oligonucleotide

Approved in October 2018

Axicabtagene 
ciloleucel[86]

Relapsed or refractory large B-cell 
lymphoma after two or more lines 
of systemic therapy

Genetically modified autologous CD19 T cells 
directed against CD19 expressing cancer cells

Approved in October 2017

Tisagenlecleucel[87] Refractory or relapsed B-cell 
precursor acute lymphoblastic 
leukemia (ALL)

Genetically modified autologous CD19 T cells 
directed against CD19 expressing cancer cells

Approved in August 2017

Nusinersen[88] SMA Survival motor neuron-2 (SMN2)-directed 
antisense oligonucleotide

Approved in December 2016

Eteplirsen[89] Duchenne muscular dystrophy Antisense oligonucleotid  that binds to exon 51 
of dystrophin pre-mRNA

Approved in September 2016

Talimogene 
laherparepvec[90]

Genetically modified herpes 
simplex virus, type 1 used as 
oncolytic viral therapy

They utilized the local treatment of 
unresectable cutaneous, subcutaneous, and 
nodal lesions in patients with melanoma who 
had the recurrence after the  initial surgery

Approved in October 2015

Giroctocogene 
fitelparvovec[91]

Moderately severe to severe 
hemophilia A

Factor VIII gene delivery using recombinant 
adeno-associated viruses as vectors

Investigational in phase 3 trial

Inclisiran[92] Heterozygous and possibly 
homozygous familial 
hypercholesterolemia

Small-interfering ribonucleic acid which 
decreases hepatic production of PCSK9

Investigational phase 3 trial

Volanesorsen[93] Familial chylomicronemia 
syndrome

Antisense oligonucleotide that targets the 
messenger RNA for apo-CIII

Conditional approval by European 
Medicines Agency’s (EMA) but not by FDA

CRISPR-Cas9 gene 
editing[94]

Sickle cell disease and β-
thalassemia

CRISPR-Cas9based allele editing of the BCL11A 
erythroid-specific enhancer in autologous 
CD34+ cells

Investigational- FDA Fast Track 
Designation for CTX001 in sickle cell 
disease

AAV: Adeno-associated virus; ALAS1: Aminolevulinate synthase 1; BCL11A: B cell lymphoma/leukemia 11A; HAO1: Hydroxyacid oxidase (glycolate 
oxidase) 1; modRNA: Nucleoside-modified messenger RNA; SMN: Survival motor neuron 1; FDA: Food and Drug Administration.

It is very important to include diverse populations and to represent minority 
population in the genomic studies, so that results could be generalized and more 
accurate diagnostic, predictive and therapeutic tools can be developed.
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Genomics in medicine is indeed a new era in medicine. Even the control of 
coronavirus disease 2019 pandemic[31] has just begun at the time of writing of this 
article with gene based therapies eliciting immune response against severe acute 
respiratory syndrome coronavirus 2 spike proteins. A unified international collab-
oration[32,33] is needed to continue expanding gene therapy use in opening new 
frontiers for fight against novel infections and disease.

CONCLUSION
Genomic medicine holds great promise for providing insight into disease 
pathophysiology, provide better diagnostic or disease predictive tools, preventive 
therapies and finally for targeted treatment of diseases. Although some of the newer 
tools (like CRISPR system) have great potential, more research is needed before these 
tools can be unleashed to clinical use. Hence there is great need for studies to unravel 
the mystery of complex interaction of both coding and noncoding genomic regions 
with environment and lifestyle influences on disease occurrence and management.
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