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Abstract
Originally proposed by John McCarthy in 1955, artificial intelligence (AI) has 
achieved a breakthrough and revolutionized the processing methods of clinical 
medicine with the increasing workloads of medical records and digital images. 
Doctors are paying attention to AI technologies for various diseases in the fields 
of gastroenterology and hepatology. This review will illustrate AI technology 
procedures for medical image analysis, including data processing, model 
establishment, and model validation. Furthermore, we will summarize AI 
applications in endoscopy, radiology, and pathology, such as detecting and 
evaluating lesions, facilitating treatment, and predicting treatment response and 
prognosis with excellent model performance. The current challenges for AI in 
clinical application include potential inherent bias in retrospective studies that 
requires larger samples for validation, ethics and legal concerns, and the 
incomprehensibility of the output results. Therefore, doctors and researchers 
should cooperate to address the current challenges and carry out further 
investigations to develop more accurate AI tools for improved clinical 
applications.
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Core Tip: Artificial intelligence (AI) technologies are widely used for medical image 
analysis in the gastroenterology and hepatology fields. Several AI models have been 
developed for accurate diagnosis, treatment, and prognosis based on images of 
endoscopy, radiology, pathology, achieving high performance comparable to experts. 
However, we should be aware of the certain constraints that limit the acceptance and 
utilization of AI tools in clinical practice. To use AI wisely, doctors and researchers 
should work together to address the current challenges and develop more accurate AI 
tools to improve patient care.

Citation: Cao JS, Lu ZY, Chen MY, Zhang B, Juengpanich S, Hu JH, Li SJ, Topatana W, Zhou 
XY, Feng X, Shen JL, Liu Y, Cai XJ. Artificial intelligence in gastroenterology and 
hepatology: Status and challenges. World J Gastroenterol 2021; 27(16): 1664-1690
URL: https://www.wjgnet.com/1007-9327/full/v27/i16/1664.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i16.1664

INTRODUCTION
Originally proposed by John McCarthy in 1955, artificial intelligence (AI) which 
involves machine learning (ML) and problem solving, has achieved a breakthrough 
and revolutionized the processing methods of clinical medicine with the increasing 
workloads of medical records and digital images. In clinical practice, AI consists of 
several overlapping technologies such as ML, artificial neural networks (ANNs), deep 
learning (DL), convolutional neural networks (CNNs), and recurrent neural 
networks[1,2] (Figure 1). Since the 1980s, ML has been performed to construct a 
mathematical model and predict outcomes based on input data, and it is roughly 
divided into supervised (labeled data), unsupervised (unlabeled data), and semi-
supervised (both labeled and unlabeled data) learning techniques[3]. Recently, as a 
subset of ML, ANNs have received increased interest because they can identify and 
learn input data by themselves instead of being labeled by experts[4]. In the last decade, 
DL, a new model of ML, holds great promise in clinical medicine. DL is particularly 
suitable for enormous complex or highly dimensional medical image analysis and 
predictive modeling tasks using the multilayers of ANNs, including CNNs and 
recurrent neural networks[5,6]. Notably, given that convolutional and pooling layers can 
extract distinct features and fully connected layers can make a final classification, 
CNNs have demonstrated excellent performance in image recognition such as 
endoscopy, radiology, and pathology[7,8].

In the fields of gastroenterology and hepatology, doctors are paying attention to AI 
technologies for the diagnosis, treatment, and prognosis of various diseases due to the 
heterogeneous expertise levels of doctors (majoring in endoscopy, radiology, and 
pathology), time-consuming procedures, and increasing workloads. Specifically, 
doctors usually assess medical images visually to detect and diagnose diseases based 
on personal expertise and experience. As the maturity of digitalization increases, a 
quantitative assessment of imaging information has become the reality instead of 
relatively inaccurate qualitative reasoning[9,10]. Although a lot of time is necessary to 
review and check image analysis traditionally, little information can be obtained. For 
example, using AI technologies to process pathology images can assess the 
histopathological classification and predict gene mutations in liver cancer[11], while 
only the mass nature can be identified by conventional pathology assessment. As a 
country with a high population, China has produced rapidly increasing medical 
records, which result in the high workloads[12]. Despite the progression of AI, 
gastroenterologists and hepatologists should always be aware of its limitations such as 
the retrospective manner of included studies and the utilization of not particularly 
suitable databases. In addition, it demands that doctors prepare for the effects and 
changes of AI on clinical practice in the real world.

In this review, we aim to (1) introduce how AI technologies process input data, 
learn from input data, validate the established model; (2) summarize the AI 
applications in endoscopy, radiology, pathology for accurate diagnosis, treatment, and 
prognosis; and (3) discuss the current limitations and future considerations of AI 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v27/i16/1664.htm
https://dx.doi.org/10.3748/wjg.v27.i16.1664
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Figure 1 Timeline and related technologies of artificial intelligence. AI: Artificial intelligence; ANN: Artificial neural network; CNN: Convolutional neural 
network; RNN: Recurrent neural network.

applications in the fields of gastroenterology and hepatology (Figure 2).

METHODS IN DEEP LEARNING
As the most suitable approach for medical image analysis, the DL approach does not 
require shaped regions of interest on images to complete feature selection and 
extraction based on a neural network structure[13,14]. After data collection and 
processing, the correct neural network is chosen to establish a model, followed by 
model validation to assess its true generalizability.

Data processing
Raw data are collected and analyzed, and corrupt data are identified and cleaned in 
the processing phase. Data selection methods are provided in Scikit-Learn[15], a Python 
machine learning library, which consist of univariate selection, feature importance, 
correlation matrix, and recursive feature elimination or addition. Other programming 
languages such as R Studio (http://www.r-project.org) or MATLAB software 
(University of New Mexico, New Mexico, United States) also offer a successful 
environment for AI, and they provide similar approaches to address specific tasks. 
Useful data and relevant variables from multiple data sources, which are applied to 
predict outcomes, are selected and divided into an initial training set and a testing set 
that allow training and internal validation of the model. Data in the training set should 
be different and nonredundant from that in the testing set. Notably, for small datasets, 
a higher proportion of data should be included in the testing set to measure the 
performance of the trained model accurately through cross-validation or in a 
bootstrapping procedure.

Modeling
After transforming the data into an appropriate format, different tools are developed 
for implementing ML. Although several programming tools such as Python, R Studio, 
and MATLAB vary among themselves, they provide similar options and algorithms to 
adjust the parameters based on specific tasks. The major classification algorithms for 
testing are Naive Bayes, Decision Trees, Support Vector Machine, K-Nearest Neighbor, 
and Ensemble Classifiers. Oversampling or undersampling of the unbalanced training 
data can be utilized to improve the representation of classes and prevent model bias 
during the modeling stage. Currently, as the calculation workload of the batch 
learning process is heavy, minibatch learning is more popularized with repeating 
epochs, which usually decreases errors for the training and testing phases. However, 
an early stopping technique would be adopted to address the overfitting problem if 
repeating epochs cannot ensure error reduction. Based on the evaluations of model 
performance, developers conduct feature engineering again to manipulate the features 
and approve the predictive values of the model. After the optimization phase, 
selection for the model is primarily based on trial-and-error and the best performance 
for specific problem-solving. Finally, model optimization is performed with adjusted 
parameters by testing different configurations.

http://www.r-project.org
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Figure 2 Artificial intelligence-assisted endoscopy, radiology, and pathology applications for medical image analysis in the fields of 
gastroenterology and hepatology, including detecting and evaluating lesions, facilitating treatment, and predicting treatment response 
and prognosis, and other potentials, using several deep learning models. CT: Computed tomography; MRI: Magnetic resonance imaging.

Model validation
To evaluate the AI approaches, one of the most significant requirements is external 
validation, which is called the blind test. Any model developed within one dataset will 
merely reflect its idiosyncrasies, and will have poor performance in analyzing new 
settings. In addition, models can also be validated by internal data testing (e.g., k-fold 
cross-validation). In k-fold cross-validation, the dataset is separated into k subsets, 
including one subset for testing and the remaining (k-1) subsets for training a model. 
With all data used in both training and testing sets, the cross-validation process is 
repeated k times. The model performance is finally calculated as the average value of 
all k iterations. The k varies depending on the size of the dataset. For example, leave-
one-out validation may be used in a small training set (< 200 data points), which 
means that k is equivalent to the dataset size. The appropriate and robust predictive 
model should have consistent performance between training and testing sets, 
preventing overfitting discrepancies.

ARTIFICIAL INTELLIGENCE IN ENDOSCOPY
With the advent and continuous improvement of fiberoptics, endoscopy has been 
playing a significant role in the diagnosis and treatment of gastrointestinal diseases. 
However, gastrointestinal diseases remain an enormous economic burden and lead to 
high mortality worldwide. AI is applicable in the gastroenterology fields within 
endoscopy[16-18], such as identification of esophageal and gastric neoplasia in esophago-
gastroduodenoscopy (EGD), detection of gastrointestinal bleeding in wireless capsule 
endoscopy (WCE), and polyp detection and characterization in colonoscopy, etc[19-63] 
(Table 1).

EGD
Inadequate examination of the upper gastrointestinal tract is one of the reasons for 
misdiagnosing several EGD diseases. Based on AI-assisted EGD, the upper 
gastrointestinal tract can be divided into the pharynx, esophagus, stomach (upper, 
middle, lower), and duodenum with high values of the area under the curve (AUC)[19]. 
Furthermore, several AI technologies have classified the images of the stomach within 
EGD to significantly monitor the blind spots, and their accuracy has reached the ability 
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Table 1 Summary of key studies on artificial intelligence-assisted endoscopy in gastroenterology fields

Outcomes (%)

Ref. Country Disease studied Design of 
study Application Number of cases

Type of 
machine 
learning 
algorithm

Accuracy Sensitivity/Specificity

Esophagogastroduodenoscopy

Takiyama 
et al[19], 2018

Japan Anatomical location 
of upper 
gastrointestinal tract

Retrospective Recognition of the 
anatomical location of 
upper gastrointestinal 
tract

Training: 27335 images: 663 larynx, 3252 esophagus, 5479 
upper stomach, 7184 middle stomach, 7539 lower 
stomach, and 3218 duodenum; Testing: 17081 images: 363 
larynx, 2142 esophagus, 3532 upper stomach, 6379 middle 
stomach, 3137 lower stomach, and 1528 duodenum

CNNs Larynx: 100; Esopha 
us: 100; Stomach: 99; 
Duodenum: 99

Larynx: 93.9/100; Esophagus: 
95.8/99.7; Stomach: 98.9/93; 
Duodenum: 87/99.2

Wu et al[20], 
2019

China Diseases of upper 
gastrointestinal tract

Prospective Monitor blind spots of 
upper gastrointestinal 
tract

Training: 1.28 million images from 1000 object classes; 
Testing: 3000 images for DCNN1, and 2160 images for 
DCNN2

CNNs 90.4 87.57/95.02

van der 
Sommen 
et al[21], 2016

Netherlands EN-BE Retrospective Detection of EN in BE 21 patients with EN-BE (60 images), 23 patients without 
EN-BE (40 images)

SVM NA 86/87

Swager 
et al[22], 2017

Netherlands EN-BE Retrospective Detection of EN in BE 60 images: 40 with EN-BE and 30 without EN-BE SVM 95 90/93

Hashimoto 
et al[23], 2020

United 
States 

EN-BE Retrospective Detection of EN in BE Training: 916 images with EN-BE; Testing: 458 images: 
225 dysplasia and 233 non-dysplasia

CNNs 95.4 96.4/94.2

Ebigbo 
et al[24], 2020

Germany EAC-BE Retrospective Detection of EAC in BE Training: 129 images; Testing: 62 images: 36 EAC and 26 
normal BE

CNNs 89.9 83.7/100

Horie et al[25], 
2019

Japan EAC and ESCC Retrospective Detection of EAC and 
ESCC

Training: 384 patients with 32 EAC and 397 ESCC (8428 
images); Testing: 47 patients with 8 EAC and 41 ESCC 
(1118 images)

CNNs 98 98/79

Kumagai 
et al[26], 2019

Japan ESCC Retrospective Detection of ESCC Training: 240 patients (4715 images: 1141 ESCC and 3574 
benign lesions); Testing: 55 patients (1520 images: 467 
ESCC and 1053 benign)

CNNs 90.9 92.6/89.3

Zhao et al[27], 
2019

China ESCC Retrospective Detection of ESCC 165 patients with ESCC and 54 patients without ESCC 
(1383 images)

CNNs 89.2 87.0/84.1

Cai et al[28], 
2019

China ESCC Retrospective Detection of ESCC Training: 746 patients (2438 images: 1332 abnormal and 
1096 normal); Testing: 52 patients (187 images)

CNNs 91.4 97.8/85.4

Nakagawa 
et al[29], 2019

Japan ESCC Retrospective Determination of invasion 
depth

Training: 804 patients with ESCC (14338 images: 8660 
non-ME and 5678 ME); Testing: 155 patients with ESCC 
(914 images: 405 non-ME and 509 ME)

CNNs SM1/SM2, 3: 91.0; 
Invasion depth: 89.6

SM1/SM2, 3: 90.1/95.8; Invasion 
depth: 89.8/88.3

Tokai et al[30], 
2020

Japan ESCC Retrospective Determination of invasion 
depth 

Training: 1751 images with ESCC; Testing: 42 patients 
with ESCC (293 images)

CNNs 80.9 84.1/80.9
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Ali et al[31], 
2018

Pakistan EGC Retrospective Detection of EGC 56 patients with EGC, 120 patients without EGC SVM 87 91.0/82.0

Sakai et al[32], 
2018

Japan EGC Retrospective Detection of EGC Training: 58 patients (348943 images: 172555 EGC and 
176388 normal); Testing: 58 patients (9650 images: 4653 
EGC and 4997 normal)

CNNs 87.6 80.0/94.8

Kanesaka 
et al[33], 2018

Japan EGC Retrospective Detection of EGC Training: 126 images: 66 EGC and 60 normal; Testing: 81 
images: 61 EGC and 20 normal

SVM 96.3 96.7/95.0

Wu et al[34], 
2019

China EGC Retrospective Detection of EGC Training: 9691 images: 3710 EGC and 5981 normal; 
Testing: 100 patients: 50 EGC and 50 normal

CNNs 92.5 94.0/91.0

Horiuchi 
et al[35], 2020

Japan EGC Retrospective Detection of EGC Training: 2570 images: 1492 EGC and 1078 gastritis; 
Testing: 285 images: 151 EGC and 107 gastritis

CNNs 85.3 95.4/71.0

Zhu et al[36], 
2019

China Invasive GC Retrospective Determination of invasion 
depth

Training: 245 patients with GC and 545 patients without 
GC (5056 images); Testing: 203 images: 68 GC and 135 
normal

CNNs 89.2 76.5/95.6

Luo et al[37], 
2019

China EAC, ESCC, and GC Prospective Detection of upper 
gastrointestinal cancers

Training: 15040 individuals (125898 images: 31633 cancer 
and 94265 control); Testing: 1886 individuals (15637 
images: 3931 cancer and 11706 control)

CNNs 91.5-97.7 94.2/85.8

Nagao et al[38], 
2020

Japan GC Retrospective Determination of invasion 
depth

1084 patients with GC (16557 images); Training: Testing = 
4:1

CNNs 94.5 84.4/99.4

Wireless capsule endoscopy

Ayaru et al[39], 
2015

United 
Kingdom

Small bowel 
bleeding

Retrospective Prediction of outcomes Training: 170 patients with small bowel bleeding; Testing: 
130 patients with small bowel bleeding

ANNs Recurrent bleeding 88; 
Therapeutic 
intervention: 88; 
Severe bleeding: 78

Recurrent bleeding: 67/91; 
Therapeutic intervention: 80/89; 
Severe bleeding: 73/80

Xiao et al[40], 
2016

China Small bowel 
bleeding

Retrospective Detection of bleeding in 
GI tract

Training: 8200 images: 2050 bleeding and 6150 non-
bleeding; Testing: 1800 images: 800 bleeding and 1000 
non-bleeding

CNNs 99.6 99.2/99.9

Usman 
et al[41], 2016

South Korea Small bowel 
bleeding

Retrospective Detection of bleeding in 
GI tract

Training: 75000 pixels: 25000 bleeding and 50000 non-
bleeding; Testing: 8000 pixels: 3000 bleeding and 5000 
non-bleeding

SVM 91.8 93.7/90.7

Sengupta 
et al[42], 2017

United 
States 

Small bowel 
bleeding

Retrospective Prediction of 30-d 
mortality

Training: 4044 patients with small bowel bleeding; 
Testing: 2060 patients with small bowel bleeding

ANNs 81 87.8/90/9

Leenhardt 
et al[43], 2019

France Small bowel 
bleeding

Retrospective Detection of GIA Training: 600 images: 300 hemorrhagic GIA and 300 non-
hemorrhagic GIA; Testing: 600 images: 300 hemorrhagic 
GIA and 300 non-hemorrhagic GIA

CNNs 98 100.0/96.0

Aoki et al[44], 
2020

Japan Small bowel 
bleeding

Retrospective Detection of small bowel 
bleeding

Training: 41 patients (27847 images: 6503 bleeding and 
21344 normal); Testing: 25 patients (10208 images: 208 
bleeding and 10000 non-bleeding)

CNNs 99.89 96.63/99.96

Yang et al[45], Detection of small bowel China Small bowel polyps Retrospective 1000 images: 500 polyps and 500 non-polyps SVM 96.00 95.80/96.20
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2020 polyps

Vieira et al[46], 
2020

Portugal Small bowel tumors Retrospective Detection of small bowel 
tumors

39 patients (3936 images: 936 tumors and 3000 normal) SVM 97.6 96.1/98.3

Colonoscopy

Fernández-
Esparrach 
et al[47], 2016

Spain Colorectal polyps Retrospective Detection of polyps 24 videos containing 31 different polyps Energy maps 79 70.4/72.4

Komeda 
et al[48], 2017

Japan Colorectal polyps Retrospective Detection of polyps Training: 1800 images: 1200 adenoma and 600 non-
adenoma; Testing: 10 cases

CNNs 70.0 83.3/50.0

Misawa 
et al[49], 2017

Japan Colorectal polyps Retrospective Detection of polyps Training: 1661 images: 1213 neoplasm and 448 non-
neoplasm; Testing: 173 images: 124 neoplasm and 49 non-
neoplasm

SVM 87.8 94.3/71.4

Misawa 
et al[50], 2018

Japan Colorectal polyps Retrospective Detection of polyps 196631 frames: 63135 polyps and 133496 non-polyps CNNs 76.5 90.0/63.3

Chen et al[51], 
2018

China Colorectal polyps Retrospective Detection of diminutive 
colorectal polyps

Training: 2157 images: 681 hyperplastic and 1476 
adenomas; Testing: 284 images: 96 hyperplastic and 188 
adenomas

DNNs 90.1 96.3/78.1

Urban et al[52], 
2018

United 
States

Colorectal polyps Retrospective Detection of polyps Training: 8561 images: 4008 polyps and 4553 non-polyps; 
Testing: 1330 images: 672 polyps and 658 non-polyps

CNNs 96.4 96.9/95.0 

Renner 
et al[53], 2018

Germany Colorectal polyps Retrospective Differentiation of 
neoplastic from non-
neoplastic polyps

Training: 788 images: 602 adenomas and 186 non-
adenomatous polyps; Testing: 186 images: 52 adenomas 
and 48 hyperplastic lesions

DNNs 78.0 92.3/62.5

Wang et al[54], 
2018

United 
States

Colorectal polyps Retrospective Detection of polyps Training: 5545 images: 3634 polyps and 1911 non-polyps; 
Testing: 27113 images: 5541 polyps and 21572 non-polyps

CNNs 98 94.4/95.9

Mori et al[55], 
2018

Japan Colorectal polyps Prospective A diagnose-and-leave 
strategy for diminutive, 
non-neoplastic 
rectosigmoid polyps

Training: 61925 images; Testing: 466 cases (287 neoplastic 
polyps, 175 nonneoplastic polyps, and 4 missing 
specimens)

SVM 96.5 93.8/91.0

Byrne et al[56], 
2019

Canada Colorectal polyps Retrospective Detection and 
classification of polyps

Training: 60089 frames of 223 videos (29% NICE type 1, 
53% NICE type 2 and 18% of normal mucosa with no 
polyp); Testing: 125 videos: 51 hyperplastic polyps and 74 
adenoma

CNNs 94.0 98.0/83.0

Blanes-Vidal 
et al[57], 2019

Denmark Colorectal polyps Retrospective Detection of polyps 131 patients with polyps and 124 patients without polyps CNNs 96.4 97.1/93.3

Lee et al[58], 
2020

South Korea Colorectal polyps Retrospective Detection of polyps Training: 306 patients (8593 images: 8495 polyp and 98 
normal); Testing: 15 patients (15 polyps videos)

CNNs 93.4 89.9/93.7

Gohari et al[59], 
2011

Iran CRC Retrospective Determination of 
prognostic factors of CRC

1219 patients with CRC ANNs Colon cancer: 89; 
Rectum cancer: 82.7

NA/NA
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Biglarian 
et al[60], 2012

Iran CRC Retrospective Prediction of distant 
metastasis in CRC

1219 patients with CRC ANNs 82 NA/NA

Takeda 
et al[61], 2017

Japan CRC Retrospective Diagnosis of invasive CRC Training: 5543 images: 2506 non-neoplasms, 2667 
adenomas, and 370 invasive cancers; Testing: 200 images: 
100 adenomas and 100 invasive cancers

SVM 94.1 89.4/98.9

Ito et al[62], 
2019

Japan CRC Retrospective Diagnosis of cT1b CRC Training: 9942 images: 5124 cTis + cT1a, 4818 cT1b, and 
2604 cTis + cT1a; Testing: 5022 images: 2604 cTis + cT1a, 
and 2418 cT1b

CNNs 81.2 67.5/89.0

Zhou et al[63], 
2020

China CRC Retrospective Diagnosis of CRC Training: 3176 patients with CRC and 9003 patients 
without CRC (464105 images: 28071 CRC and 436034 non-
CRC); Testing: 307 patients with CRC and 1956 patients 
without CRC (84615 images: 11675 CRC and 72940 non-
CRC)

CNNs 96.3 91.4/98.0

AI: Artificial intelligence; CNN: Convolutional neural network; EN: Early-stage neoplasia; BE: Barrett’s esophagus; SVM: Support vector machine; NA: Not available; EAC: Esophageal adenocarcinoma; ESCC: Esophageal squamous cell 
carcinoma; EGC: Early-stage gastric cancer; GC: Gastric cancer; ANN: Artificial neural network; GI: Gastrointestinal; GIA: Gastrointestinal angioectasia; DNN: Deep neural network; CRC: Colorectal cancer.

of experienced endoscopists[20,34].
Endoscopic surveillance for Barrett’s esophagus (BE) is the potential risk factor for 

esophageal adenocarcinoma (EAC), of which the prognosis is related to disease 
staging[64,65]. However, accurate detection of esophageal neoplasia and early EAC 
remains difficult for experienced endoscopists[66]. An AI system developed by Ebigbo 
et al[24] enabled early detection of EAC with high sensitivity and specificity, they 
subsequently designed a real-time system for neoplasia classification in magnification. 
Both accurate detection of early EAC is important in BE images and the novel system 
of high invasion accuracy also deserves clinical attention[23]. In esophageal squamous 
cell carcinoma (ESCC), these tumors are often diagnosed at advanced stages, while 
early ESCC seems to be detected based on endoscopists’ experience because they are 
almost impossible to visualize with white light endoscopy. Fortunately, with AI 
technologies, small esophageal lesions (< 10 mm) are recognized, and there is an AI 
system showing diagnostic accuracy of 91.4%, which is higher than that of high-level 
(with experience of > 15 years, 88.8%), mid-level (with experience of 5-15 years, 81.6%), 
and junior-level (with experience of < 5 years, 77.2%) endoscopists[28]. In addition, the 
prognosis of ESCC can be proved by differentiating tumor invasion depth[29,30].

The prognosis of gastric cancer (GC) mainly depends on the early detection and 
invasion depth of the disease. It is extremely difficult for endoscopists to recognize 
early gastric cancer (EGC), which is often accompanied by gastric mucosal 
inflammation, and the false-negative rate of EGC in EGD has reached nearly 
25.0%[67,68]. AI-assisted EGD has the potential to address tough tissues. However, the 
first reported CNNs-based AI system for detection of EGC had a low positive 
predictive value of 30.6%, leading to misdiagnosis of gastritis and misinterpretation of 
the gastric angle as GC[69]. In 2019, Wu et al[34] examined the detection of GC by AI and 
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validated 200 endoscopic images, with increased accuracy, sensitivity, and specificity 
values (92.5%, 94%, and 91%, respectively). Furthermore, the AI system, named 
GRAIDS, has achieved diagnostic sensitivity close to that of expert endoscopists 
(94.2% vs 94.5%), and it demonstrated a robust performance showing high diagnostic 
accuracy in a multicenter study[37]. Besides detection, one of the most important criteria 
for curative resection is the invasion depth. The invasion depth prediction of GC by AI 
was first developed by Kubota et al[70], and the model showed the accuracy of T-stages 
(T1 = 77%, T2 = 49%, T3 = 51%, T4 = 55%, respectively). Considering that endoscopic 
mucosal resection is appropriate for intramucosal cancers (M) and submucosal cancers 
(invasion < 500 μm) (SM1), a more detailed classification is urgently needed. 
Therefore, an AI system was developed to differentiate the depths of M or SM1 and 
SM2 (submucosal invasion ≥ 500 μm) for GC with significantly higher sensitivity, 
specificity, and accuracy than those of skilled endoscopists[38].

WCE
AI-assisted WCE enables endoscopists to highlight suspicious regions on examination 
of the digestive tract noninvasively, including detection of small bowel bleeding, 
ulcers, and polyps, celiac disease, etc. Based on specific AI classifiers and validation 
techniques (mainly k-fold cross-validation), these models utilized still frames, pixels, 
or real-time videos to identify patients with small bowel bleeding with accuracy above 
90% for most studies[40,41,43,44]. A CNNs-based algorithm, established in a retrospective 
analysis of 10000 WCE images (8200 and 1800 in the training and testing set, 
respectively) and validated by 10-fold cross-validation, was proposed for automatic 
detection of small bowel bleeding. The model was performed with a high F-1 score of 
99.6% and precision of 99.9% for both active and inactive bleeding frames[40]. Besides 
detection, several emerging AI tools have been developed to stratify patients for the 
possibility of recurrent bleeding, treatment requirement, and mortality estimate to 
prevent repeated endoscopies in a significant proportion of patients with potential 
recurrent upper or lower gastrointestinal bleeding[39,42].

Colonoscopy
Colorectal polyp detection and appropriate polypectomy during colonoscopy is the 
standard way to prevent colorectal cancer (CRC). Since missed colorectal polyps can 
potentially progress into CRC, AI-assisted colonoscopy has been developed for polyp 
detection and characterization, and predicting the prognosis of CRC. In terms of polyp 
detection, an automated AI system using an energy map was developed in 2016, and it 
showed barely satisfactory performance[47]. Urban et al[52] used 8641 labeled images and 
20 colonoscopy videos as the training and testing set to establish a CNNs model to 
identify colonic polyps, and the model had an accuracy of 96.4%[52]. Notably, the 
models should be validated to improve accuracy. After validating the model 
developed by Wang et al[54] with 27113 newly collected images from 1138 patients, the 
model showed acceptable performance (sensitivity = 94.38%, specificity = 95.2%, and 
AUC = 0.984). In addition, polyp characterization with magnifying endoscopic images 
is useful for identifying pit or vascular patterns to improve performance. AI tools with 
narrow-band imaging[51] or endoscopic videos[56] can be used to differentiate 
diminutive hyperplastic polyps and adenomas with high accuracy. Specifically, 
diminutive polyps (≤ 5 mm) may also be identified during colonoscopy[55]. In addition, 
AI may assist doctors in predicting the prognosis of CRC. An ANNs model, which was 
developed from a dataset of 1219 CRC patients, may predict patient survival and 
influential factors more accurately than a Cox regression model[59], and it also enables 
doctors to predict the risk of distant metastases[60].

ARTIFICIAL INTELLIGENCE IN RADIOLOGY
There is a disproportionate growing rate between radiological imaging data and the 
number of trained radiologists, and it has forced radiologists to compensate by 
increasing productivity[71]. The emergence of AI technologies has eased the current 
dilemma and dramatically advanced radiology image analysis, including ultrasound, 
computed tomography (CT), and magnetic resonance imaging (MRI) in the fields of 
gastroenterology and hepatology. In addition, the rise of radiomics, which is a new 
technology in radiology and cancer, can extract abundant quantifiable objective data to 
evaluate surgical resection and predict treatment response[72-112] (Table 2).
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Table 2 Summary of key studies on artificial intelligence-assisted radiology in hepatology fields

Outcomes (%)

Ref. Country Disease 
studied

Design of 
study Application Number of cases

Type of 
machine 
learning 
algorithm

Accuracy Sensitivity/Specificity

Ultrasound-based medical image recognition

Gatos et al[72], 
2016

United States Hepatic fibrosis Retrospective Classification of CLD 85 images: 54 healthy and 31 CLD SVM 87 83.3/89.1

Gatos et al[73], 
2017

United States Hepatic fibrosis Retrospective Classification of CLD 124 images: 54 healthy and 70 CLD SVM 87.3 93.5/81.2

Chen et al[74], 
2017

China Hepatic fibrosis Retrospective Classification of the stages 
of hepatic fibrosis in HBV 
patients

513 HBV patients with different hepatic fibrosis 
(119 S0, 164 S1, 88 S2, 72 S3, and 70 S4)

SVM, Naive 
Bayes, RF, KNN

82.87 92.97/82.50

Li et al[75], 2019 China Hepatic fibrosis Prospective Classification of the stages 
of hepatic fibrosis in HBV 
patients

144 HBV patients Adaptive 
boosting, 
decision tree, RF, 
SVM

85 93.8/76.9

Gatos et al[76], 
2019

United States Hepatic fibrosis Retrospective Classification of CLD 88 healthy individuals (88 F0 fibrosis stage 
images) and 112 CLD patients (112 images: 46 F1, 
16 F2, 22 F3, and 28 F4)

CNNs 82.5 NA/NA

Wang et al[77], 
2019

China Hepatic fibrosis Prospective Classification of the stages 
of hepatic fibrosis in HBV 
patients

Training: 266 HBV patients (1330 images); Testing: 
132 HBV patients (660 images)

CNNs F4: 100; ≥ F3: 99; ≥ F2: 
99

F4: 100.0/100.0; ≥ F3: 97.4/95.7; ≥ F2: 
100.0/97.7

Kuppili et al[78], 
2017

United States MAFLD Retrospective Detection and 
characterization of FLD

63 patients: 27 healthy and 36 MAFLD ELM, SVM ELM: 96.75; SVM: 
89.01

NA/NA

Byra et al[79], 
2018

Poland MAFLD Retrospective Diagnosis of the amount of 
fat in the liver

55 severely obese patients CNNs, SVM 96.3 100/88.2

Biswas et al[80], 
2018

United States MAFLD Retrospective Detection and risk 
stratification of FLD

63 patients: 27 healthy and 36 MAFLD CNNs, SVM, 
ELM

CNNs: 100; SVM: 82; 
ELM: 92

NA/NA

Cao et al[81], 
2020

China MAFLD Retrospective Detection and classification 
of MAFLD

240 patients: 106 healthy, 57 mild MAFLD, 67 
moderate MAFLD, and 10 severe MAFLD

CNNs 95.8 NA/NA

Guo et al[82], 
2018

China Liver tumors Retrospective Diagnosis of liver tumors 93 patients with liver tumors: 47 malignant lesions 
(22 HCC, 5 CC, and 10 RCLM), and 46 benign 
lesions

DNNs 90.41 93.56/86.89

Schmauch 
et al[83], 2019

France FLL Retrospective Detection and 
characterization of FLL

Training: 367 patients (367 images); Testing: 177 
patients

CNNs Detection: 93.5; 
Characterization: 91.6

NA/NA

Yang et al[84], 
2020

China FLL Retrospective Detection of FLL Training: 1815 patients with FLL (18000 images); 
Testing: 328 patients with FLL (3718 images)

CNNs 84.7 86.5/85.5
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CT/MRI-based medical image recognition

Choi et al[85], 
2018

South Korea Hepatic fibrosis Retrospective Staging liver fibrosis by 
using CT images

Training: 7461 patients: 3357 F0, 113 F1, 284 F2, 
460 F3, 3247 F4; Testing: 891 patients: 118 F0, 109 
F1, 161 F2, 173 F3, 330 F4

CNNs 92.1–95.0 84.6–95.5/89.9–96.6

He et al[86], 2019 United States Hepatic fibrosis Retrospective Staging liver fibrosis by 
using MRI images

Training: 225 CLD patients; Testing: 84 patients SVM 81.8 72.2/87.0

Ahmed et al[87], 
2020

Egypt Hepatic fibrosis Retrospective Detection and staging of 
liver fibrosis by using MRI 
images

37 patients: 15 healthy and 22 CLD SVM 83.7 81.8/86.6

Hectors et al[88], 
2020

United States Liver fibrosis Retrospective Staging liver fibrosis by 
using MRI images

Training: 178 patients with liver fibrosis; Testing: 
54 patients with liver fibrosis

CNNs F1-F4: 85; F2-F4: 89; 
F3-F4: 91; F4: 83

F1-F4: 84/90; F2-F4: 87/93; F3-F4: 
97/83; F4: 68/94

Vivanti et al[89], 
2017

Israel Liver tumors Retrospective Detection and 
segmentation of new 
tumors in follow-up by 
using CT images

246 liver tumors (97 new tumors) CNNs 86 70/NA

Yasaka et al[90], 
2018

Japan Liver masses Retrospective Detection and 
differentiation of liver 
masses by using CT images

Training: 460 patients with liver masses (1068 
images: 240 Category A, 121 Category B, 320 
Category C, 207 Category D, 180 Category E); 
Testing: 100 images with liver masses: 21 
Category A, 9 Category B, 35 Category C, 20 
Category D, 15 Category E

CNNs 84 Category A: 71/NA; Category B: 
33/NA; Category C: 94/NA; 
Category D: 90/NA; Category E: 
100/NA

Ibragimov 
et al[91], 2018

United States Liver diseases 
requiring SBRT

Retrospective Prediction of 
hepatotoxicity after liver 
SBRT by using CT images

125 patients undergone liver SBRT: 58 liver 
metastases, 36 HCC, 27 cholangiocarcinoma, and 
4 other histopathologies

CNNs 85 NA/NA

Abajian et al[92], 
2018

United States HCC Retrospective Prediction of HCC 
response to TACE by using 
MRI images

36 HCC patients treated with TACE RF 78 62.5/82.1

Zhang et al[93], 
2018

United States HCC Retrospective Classification of HCC by 
using MRI images

20 patients with HCC CNNs 80 NA/NA

Morshid 
et al[94], 2019

United States HCC Retrospective Prediction of HCC 
response to TACE by using 
CT images

105 HCC patients received first-line treatment 
with TACE

CNNs 74.2 NA/NA

Nayak et al[95], 
2019

India Cirrhosis; HCC Retrospective Detection of cirrhosis and 
HCC by using CT images

40 patients: 14 healthy, 12 cirrhosis, 14 cirrhosis 
with HCC

SVM 86.9 100/95

Hamm et al[96], 
2019

United States Common 
hepatic lesions

Retrospective Classification of common 
hepatic lesions by using 
MRI images

Training: 434 patients with common hepatic 
lesions; Testing: 60 patients with common hepatic 
lesions

CNNs 92 92/98

Wang et al[97], 
2019

United States Common 
hepatic lesions

Retrospective Demonstration of a proof-
of-concept interpretable DL 
system by using MRI 
images

60 common hepatic lesions patients CNNs NA 82.9/NA
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Jansen et al[98], 
2019

Netherlands FLL Retrospective Classification of FLL by 
using MRI images

95 patients with FLL (125 benign lesions: 40 
adenomas, 29 cysts, and 56 hemangiomas; and 88 
malignant lesions: 30 HCC and 58 metastases)

RF 77 Adenoma: 80/78; Cyst: 93/93; 
Hemangioma: 84/82; HCC: 73/56; 
Metastasis: 62/77

Mokrane 
et al[99], 2020

France HCC Retrospective Diagnosis of HCC in 
patients with cirrhosis by 
using CT images

Training: 106 patients: 85 HCC and 21 non-HCC; 
Testing: 36 patients: 23 HCC and 13 non-HCC

SVM, KNN, RF 70 70/54

Shi et al[100], 
2020

China HCC Retrospective Detection of HCC from 
FLL by using CT images

Training: 359 lesions: 155 HCC and 204 non-HCC; 
Testing: 90 lesions: 39 HCC and 51 non-HCC

CNNs 85.6 74.4/94.1

Alirr et al[101], 
2020

Kuwait Liver tumors Retrospective Segmentation of liver 
tumors

Training: 100 images with liver tumors;Testing: 31 
images with liver tumors

CNNs 95.2 NA/NA

Zheng et al[102], 
2020

China Pancreatic 
cancer

Retrospective Pancreas segmentation by 
using MRI images

20 patients with PDAC CNNs 99.86 NA/NA

Radiomics

Liang et al[103], 
2014

China HCC Retrospective Prediction of recurrence for 
HCC patients who received 
RFA

83 patients with HCC receiving RFA as first 
treatment (18 recurrence and 65 non-recurrence)

SVM 82 67/86

Zhou et al[104], 
2017

China HCC Retrospective Characterization of HCC 46 patients with HCC: 21 low-grade (Edmondson 
grades I and II) and 25 high-grade (Edmondson 
grades III and IV)

Free-form curve-
fitting

86.95 76.00/100.00

Abajian 
et al[105], 2018

United States HCC Retrospective Prediction of response to 
intra-arterial treatment

36 patients undergone trans-arterial treatment RF 78 62.5/82.1

Ibragimov 
et al[91], 2018

United States Liver tumors Retrospective Prediction of hepatobiliary 
toxicity of SBRT

125 patients undergone liver SBRT: 58 
metapatients, 36 HCC, 27 cholangiocarcinoma, 
and 4 other primary liver tumor histopathologies

CNNs 85 NA/NA

Morshid 
et al[94], 2019

United States HCC Retrospective Prediction of HCC 
response to TACE

105 patients with HCC: 11 BCLC stage A, 24 
BCLC stage B, 67 BCLC stage C, and 3 BCLC stage 
D

CNNs 74.2 NA/NA

Ma et al[106], 
2019

China HCC Retrospective Prediction of MVI in HCC Training: 110 patients with HCC: 37 with MVI and 
73 without MVI; Testing: 47 patients with HCC: 18 
with MVI and 29 without MVI

SVM 76.6 65.6/94.4

Dong et al[107], 
2020

China HCC Retrospective Prediction and 
differentiation of MVI in 
HCC 

Prediction: 322 patients with HCC: 144 with MVI 
and 178 without MVI; Differentiation: 144 patients 
with HCC and MVI

RF, mRMR Prediction: 63.4; 
Differentiation: 73.0 

Prediction: 89.2/48.4; 
Differentiation: 33.3/80.0 

He et al[108], 2020 China HCC Prospective Prediction of MVI in HCC Training: 101 patients with HCC; Testing: 18 
patients with HCC

LASSO 84.4 NA/NA

Schoenberg 
et al[109], 2020

Germany HCC Prospective Prediction of disease-free 
survival after HCC 
resection

Training: 127 patients with HCC; Testing: 53 
patients with HCC

RF 78.8 NA/NA

Zhao et al[110], Prediction of ER of HCC Training: 78 patients with HCC: 40 with ER and China HCC Retrospective LASSO 80.8 80.0/81.6
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2020 after partial hepatectomy 38 without ER; Testing: 35 patients with HCC: 18 
with ER and 17 without ER

Liu et al[111], 
2020

China HCC Retrospective Prediction of progression-
free survival of HCC 
patients after RFA and SR

RFA: Training: 149 HCC patients undergone RFA 
Testing: 65 HCC patients undergone RFA; SR: 
Training: 144 HCC patients undergone SR 
Testing: 61 HCC patients undergone SR

Cox-CNNs RFA: 82.0; SR: 86.3 NA/NA

Chen et al[112], 
2021

China HCC Retrospective Prediction of HCC 
response to first TACE by 
using CT images

Training: 355 patients with HCC; Testing: 118 
patients with HCC

LASSO 81 85.2/77.2

AI: Artificial intelligence; CLD: Chronic liver disease; SVM: Support vector machine; HBV: Hepatitis-B virus; RF: Random forests; KNN: K-nearest neighbor; CNN: Convolutional neural network; NA: Not available; MAFLD: Metabolic 
associated fatty liver disease; FLD: Fatty liver disease; ELM: Extreme learning machine; HCC: Hepatocellular carcinoma; CC: Cholangiocarcinoma; RCLM: Colorectal cancer liver metastases; DNN: deep neural network; FLL: Focal liver 
lesions; CLD: Chronic liver disease; SBRT: Stereotactic body radiation therapy; TACE: Transarterial chemotherapy; PDAC: Pancreatic ductal adenocarcinoma; RFA: Radiofrequency ablation; BCLC: Barcelona clinic liver cancer staging; 
MVI: Microvascular invasion; mRMR: Minimum redundancy maximum relevance; LASSO: Least absolute shrinkage and selection operator; ER: Early recurrence; SR: Surgical resection.

Abdominal ultrasound
AI technologies have been applied to abdominal ultrasound-based medical images for 
the assessment of liver diseases, such as hepatic fibrosis and mass lesions. A support 
vector machine-derived approach was developed by Gatos et al[72] to detect and classify 
chronic liver disease (CLD) based on abdominal ultrasound. After quantifying 85 
ultrasound images (54 healthy and 31 with CLD), the proposed model showed 
superior results (accuracy = 87.0%, sensitivity = 83.3%, and specificity = 89.1%), which 
greatly improved the diagnostic and classification accuracy of CLD. Furthermore, 
CNNs are employed to identify and isolate regions of different stiffness temporal 
stability under ultrasound to explore the impact on CLD diagnosis. The updated 
detection algorithm has augmented the accuracy to 95.5% after excluding unreliable 
areas and reducing interobserver variability[76]. Detecting and classifying hepatic mass 
lesions as benign or malignant is equally important. Schmauch et al[83] performed 
supervised training (367 ultrasonic images together with the radiological reports) to 
build a DL model, and the resulting algorithm had high receiver operating 
characteristic curves of 0.93 and 0.916 in lesion detection and characterization, 
respectively. Although the model could increase the diagnostic accuracy and detect 
potential malignant mass lesions, it should be further validated. In addition, 
combining AI technologies with contrast-enhanced ultrasound may improve the 
performance to identify and characterize liver cancer. For example, after AI-assisted 
contrast-enhanced ultrasound was applied to detect liver lesions in the arterial, portal, 
and late phases, the accuracy, sensitivity and specificity of the examination were 
markedly increased[82]. Due to the misty demonstration of gastroenterology within 
ultrasound, an AI-assisted ultrasound tool was limited.

CT/MRI
Liver diseases often present indeterminate behaviors on abdominal CT, and a biopsy is 
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recommended according to the European Association for the Study of the Liver 
guidelines[113]. Based on a large dataset of CT images (7461 patients diagnosed with 
liver fibrosis), a CNNs model was developed and it outperformed the radiologists’ 
interpretation[85]. Furthermore, depending on ANNs-based contrast-enhanced CT 
images from 460 patients, Yasaka et al[90] conducted a retrospective study to classify 
liver masses into five categories with high accuracy, including (1) primary 
hepatocellular carcinoma (HCC); (2) malignant tumors apart from HCC; (3) early 
HCC, indeterminate masses, or dysplastic nodules; (4) hemangiomas; and (5) cysts. For 
patients diagnosed with liver tumors or pancreatic cancer, it is crucial to complete the 
liver or pancreas segmentation to assess the lesions and make the ideal treatment plan. 
Instead of conventional manual segmentation, a CNNs model was proposed to 
segment liver tumors based on CT images, with an accuracy of more than 80.0%, 
favoring suitable decision-making[101]. Additionally, a CNNs model was also 
developed for pancreas localization and segmentation using CT images[102]. 
Furthermore, monitoring tumor recurrence plays an important role in follow-up CT. 
Vivanti et al[89] collected and integrated the initial appearance of tumors, CT behaviors, 
and quantification of the tumor loads throughout the disease course, and then they 
designed an automated detection model of tumor recurrence with an accuracy of 86%.

Besides depending on CT images, a DL approach for pancreas segmentation can 
also be designed from MRI images. Several AI-assisted studies have shown promising 
results in classifying MRI liver lesions with/without risk factors and patients’ clinical 
data, improving the accuracy and yields of reference models[93,96,98,102].

Radiomics
Currently, radiomics has received great interest from doctors because this AI-assisted 
technology can extract indiscoverable quantifiable objective data of the radiological 
images and reveal the association with potential biological processes[114,115]. 
Preoperative stratification of patients at different risk of recurrence and prediction of 
survival after resection is fundamental to improve prognosis. As an independent risk 
factor of recurrence, microvascular invasion (MVI) cannot be provided in conventional 
radiological techniques[116]. Several studies have managed to use radiomic algorithms 
based on ultrasound, CT, or MRI to elaborate radiomic signatures for preoperative 
prediction of MVI[106-108]. Besides the prediction of recurrence, radiomics may also be 
utilized to predict survival after surgical resection. However, compared to the 
excellent AI models based on pathologic images, radiomics-based predictive models 
merely attain a low value of 0.78[109].

Beyond recurrence and survival prediction purposes, radiomics can also be utilized 
for prediction of patients’ response to transarterial chemoembolization (TACE) and 
radiofrequency ablation (RFA), and post-radiotherapy hepatotoxicity. A CNNs model 
developed from 105 HCC patients’ CT images had higher accuracy in predicting 
response to TACE than the Barcelona Clinic Liver Cancer stages[94]. In addition, Chen 
et al[112] designed an excellent clinical-radiomic model to predict objective response to 
first TACE based on 595 HCC patients’ CT images, which could assist the selection of 
HCC patients for TACE. Another study used radiomics of MRI images with clinical 
data to perform prediction of TACE response[105]. For HCC in the early stages, RFA is a 
recommended option. Based on radiomics, Liang et al[103] designed a model to predict 
the RFA response and HCC recurrence after RFA, obtaining high AUC, sensitivity, 
and specificity. Additionally, post-radiotherapy hepatotoxicity should be monitored to 
adjust the position and dose of radiotherapy. A CNNs model not only identified that 
irradiation of the proximal portal vein was associated with poor prognosis, it also 
predicted post-radiotherapy hepatotoxicity with an AUC of 0.85[91]. Ibragimov et al[91] 
applied a CNNs model to determine the consistent patterns in toxicity-related dose 
plans, and the AUC of the model for dose planned analysis was increased from 0.79 to 
0.85 after the combination with some pre-treatment clinical features, showing that the 
combined framework can indicate the accurate position and dose of radiotherapy.

ARTIFICIAL INTELLIGENCE IN PATHOLOGY
Pathological analysis is considered the gold standard for the diagnosis of diseases in 
the fields of gastroenterology and hepatology. Currently, there is a shortage of 
pathologists around the world, which has become an obstruction for maintaining the 
accuracy of pathological analysis[117]. With the development of the whole-slide imaging 
(WSI) scanner and AI technologies, a combination of both technologies can ease the 
medical burden, improve the diagnosis accuracy, and even predict gene mutations and 
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prognosis[118-147] (Table 3).

Basic AI-assisted pathology: diagnosis
The basic role of pathology is disease diagnosis. In the fields of gastroenterology, there 
is an increasing need for automatic pathological analysis and diagnosis of GC. Based 
on the virtual version of pathological slices, several studies were performed to identify 
and classify GC automatically with high AUCs[120-122,126]. For example, a CNNs model 
was developed to distinguish gastric mass lesions including gastric adenocarcinoma, 
adenoma and non-neoplastic lesions, and it has achieved the highest AUC of 0.97 for 
the identification of gastric adenocarcinoma[126]. With regard to colorectal lesions, Wei 
et al[128] trained an AI-assisted model to classify colorectal polyps on WSIs, and notably, 
the performance of the model was similar to that of local pathologists whether in a 
single institution or other institutions. Besides diagnosis, a model based on more than 
400 WSIs was developed to differentiate five common subtypes of colorectal polyps 
with accuracy of 93%[127]. In CRC, Shapcott et al[129] performed a retrospective study to 
develop a CNNs model for diagnosis based on 853 hand-marked images with an 
accuracy of 84%.

In the fields of hepatology, AI-assisted pathology is applied in patients with 
hepatitis B virus (HBV), metabolic associated fatty liver disease, HCC, etc. An 
automated, stain-free AI system can quantify the amount of fibrillar collagen to 
evaluate the degree of HBV-related fibrosis with the AUC > 0.82[132]. For patients with 
metabolic associated fatty liver disease, AI-assisted pathology tools were used to 
identify and quantify pathological changes including steatosis, macrosteatosis, lobular 
inflammation, ballooning, and fibrosis[133], and the algorithm output scores for 
quantitative comparison with experienced pathologists achieved good agreement. 
However, limited AI-assisted pathology tools have been built for HCC diagnosis. 
Notably, the MFC-CNN-ELM program was designed for nuclei grading of biopsy 
specimens from HCC patients, which revealed high performance in classifying tumor 
cells of different differentiation stages[134].

Advanced AI-assisted pathology: prediction of gene mutations and prognosis
Apart from AI-assisted pathology tools in diagnosis, it is no surprise that many tools 
have been developed for the prediction of gene mutations and prognosis in the fields 
of gastroenterology and hepatology. In CRC, AI tools have shown great effectiveness 
in predicting prognosis across all tumor stages based on WSIs[139,140], and several 
prospective multicenter studies have further validated the high prognosis 
performance[142]. Notably, a subset of genetic defects occurring in gastroenterology is 
related to some morphological features detected on WSIs. Among screened genetic 
defects, microsatellite instability and mismatch-repair deficiency are associated with 
the survival of gastrointestinal and colorectal cancer patients receiving immuno-
therapy. Therefore, an AI tool was designed to predict microsatellite instability and 
mismatch-repair deficiency directly from pathology, and it finally showed reasonably 
good performance in assisting immunotherapy[138,141]. Notably, Kather et al[140] further 
validated the above model’s performance in predicting overall survival from CRC 
pathology slides with a hazard ratio of 2.29 in CRC-specific overall survival (OS) and 
an hazard ratio of 1.63 in OS, respectively. However, besides the above-mentioned 
studies that have focused on tumor detection of CRC, few studies were designed to 
predict gene mutations and prognosis due to the more complicated and heterogeneous 
histomorphology in gastric diseases than that in the colon[136,137].

In the fields of hepatology, AI tools are mainly used to predict gene mutations and 
prognosis in HCC. For example, a model has higher accuracy in predicting survival 
postoperatively than using a composite score of clinical and pathological factors in 
HCC. In addition, the model may generalize well after validating the performance in 
an external dataset with different staining and scanning methods[146]. Chen et al[11] 
investigated a CNN (Inception V3) for automatic classification (benign/malignant 
classification with 96.0% accuracy, and differentiation degree with 89.6% accuracy) 
and gene mutation prediction from WSIs after resection of HCC. It was found that 
CTNNB1, FMN2, TP53, and ZFX4 could be predicted from WSIs with external AUCs 
from 0.71 to 0.89. Currently, after integrating clinical data, biological data, genetic data, 
and pathological data, the novel model may also be a promising approach. The first 
multi-omics model combined ribonucleic acid (RNA) sequencing, miRNA sequencing 
and methylation data from The Cancer Genome Atlas, and then employed AI 
technologies to predict and differentiate survival of HCC patients[145]. Other attempts 
have been made to develop models that can predict gene mutations directly based on 
WSIs of HCC. Using AI-assisted pathology, some approaches can predict gene 
expression and RNA sequencing, which may have the potential for clinical 
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Table 3 Summary of key studies on artificial intelligence-assisted pathology in the gastroenterology and hepatology fields

Outcomes (%)
Ref. Country Disease studied Design of 

study Application Number of cases
Type of machine 
learning 
algorithm Accuracy Sensitivity/Specificity

Basic AI-based pathology: diagnosis

Tomita et al[118], 
2019

United States BE and EAC Retrospective Detection and 
classification of 
cancerous and 
precancerous 
esophagus tissue

Training: 379 images with 4 classes: normal, BE-
no-dysplasia, BE-with-dysplasia, and 
adenocarcinoma; Testing: 123 images with 4 
classes: normal, BE-no-dysplasia, BE-with-
dysplasia, and adenocarcinoma

CNNs Mean: 83; BE-no-dysplasia: 
85; BE-with-dysplasia: 89; 
Adenocarcinoma: 88

Normal: 69/71 BE-no-dysplasia: 
77/88; BE-with-dysplasia: 21/97; 
Adenocarcinoma: 71/91

Sharma et al[119], 
2017

Germany GC Retrospective Classification and 
necrosis detection of 
GC

454 patients (6810 WSIs: 4994 for cancer 
classification and 1816 for necrosis detection) 
(HER2 immunohistochemical stain and HE 
stained)

CNNs Cancer classification: 69.90; 
Necrosis detection: 81.44

NA/NA

Li et al[120], 2018 China GC Retrospective Detection of GC 700 images: 560 GC and 140 normal (HE stained) CNNs 100 NA/NA

Leon et al[121], 2019 Colombia GC Retrospective Detection of GC 40 images: 20 benign and 20 malignant CNNs 89.72 NA/NA

Sun et al[122], 2019 China GC Retrospective Diagnosis of GC 500 WSIs of gastric areas with typical cancerous 
regions

DNNs 91.6 NA/NA

Ma et al[123], 2020 China GC Retrospective Classification of 
lesions in the gastric 
mucosa

Training: 534 WSIs (1616713 images: 544925 
normal, 544624 chronic gastritis, and 527164 
cancer) (HE stained) Testing: 153 WSIs (399240 
images: 135446 normal, 125783 chronic gastritis, 
and 138011 cancer) (HE stained)

CNNs, RF Benign and cancer: 98.4; 
Normal, chronic gastritis, 
and GC: 94.5

Benign and cancer: 98.0/98.9; 
Normal, chronic gastritis, and 
GC: NA/NA 

Yoshida et al[124], 
2018

Japan Gastric lesions Retrospective Classification of 
gastric biopsy 
specimens

3062 gastric biopsy specimens (HE stained) CNNs 55.6 89.5/50.7

Qu et al[125], 2018 Japan Gastric lesions Retrospective Classification of 
gastric pathology 
images

Training: 1080 patches: 540 benign and 540 
malignant; Testing: 5400 patches: 2700 benign 
and 2700 malignant

CNNs 96.5 NA/NA

Iizuka et al[126], 
2020

Japan Gastric and 
colonic epithelial 
tumors

Retrospective Classification of 
gastric and colonic 
epithelial tumors

4128 cases of human gastric epithelial lesions 
and 4036 of colonic epithelial lesions (HE 
stained)

CNNs, RNNs Gastric adenocarcinoma: 
97; Gastric adenoma: 99; 
Colonic adenocarcinoma: 
96; Colonic adenoma: 99

NA/NA

Korbar et al[127], 
2017

United States Colorectal polyps Retrospective Classification of 
different types of 
colorectal polyps on 
WSIs

Training: 458 WSIs; Testing: 239 WSIs A modified version 
of a residual 
network

93 88.3/NA

Training: 326 slides with colorectal polyps: 37 
tubular, 30 tubulovillous or villous, 111 
hyperplastic, 140 sessile serrated, and 8 normal; 

Tubular: 84.5; 
Tubulovillous or villous: 
89.5; Hyperplastic: 85.3; 

Tubular: 73.7/91.6; Tubulovillous 
or villous: 97.6/87.8; 
Hyperplastic: 60.3/97.5; Sessile 

Wei et al[128], 2020 United States Colorectal polyps Retrospective Classification of 
colorectal polyps on 
WSIs

CNNs
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Testing: 238 slides with colorectal polyps: 95 
tubular, 78 tubulovillous or villous, 41 
hyperplastic, and 24 sessile serrated

Sessile serrated: 88.7 serrated: 79.2/89.7

Shapcott et al[129], 
2018

UnitedKingdom CRC Retrospective Diagnosis of CRC 853 hand-marked images CNNs 84 NA/NA

Geessink et al[130], 
2019

Netherlands CRC Retrospective Quantification of 
intratumoral stroma in 
CRC

129 patients with CRC CNNs 94.6 91.1/99.4

Song et al[131], 2020 China CRC Retrospective Diagnosis of CRC Training: 177 slides: 156 adenoma and 21 non-
neoplasm; Testing: 362 slides: 167 adenoma and 
195 non-neoplasm

CNNs 90.4 89.3/79.0

Wang et al[132], 2015 China Hepatic fibrosis Retrospective Assessment of HBV-
related liver fibrosis 
and detection of liver 
cirrhosis

Training: 105 HBV patients; Testing: 70 HBV 
patients

SVM 82 NA/NA

Forlano et al[133], 
2020

UnitedKingdom MAFLD Retrospective Detection and 
quantification of 
histological features of 
MAFLD

Training: 100 MAFLD patients; Testing: 146 
MAFLD patients

K-means Steatosis: 97; 
Inflammation: 96; 
Ballooning: 94; Fibrosis: 92

NA/NA

Li et al[134], 2017 China HCC Retrospective Nuclei grading of 
HCC

4017 HCC nuclei patches CNNs 96.7 G1: 94.3/97.5; G2: 96.0/97.0;G3: 
97.1/96.6; G4: 99.5/95.8

Kiani et al[135], 2020 United States Liver cancer 
(HCC and CC)

Retrospective Histopathologic 
classification of liver 
cancer

Training: 70 WSIs: 35 HCC and 35 CC Testing: 
80 WSIs: 40 HCC and 40 CC

SVM 84.2 72/95

Advanced AI-based pathology: prediction of gene mutations and prognosis

Steinbuss et al[136], 
2020

Germany Gastritis Retrospective Identification of 
gastritis subtypes

Training: 92 patients (825 images: 398 low 
inflammation, 305 severe inflammation, and 122 
A gastritis) (HE stained) Testing: 22 patients (209 
images: 122 low inflammation, 38 severe 
inflammation, and 49 A gastritis) (HE stained)

CNNs 84 A gastritis: 88/89; B gastritis: 
100/93; C gastritis: 83/100

Liu et al[137], 2020 China Gastrointestinal 
neuroendocrine 
tumor

Retrospective Prediction of Ki-67 
positive cells

12 patients (18762 images: 5900 positive cells, 
6086 positive cells, and 6776 background from 
ROIs) (HE and IHC stained)

CNNs 97.8 97.8/NA

Kather et al[138], 
2019

Germany GC and CRC Retrospective Prediction of MSI in 
GC and CRC

Training: 360 patients (93408 tiles); Testing: 378 
patients (896530 tiles)

CNNs 84 NA/NA

Bychkov et al[139], 
2018 

Finland CRC Retrospective Prediction of CRC 
outcome

420 CRC tumor tissue microarray samples CNNs, RNNs 69 NA/NA

Kather et al[140], 
2019

Germany CRC Retrospective Prediction of survival 
from CRC histology 
slides

Training: 86 CRC tissue slides (> 100000 HE 
image patches); Testing: 25 CRC patients (7180 
images)

CNNs 98.7 NA/NA
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Echle et al[141], 2020 Germany CRC Retrospective Detection of dMMR or 
MSI in CRC

Training: 5500 patients; Testing: 906 patients A modified 
shufflenet DL 
system

92 98/52

Skrede et al[142], 
2020

3R23 Song 2020 CRC Retrospective Prediction of CRC 
outcome after 
resection

Training: 828 patients (> 12000000 image tiles); 
Testing: 920 patients

CNNs 76 52/78

Sirinukunwattana 
et al[143], 2020

UnitedKingdom CRC Retrospective Identification of 
consensus molecular 
subtypes of CRC

Training: 278 patients with CRC; Testing: 574 
patients with CRC: 144 biopsies and 430 TCGA

Neural networks 
with domain-
adversarial learning

Biopsies: 85; TCGA: 84 NA/NA

Jang et al[144], 2020 South Korea CRC Retrospective Prediction of gene 
mutations in CRC

Training: 629 WSIs with CRC (HE stained) 
Testing: 142 WSIs with CRC (HE stained)

CNNs 64.8-88.0 NA/NA

Chaudhary 
et al[145], 2018

United States HCC Retrospective Identification of 
survival subgroups of 
HCC

Training: 360 HCC patients’ data using RNA-
seq, miRNA-seq and methylation data from 
TCGA; Testing: 684 HCC patients’ data (LIRI-JP 
cohort: 230; NCI cohort: 221; Chinese cohort: 166, 
E-TABM-36 cohort: 40, and Hawaiian cohort: 27)

DL LIRI-JP cohort: 75; NCI 
cohort: 67; Chinese cohort: 
69; E-TABM-36 cohort: 77; 
Hawaiian cohort: 82

NA/NA

Saillard et al[146], 
2020

France HCC Retrospective Prediction of the 
survival of HCC 
patients treated by 
surgical resection

Training: 206 HCC (390 WSIs); Testing: 328 HCC 
(342 WSIs)

CNNs 
(SCHMOWDER 
and CHOWDER)

SCHMOWDER: 78; 
CHOWDER: 75

NA/NA

Chen et al[11], 2020 China HCC Retrospective Classification and 
gene mutation 
prediction of HCC

Training: 472 WSIs: 383 HCC and 89 normal 
liver tissue; Testing: 101 WSIs: 67 HCC and 34 
normal liver tissue 

CNNs Classification: 96.0; Tumor 
differentiation: 89.6; Gene 
mutation: 71-89

NA/NA

Fu et al[147], 2020 UnitedKingdom EAC, GC, CRC, 
and liver cancers

Retrospective Prediction of 
mutations, tumor 
composition and 
prognosis

17335 HE-stained images of 28 cancer types CNNs Variable across 
tumors/gene alterations

NA/NA

AI: Artificial intelligence; BE: Barrett’s esophagus; EAC: Esophageal adenocarcinoma; CNN: Convolutional neural network; GC: Gastric cancer; WSI: Whole-slide image; NA: Not available; DNN: Deep neural network; RF: Random forests; 
RNN: Recurrent neural network; CRC: Colorectal cancer; HBV: Hepatitis-B virus; SVM: Support vector machine; MAFLD: Metabolic associated fatty liver disease; HCC: Hepatocellular carcinoma; CC: Cholangiocarcinoma; ROI: Region of 
interest; IHC: Immunohistochemistry; MSI: Microsatellite instability; dMMR: Mismatch-repair deficiency; TCGA: The Cancer Genome Atlas; DL: Deep learning.

translation[147]. Interestingly, some gene expression such as PD-1 and PD-L1 expression, 
inflammatory gene signatures, and biomarkers of inflammation did trend with 
improved survival and response in HCC patients[148].

LIMITATIONS AND FUTURE CONSIDERATIONS
This review retrospectively summarized some key and representative articles with the 
possibility of missing some publications in AI-related journals. Although various 
studies have shown promising results in the fields of AI-assisted gastroenterology and 
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hepatology, there are still several limitations to be discussed and resolved. One of the 
major criticisms is the lack of high-quality training, testing, and validation datasets for 
the development and validation of AI models. Due to the retrospective manner of 
most studies, selection bias must be considered at the training stage, meanwhile, 
overfitting and spectrum bias may result in overestimation of the model accuracy and 
generalization. According to the rigorous “six-steps” translation pipelines[149], doctors 
and AI researchers should join the calls that advocate for developing interconnected 
networks of collecting raw acquisition data which was shifted from processed medical 
images over the world and training AI on a large scale to obtain robust and 
generalizable models. Furthermore, the black-box nature of AI technologies has 
become a barrier to clinical practice, because developers and users do not know the 
details about how computers output the conclusion. Explainable AI for reliable 
healthcare is worth investigating to reach clinical interpretability and transparency. In 
addition, from the perspective of ethics and legal liabilities, AI models may potentially 
cause errors and challenge the patient-doctor relationship despite the fact that they 
improve the clinical workflow with enhanced precision. Especially in the fields of 
gastroenterology and hepatology, cancer discrimination may mean a completely 
different treatment. If misdiagnosis occurs during AI application, who should take 
responsibility- the doctor, the programmer, the company providing the system, or the 
patient? Issues such as ethics and legal liabilities should be demonstrated in the early 
phase to maintain the balance between minimal error rates and maximal patient 
benefits[150,151].

There have been an increasing number of studies applying AI to gastroenterology 
and hepatology over the past decade. In the future, the trend will continue and larger 
studies will be carried out to compare the performance of medical professionals with 
AI vs professionals without AI to highlight the importance of AI assistance. AI 
technologies will be utilized to develop more accurate models to predict and monitor 
disease progression and potential complications, and these models may ameliorate the 
insufficiency of medical resources in the remote underserved or developing regions. 
Besides, AI-assisted personalized imaging protocols and immediate three-dimensional 
reconstruction may further improve the diagnostic efficiency and accuracy. 
Researchers will be able to realize the mechanism of disease progression and treatment 
response through the combination of multi-modality images or multi-omics data. In 
addition, there is an emerging trend applying AI to drug development, such as 
prediction of compound toxicity, physical properties, and biological activities, which 
may assist chemotherapy for digestive system malignancy. Furthermore, AI could be 
used to process the data generated from the tissue-on-a-chip platform which could 
better summarize the tumor microenvironment, thus reach precise and individual 
chemotherapy in gastroenterology and hepatology. As synthetic lethality becomes a 
promising genetically targeted cancer therapy[152,153], AI could also be used for the 
detection of target synthetic lethal partners of overexpressed or mutated genes in 
tumor cells to kill cancers. Finally, AI tools could not replace endoscopists, 
radiologists, and pathologists in the near and even distant future. Computers would 
make predictions and doctors would make the final decision, in other words, they 
would always work together to benefit patients.

CONCLUSION
AI is rapidly developing and becoming a promising tool in medical image analysis of 
endoscopy, radiology, and pathology to improve disease diagnosis and treatment in 
the fields of gastroenterology and hepatology. Nevertheless, we should be aware of 
the constraints that limit the acceptance and utilization of AI tools in clinical practice. 
To use AI wisely, doctors and researchers should cooperate to address the current 
challenges and develop more accurate AI tools to improve patient care.
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