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Abstract
Metabolites are versatile bioactive molecules. They are not only the substrates 
and/or the products of enzymatic reactions but also act as the regulators in the 
systemic metabolism. Metabolomics is a high-throughput analytical strategy to 
qualify or quantify as many metabolites as possible in the metabolomes. It is an 
indispensable part of systems biology. The leading techniques in this field are 
mainly based on mass spectrometry and nuclear magnetic resonance 
spectroscopy. The metabolomic analysis has gained wide use in bioscience fields. 
In the tumor research arena, metabolomics can be employed to identify 
biomarkers for prediction, diagnosis, and prognosis. Chemotherapeutic effect 
evaluation and personalized medicine decision-making can also benefit from 
metabolomic analysis of patient biofluid or biopsy samples. Many cell-level 
studies can help in disease exploration. In this review, the basic features and 
principles of varied metabolomic analysis are introduced. The value of 
metabolomics in clinical and laboratory gastrointestinal cancer studies is 
discussed, especially for mass spectrometry applications. Besides, combined use 
of metabolomics and other tools to solve problems in cancer practice is briefly 
illustrated. In summary, metabolomics paves a new way to explore cancerous 
diseases in the light of small molecules.
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Core Tip: Genomics, transcriptomics, and proteomics aim to study the macro-
molecules. As a complement to systems biology, metabolomics paves a new way to 
explore cancerous diseases concerning temporal changes of small molecules. The 
metabolome is phenotype-specific. Metabolome reflects the organism's responses to 
environmental stimuli very directly and sensitively.
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INTRODUCTION
Malignancies that occur in the sites from the esophagus to the rectum can be roughly 
classified as gastrointestinal (GI) cancers. These include the tumors rooting in the solid 
digestive organs and those occurring in the digestive tract. Some of them can develop 
from the neuroendocrine cells in the digestive system. It was estimated that about 
333680 digestive cancer cases were diagnosed in the United States in 2020[1]. Many of 
the tumors, such as pancreatic carcinoma and hepatocellular carcinoma (HCC), have a 
poor prognosis even with intensive treatment. As a multifactorial process, both the 
individual’s genetic and the relevant environmental factors contribute to oncogenesis
[2]. As there is no effective therapy for cancerous diseases, early diagnosis and timely 
intervention play key roles in reducing mortality. Varied imaging modalities are 
available in cancer clinics. Because of their lower cost and easier availabilities, blood 
biomarkers are highly recommended by many guidelines for tumor screening, 
diagnosis, and therapeutic effect evaluation[3,4].

Most of the approved biomarkers for GI cancer diagnosis are proteins. With the 
achievement of oncogenesis research and the advances of modern analytical 
techniques, many other macromolecules have been explored as new types of 
biomarkers. For example, a panel consisting of seven plasma micro ribonucleic acids 
was reported to be efficient for HCC diagnosis, especially for early-stage HCC[5]. Cell-
free deoxyribonucleic acid (cfDNA) was readily detected in liquid biopsy samples[6]. 
With some traditional protein biomarkers, cfDNA could also be used in early-stage 
HCC screening[7]. These newly explored biomarkers contribute to GI cancer diagnosis 
and management to a varied extent.

Besides macromolecules, small molecular metabolites are also indispensable for an 
organism. Metabolites are the direct executors of metabolism. The entity of the whole 
metabolites in an organism constitutes its unique metabolome. A given metabolite 
profile is phenotype-specific, and phenotype is substantially modulated by metabolites
[8,9]. Most of the inborn metabolic diseases (IMDs) exhibit metabolite concentration 
abnormalities[10]. Treatment of many IMDs involves limiting intake of certain kinds of 
chemicals[11]. Mass spectrometry (MS) is the earliest technology that was introduced 
into clinical laboratories for IMD diagnosis purposes[12].

Except for acting as the substrates and the products of enzymatic reactions, 
metabolites can also be the biomarkers for cancer diagnosis and treatment. This review 
would focus on the advances in using metabolites for GI cancer study and clinical 
practice.

METABOLOMICS
Genomics, transcriptomics, and proteomics are the high-throughput analysis of 
specific molecules in biological samples. Compared with the other omics, 

http://creativecommons.org/Licenses/by-nc/4.0/
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metabolomics is a newly coined conception. It aims at quantifying/qualifying as many 
metabolites as possible in a metabolome[8,13] (Figure 1). Since the advent of modern 
analytical technologies, high-throughput analyzing a metabolome has become 
possible. Nearly all the clinical specimens are compatible with metabolomic analysis
[14]. Metabolomics aims at the compounds with molecular weights less than 1500 
Dalton[15]. The leading techniques in this arena are MS and nuclear magnetic 
resonance (NMR) spectroscopy[16]. Both tactics have their inherent advantages in 
different analytical aspects[17]. For example, NMR is superior to MS in its analysis 
speed and noninvasive features[18]. MS is characterized by its high sensitivity and 
resolution[19]. Coupled with some separation technologies, MS or NMR can provide 
improved analytical abilities. This gave birth to the hyphened metabolomic analytical 
measures, such as liquid chromatography-MS (LC-MS), gas chromatography-MS (GC-
MS), and capillary electrophoresis-MS. So far, most of the metabolomics studies were 
finished by employing the hyphened techniques. Many scientific groups tried to 
integrate NMR and MS. This approach provides distinctive advantages, especially for 
the analysis using isotopes[18].

Metabolites have different polarities, volatilities, and hydrophilic properties owning 
to their elementary compositions. These physical aspects provide analysts with the 
opportunity to develop varied analytical methods to meet different needs. Therefore, 
there have been many derivative omics conceptions from metabolomics. For example, 
lipidomics is the metabolomic analysis of lipids exclusively. Metabolomic analysis 
focusing on carbohydrates can be called glycometabolomics[20]. Nucleosides include 
limited members. The concentration changes of modified nucleosides are frequently 
encountered in different diseases. Several metabolomics groups have paid more 
attention to the modified nucleoside detection[21].

According to whether the potential analytes were predefined, the metabolomic 
analysis could be divided into targeted and untargeted analysis[22]. The former is to 
detect the metabolites with definite identities, and the latter is to analyze all the 
measurable metabolites that are compatible with the adopted methods. The targeted 
analysis is frequently applied to studies with definite purposes, such as for verification 
or accurate quantitation. The untargeted strategy is suitable for global screening or 
catching a glimpse of the samples. Additionally, there is an analysis called pseudot-
argeted metabolomics[23]. This tactic is based on the principle that certain precursor 
molecules can produce definite daughter ions under a specific ionized circumstance. 
The ion fragmentation features are compound-specific. These structurally correlated 
ions could be monitored in parallel by some types of MS[24]. The pseudotargeted 
metabolomic analysis is independent of any identity knowledge of the analytes.

For biomarker exploration, a metabolomic study should consider untargeted 
analysis first. This analysis helps to lock the potential valuable metabolites. Then, a 
targeted metabolomic analysis is carried out. It is better to employ the quantitative 
analytical method that is most suitable for the targeted analytes. For quantitation 
accuracy, any untargeted analysis method is only compatible with limited types of 
metabolites. The following targeted analysis with robust quantitation capacities helps 
to corroborate whether the untargeted analysis findings are reliable and reproducible. 
Ideally, the targeted analysis should use another set of samples.

A great challenge in metabolomics is metabolite identification. It is better to build a 
database in which all the analytical features of the metabolites are recorded. Unfortu-
nately, it is unknown how many metabolites might exist in different biological 
samples. Some groups have tried to set up a database according to their routine needs. 
Many of the databases are free to non-commercial use[25,26]. To simplify metabolite 
identification, many software programs have been developed. Some of them could 
directly use the data collected with the analytical equipment[27]. Statistical and 
bioinformatic analysis is necessary for biomarker selection and annotation. Many 
software programs provide various online analysis tools[28].

GI CANCER PREDICTION
Any disease, including cancerous diseases, obeys their regular development 
progression. There must be some clues existing in the preclinical stages (Figure 2). This 
provides opportunities to predict diseases. In a prospective study based on LC-MS, 
plasma valine, leucine, and isoleucine were reported to be valuable for pancreatic 
ductal adenocarcinoma (PDAC) prediction especially for the onset within 2-5 years
[29]. Subjects with these amino acid changes had two times higher risks than the 
control ones. The three branched-chain amino acids (BCAAs) belong to necessary 
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Figure 1 The basic workflow of metabolomics. Samples aiming at different purposes are first collected. The applicable specimen types include blood, 
biopsy, biofluid, cell, and urine samples. Some specimens must be preprocessed before they are analyzed with various equipment. The manipulations include 
metabolite extraction, condensation, or derivatization as possible. The metabolomics data are usually collected with the corresponding software equipped with the 
instruments. Some software also provides data pre-procession (e.g., to remove noise signals) and statistical analysis functions. The differential metabolites are first 
screened out by statistical methods. These selected metabolites should be verified using another set of samples if possible. It is better to ascertain the concentration 
changes of each metabolite using a robust quantitation method.

Figure 2 Schematic representation of the fluctuation of biomarker in the whole period of a disease. Disease susceptibility is usually defined by 
the individual’s genetic background. The susceptibility biomarker (Bms) can be detected by genetic analysis most possibly. The onset of the disease would be 
triggered by many environmental factors. At the very beginning (preclinical stage), some prediction Bms appears. When a disease progresses to the clinical stage 
(with clear symptoms) the diagnosis Bms could be detected. If the disease advances further, some complications and secondary hurts would emerge. These end 
events give birth to the opportunities to develop the relevant Bms. Metabolomics could be applied to the whole disease period. Besides, prognosis and treatment 
efficacy Bms could also be explored by metabolomic analysis.

amino acids. Whereas, the authors demonstrated that the raised plasma concentrations 
of these BCAAs were not the results of excessive ingestion. They were linked to early-
stage tissue protein breakdown driven by the K-ras gene. Interestingly, if the three 
BCAAs were combined with tyrosine and phenylalanine, they could be used to predict 
future diabetes onset. A 12-year follow-up study indicated that individuals with 
elevated blood concentrations of the five amino acids were at higher risks to develop 
type 2 diabetes (T2DM)[30]. T2DM and PDAC had a reciprocal relationship[31]. Thus, 
it is better to introduce other metabolites to improve the prediction accuracy when the 
metabolite panels are overlapped. To enlarge the metabolite coverage, a study 



Gao P et al. Metabolomics studies of GI cancers

WJGO https://www.wjgnet.com 540 June 15, 2021 Volume 13 Issue 6

simultaneously employed LC-MS and GC-MS to analyze the blood samples. The study 
included 226 pairs of case and control subjects. The plasma phosphatidylcholine [PC 
(15:0/18:2)], coumarin, and picolinic acid levels were found to be positively related to 
pancreatic cancer. Six glycerophospholipids were inversely associated with pancreatic 
cancer incidence. After excluding the interference factors including T2DM, the PC 
(18:1/18:4), instead of PC (15:0/18:2), was found to be most valuable especially for 
predicting the onset within 5 years[32]. From the perspective of epidemiology, factors 
that are inversely correlated to diseases are protective. Although both studies utilized 
LC-MS and selected the subjects of similar backgrounds[29,32], the potential 
prediction markers were not identical. One reason is that tumorigenesis is a complex 
process. It can be triggered by different combinations of driver factors. The other 
reason might be that lifestyles, food appetite, and genetic backgrounds vary greatly 
amid different races and populations. For instance, African Americans have a higher 
colorectal cancer (CRC) rate than rural South Africans. Epidemic investigation proved 
that the former consumed more animal protein and fat in their daily life[33]. On the 
contrary, the latter ingested more fibers. If the food styles were exchanged between 
them, fecal water and urine metabolomes changed accordingly. If they ingested more 
protein and fat-rich food, both the Americans and the Africans were characterized 
with abundant fecal choline and urine trimethylamine-N-oxide[33].

Diet affects not only cancer risks but also the prognosis [34-36]. A follow-up study 
enrolled 463 postmenopausal CRC women. The researchers found that diet and food 
with anti-inflammatory potential could improve overall survival[37]. The relationship 
between dietary exposures and diseases was the key theme of nutritional metabolo-
mics[36]. Unfortunately, up to now, large-scale meta-analysis data for GI cancer 
prediction using metabolite markers are rare. Fortunately, metabolomics analyses have 
identified many candidate biomarkers about specific food exposures. For example, 
meat and/or seafood consumption resulted in elevated plasma essential amino acids, 
polyunsaturated fatty acids, and D-glucose[38]. Shellfish consumption affected plasma 
phosphatidylethanolamine (p36: 4). Plasma 3-carboxy-4-methyl-5-propyl-2-furanpro-
panoic acid was related to fish intakes in the Asian population[38]. What should be 
mentioned is that if the fish ingestion study is carried out in European people, the 
candidate marker should be trimethylamine-N-oxide instead of 3-carboxy-4-methyl-5-
propyl-2-furanpropanoic acid[39].

Besides tumor onset prediction, metabolites can be used to predict prognosis. 
Redalen et al[40] reported that tumor glycine was an adverse prognostic factor for 
locally advanced rectal cancer. Cancers with rapid growth rates were demonstrated to 
consume glycine excessively[41]. Too many reasons can affect the concentrations of a 
single amino acid. As the lessons from protein biomarker applications, a biomarker 
panel including several (kinds of) metabolites might be more valuable and reliable 
than a single metabolite.

GI CANCER DIAGNOSIS AND EARLY DIAGNOSIS
CRC poses a great challenge to public health, especially in developed countries. Early 
diagnosis is important to reduce mortality. To early detect CRC, plasma samples 
collected from stage 0/I/II patients and the controls were subjected to GC/triple-
quadrupole MS (TMS) analysis[42]. A regression model consisting of eight metabolites 
[pyruvic acid-meto-TMS, glycolic acid-2TMS, tryptophan-3TMS (/SI), palmitoleic 
acid-TMS, fumaric acid-2TMS (/SI), ornithine-4TMS (/SI), lysine-4TMS, and 3-
hydroxyisovaleric acid-2TMS] could realize satisfying CRC diagnosis with a sensitivity 
of 99.3% and specificity of 93.8%. In that study, the traditional protein markers 
carcinoma embryonic antigen and carbohydrate antigen19-9 showed good specificities, 
but their sensitivities were low (< 20%). The authors also pointed out that this model 
could not be applied for aggressive CRC (e.g., stage III/IV). When invasive CRC 
metastasizes, it might affect and spread to many organs. It can be expected that the 
systemic metabolic changes caused by local and metastasis tumors are different.

Another notorious GI cancer is HCC. Alpha-fetoprotein (AFP) has been used for 
HCC surveillance and diagnosis for decades. Its limited specificity is obvious. The 
rapid advances of imaging modalities have excluded the utilization of AFP according 
to the recently approved guidelines[43]. Unfortunately, imaging examination could 
miss many solid neoplasms with a diameter less than 3 cm. Thus, the early diagnosis 
needs some alternative solutions. In this light, a large-scale metabolomic study was 
conducted. To pursue the robustness of the diagnosis, many diseases that might 
interfere with HCC were included as possible[44]. It was found that serum 
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phenylalanyl-tryptophan and glycocholate showed good performance in HCC 
diagnosis and differential diagnosis. Even for small HCC, the combined use of the two 
metabolites could achieve an area under the receiver-operating characteristic curve 
(AUC) of 0.866. According to the results, elevated glycocholate was positively 
correlated to HCC. Phenylalanyl-tryptophan was negatively correlated to HCC. An 
appropriate tumor biomarker should be in high concentrations in the blood because of 
its excessive release or production. Pathologically, the decreased phenylalanyl-
tryptophan might be the result of tumor-related overconsumption. Technically, 
biomarkers with decreased concentrations causes the quantitation difficulty.

Except for the blood samples, feces sample is also a valuable specimen for 
metabolomics. In theory, components in the feces reflect the intestinal physiological 
and pathological status. A pilot metabolomic study detected 527 reproducible 
metabolites in the feces samples from CRC patients. Three fecal heme-related 
molecules, 18 peptides/amino acids, palmitoyl-sphingomyelin, mandelate, p-hydroxy-
benzaldehyde, acetaminophen metabolites, tocopherols, sitostanol, 3-dehydrocar-
nitine, pterin, conjugated-linoleate-18-2N7, N-2-furoyl-glycine, and p-aminobenzoate 
were found to be valuable for CRC diagnosis[45]. However, metabolites in the feces 
varied greatly due to diet styles and gut microflora. Many metabolites contributing to 
the CRC diagnosis in the above-mentioned study were bacterial metabolites or co-
metabolites of human beings and the gut microbes. This resulted in the observation 
that not all the biomarkers were elevated in the CRC feces. For the stabilities, feces 
were not comparable to blood samples[45]. The markers indicating the storage 
stabilities of  blood samples have been explored and identified[46,47]. Similar studies 
about feces were seldom conducted. Gut microbiota affects the intestinal microenvir-
onment. Unhealthy microbiota contributes to many diseases including CRC. In this 
light, the fecal metabolomic analysis might be more valuable for prediction use[48,49].

Small-intestine neuroendocrine tumors (SINETs) are a common GI cancer stemming 
from the neuroendocrine cells in the small bowel. Many of these tumors have features 
of metastasis. By performing NMR-based metabolomic analysis, Imperiale et al[50] 
found that succinate, glutathion, taurine, myoinositol, and glycerophosphocholine 
were elevated in the tumor samples. The normal small intestine tissues were rich in 
alanine, creatine, ethanolamine, and aspartate. When the hepatic metastasis lesions 
were compared with the normal liver, acetate, succinate, choline, phosphocholine, 
taurine, lactate, and aspartate were found to be rich in the lesions. The primary SINETs 
were characterized with increased succinate, valine, and myoinositol when they were 
compared with the metastases. This study demonstrated that identical tumors found 
in different microenvironments could exhibit distinctive phenotypes[50].

Cholangiocarcinoma was thought to be related to bile acid metabolism[51]. Zhang et 
al[52] analyzed 329 plasma samples collected from the controls, benign biliary 
diseases, cholangiocarcinoma, gallbladder cancer, and HCC populations. Taurochen-
odeoxycholic acid and chenodeoxycholic acid played key roles in separating cholan-
giocarcinoma both from the healthy controls and from the HCC patients. The 
diagnostic performance was even superior to the commonly used carbohydrate 
antigen 19-9.

Recurrence is a key theme in the tumor research field. From three independent 
cohorts, Qiu et al[53] found 14 upregulated and 1 downregulated metabolite 
biomarkers to predict CRC relapse. The authors also pointed out the inconsistency of 
these metabolite changes amid different cohorts. No matter what potential uses, to 
validate biomarkers must need more effort.

PATHOLOGICAL DIAGNOSIS OF GI CANCER
Traditional pathological diagnosis is dependent on slice samples. Preparing a 
satisfying slide sample is a time-consuming and labor-intensive task. The intraop-
erative histological examination costs only half an hour but is expensive. Also, the 
diagnosis accuracy is affected by the expertise of both the technologists and the 
pathologists. What makes the matter worse is that the traditional pathological slides 
only afford limited tissues or cells. It brings about inevitable sampling bias. When it 
comes to metabolomics, most or all the resected tissues can be used to extract the 
metabolites. Additionally, the extracts can be subjected to various preprocessing such 
as condensation, dilution, or derivatization to meet different analytical needs.

Endoscopic examination is widely used in CRC screening. The morphological 
characteristics of advanced adenomas and CRC tissues are inadequate for differen-
tiation purposes. In a study, an untargeted MS-based metabolomic technique was first 
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employed to analyze CRC and matched paracancerous tissues. This profiling strategy 
narrows the cancer-related metabolic changes to amino acid metabolism. Then, 
another MS-based targeted amino acid analysis was performed. The results showed 
that combined use of methionine, tyrosine, valine, and isoleucine was enough to 
distinguish CRC from advanced adenoma[54]. The notable advantages of 
metabolomics are its simplicity and rapidness.

As widely admitted, MS analysis is characterized by its high specificity and rich 
chemical information. The traditional pathological tactic has a distinguished 
resolution. If the advantages of both are combined, pathologists will gain more deep 
insight into the slice samples[55]. Fortunately, scientists have developed applicable 
strategies to integrate the two techniques and applied the so-called MS imaging (MSI) 
strategy to cancer pathological studies. Desorption electrospray ionization mass 
spectrometry (DESI-MS) can give chemical information from the surfaces of an intact 
or processed tissue specimen under ambient conditions[56]. Nagai et al[57] first 
performed an untargeted analysis of HCC and benign tissue samples by MS. They 
found that TG 16:0/18:1 (9Z)/20:1 (11Z) (m/z 904.83) and TG 16:0/18:1 (9Z)/18:2 (9Z, 
12Z) (m/z 874.79) played roles in separating the two kinds of samples. Then, they 
employed MSI to explore the tissue distribution of the two TGs. Despite the overlap at 
the boundary regions, condensed TG 16:0/18:1 (9Z)/20:1 (11Z) distribution in the 
tumor regions and abundant TG 16:0/18:1 (9Z)/18:2 (9Z, 12Z) (m/z 874.79) in the 
nontumor regions was obvious. The results were consistent with the previous reports 
about the saturated and unsaturated fatty acid distribution in the tumor and nontumor 
tissues. These fusion images integrated traditional hematoxylin and eosin staining and 
MS ion imaging. The strategy provided high-quality pathological pictures at 10 μm-
resolution[55]. The most valuable use of MSI might be to explore extremely small local 
and metastasis lesions.

MSI can not only be used to help pathological diagnosis, but it can also be used to 
aid tumor-related enzyme exploration. Sun et al[58] first employed airflow-assisted 
DESI-MSI to profile region-specific metabolites in esophageal squamous cell 
carcinoma (ESCC) and corresponding normal samples. Then, they performed 
metabolic pathway matching analysis based on the selected differential metabolites to 
lock potential tumor-associated metabolic enzymes. Subsequently, immunohisto-
chemical staining was performed to validate the enzyme expression changes. Finally, 
they found that proline biosynthesis, glutamine metabolism, uridine metabolism, 
histidine metabolism, fatty acid biosynthesis, and polyamine biosynthesis pathways 
were altered in ESCC. Pyrroline-5-carboxylate reductase 2 and uridine phosphorylase 
1 was upregulated in ESCC tissues. This high-coverage-based MSI analysis provided 
valuable information on new drug development and therapeutic target identification.

Direct, real-time, and non-invasive examination of intact tissues is highly 
appreciated in surgical rooms. It is affordable that partial normal tissues are damaged 
in some surgical operations. However, in neurosurgical resections, damaging normal 
brain tissues has always been avoided. Traditional DESI-MS can work under ambient 
conditions, but it suffers from technical incompatibilities in many facets such as the 
use of organic solvents, high-pressure nebulizing gas, and high voltages[59]. Zhang et 
al[59] developed a device called MasSpec Pen based on the DESI-MS. The MS was 
equipped with a handheld probe that could squeeze a discrete water droplet under 
control. The droplet was delivered on the surface of the target tissue. Metabolites in 
the tissue could be extracted into the droplet and transferred to the analysis system-an 
Orbitrap mass spectrometer. The authors employed the MasSpec Pen to analyze 
several kinds of benign and malignant solid tissue samples. The results demonstrated 
that this device could realize a diagnostic sensitivity of 96.4% and specificity of 96.2%. 
The overall accuracy was 96.3%. Furthermore, MasSpec Pen has ever been introduced 
into the porcine upper GI tracts in a study. The accuracy of distinguishing the liver 
from the stomach tissues in vivo was 98%[60]. In fact, utilizing MasSpec Pen for any 
cancer diagnosis was solely dependent on the availability of the corresponding tissue-
specific database[59].

Like MasSpec Pen, iKnife is another rapid evaporative ionization mass spectrometry 
(REIMS)-based metabolomic diagnosis device. It can not only realize real-time 
pathological analysis but also act as an “electric lancet". iKnife does not rely on the 
liquid media to dissolve the metabolites. It directly analyzes the gas components 
released from the burned tissues. Electrosurgical devices are prevailing in the 
operation rooms because of their simultaneous dissection and hemostasis functions. 
The burned tissues would release smoke containing many oxidized metabolites. This 
previously discarded smoke is collected with a specifically designed device and then 
transferred to REIMS to be analyzed. The chemical information in the smoke can be 
used to identify the properties of the tissues releasing the smoke[61]. Balog et al[61] 
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analyzed 1624 cancerous, 1231 healthy, and 78 inflammatory bowel disease samples. 
They found a different distribution of lipid species across the specimens. Alexander et 
al[62] applied iKnife to diagnose CRC. The overall accuracy was 94.4%. Phosphatidy-
lserines and bacterial phosphatidylglycerols were rich in the cancer samples. 
Ceramides were condensed in the adenomas. The normal tissues were characterized 
by elevated plasmalogens and triacylglycerols[62]. iKnife can be used to identify the 
origins of the metastatic tumors. When differentiating healthy liver parenchyma from 
metastasis colonic adenocarcinomas, the iKnife could give a diagnostic accuracy of 
96% (73/76).

PERSONALIZED GI CANCER TREATMENT
Chemotherapy is necessary for GI cancer treatment. Chemotherapeutical drug 
administration brings about several side or toxic effects. Even if the physicians can 
correctly make their chemotherapy decisions, the one-size-fits-all approaches do not 
guarantee a good prognosis for all the patients. Precise prediction of the chemosensit-
ivities would benefit both the patients and the physicians. Pharmacometabolomics is 
the science utilizing metabolomics to predict patient responses to drug treatments. A 
pilot study based on serum metabolomics indicated that elevated serum deoxyribose 
1-phosphate and decreased S-lactoylglutathione correlated to chemotherapy sensit-
ivities[63]. Capecitabine is an antimetabolic agent that could be metabolized to 5-
fluorouracil-the active form for CRC treatment. Side effects of capecitabine are largely 
originated from its intermediate metabolite 5′-deoxy-5-fluorouridine (5′-DFUR). By 
performing 1H NMR spectrometer-based metabolomic analysis of 52 CRC serum 
samples, Backshall et al[64] found that patients with higher LDL-like lipid particles 
and choline phospholipid were prone to suffering from 5′-DFUR toxicity. Also helped 
by NMR metabolomics, Bertini et al[65] analyzed 153 serum samples from metastasis 
CRC patients before cetuximab and irinotecan administration. They found that the 
patients with long and short overall survival (OS) time could be identified with an 
accuracy of 78.5%. The patients with OS > 24 mo and < 3 mo showed different serum 
metabolite profiles. They also pointed out that the potential differential metabolites 
contributing to separation of the two groups were also affected by some other factors 
such as obesity.

Postoperation chemoradiotherapies are indispensable, even if surgical resection is 
performed in the early stage of esophageal cancer. However, not all the cases benefit 
from the adjuvant strategies. A metabolomics study found that decreased serum 
arabitol, glycine, L-serine, and L-arginine indicated a positive response to chemoradio-
therapies[66]. For predicting the chemoradiotherapy responses, the combined use of 
the four metabolites generated an AUC > 0.7.

Chemoresistance is frequently encountered clinically. The resistance could be 
acquired or innate. Many chemotherapy drugs are antimetabolites and affect cell 
metabolism. The built-in metabolic plasticity and the robustness of the metabolic 
networks render the cells with conspicuous capacities to resist perturbations from the 
environment. Cells can reprogram their metabolism to resist the perturbations from 
the chemotherapy drugs. Those cells that can not adapt to the drug stimuli will be 
killed. Intracellular metabolite pools are dynamic in size. The pool sizes were affected 
by the metabolic flux rates of the relevant metabolic pathways[67]. Cells can keep 
hemostasis by redirecting the metabolic fluxes of the relevant metabolic pathways. The 
flux rates can be calculated. The most widely used metabolic flux analysis (MFA) is 13C 
MFA. The analysis uses the 13C-labeled substrate (usually the 13C-labeled glucose or 
amino acids) to feed the cells. After proper incubation, intracellular metabolites are 
quantified by metabolomic analysis. The detected metabolites are then used to 
calculate the metabolic fluxes through chemometrics according to the labeled element 
distribution in the metabolic pools[68]. Mathematically, a metabolic network is a set of 
stoichiometric equations. Each equation is defined by a real enzymatic reaction that 
can be easily retrieved from biochemical textbooks or public databases. Because the 
metabolic networks contain hundreds to thousands of pathways, the calculation is a 
tough job. Most of the tasks are finished by software models run on computers. 
Combined with computational and mathematical modeling tactics, MFA could shed 
light on cellular phenotypes from another angle[69].

Highly expressed hexokinase 2 (HK2) is frequently found in HCC cells. An MFA 
using (1,2-13C) glucose and (U-13C) glutamine as tracers exhibited that glucose uptake 
and lactate secretion rates dropped by 40% in Huh7 cells with HK2 silencing. 
Glutamine and branched-chain amino acid uptakes, secretion of alanine and 
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glutamate, and the tricarboxylic acid cycle-related fluxes were not affected. The HK2 
silencing cells were more sensitive to one-carbon unit depletion. There was a 2-fold 
increase in serine uptake and glycine secretion. There was no obvious change in the 
intracellular glucose to serine flux. The study also found that silencing HK2 
synergized sorafenib, which provided a clue to treat HCC by manipulating HK2[70].

Flux balance analysis is another type of MFA. It sets rational constraints on a 
metabolic network and presumes that the network is in its steady-state. Nikmanesh et 
al[71] constructed a model integrating expression data from Gene Expression Omnibus 
and metabolomics data. The metabolic model included 3748 reactions and 2766 
metabolites. Using this model, the authors compared the metabolic flux difference of 
56 normal and 67 CRC cells. Compared to the normal cells, cancer cells exhibited 503 
upregulated and 560 downregulated fluxes. Reactions catalyzed by retinol dehydro-
genase, bicarbonate transporter, cytosine deaminase, glutathione peroxidase, and 
mitochondrial adenosine diphosphate/adenosine triphosphate (ATP) transporter were 
the notably downregulated ones. The other pathways with decreased metabolic flux 
rates included pathways involving palmitoyl-CoA desaturase, glutamine synthetase, 
ATP synthase, and uridine triphosphate-glucose-1-phosphate uridylyltransferase. The 
nucleotide metabolism (catalyzed by nucleoside-diphosphate kinase) and pyruvate 
metabolism (catalyzed by L-lactate dehydrogenase) pathways had increased flux rates. 
Some reactions involved in purine catabolism, glycolysis/gluconeogenesis, and 
hyaluronan metabolism showed increased flux rates. In that model, the authors also 
included the point mutation information. This coupling strategy helped to discover the 
driver regulatory modules. Thus, with the help of data mining and integrating tools, 
metabolomics could potentially be used to uncover potential therapeutic targets and 
new tumor driver mechanisms. This would be good at formulating personalized 
therapeutic strategies.

Traditionally, the enzyme catalyzing the slowest step in a metabolic pathway is 
deemed as the rate-limiting enzyme. The relevant step is regarded as the rate-limiting 
step. At the very beginning, metabolic engineering aims at manipulating these 
enzymes. Unfortunately, overexpressing the relevant enzymes fails frequently. 
Metabolic control analysis (MCA) introduces a new conception to determine the real 
rate-limiting step by considering how a given enzyme exerts its influence on the fluxes 
and the concentrations of the involved metabolites[72]. As hemostasis is maintained by 
metabolism, some key metabolite changes might be lethal. The enzymes catalyzing the 
relevant reactions could be drug targets potentially. One of the prominent pilot studies 
using MCA to identify therapeutic targets was reported in the practice of treating 
trypanosomiasis. Scientists found that the glucose transporter, aldolase, glyceral-
dehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and glycerol-3-
phosphate dehydrogenase were the Archil's heels of parasites instead of red blood 
cells[73,74]. Thus, relational treatment strategies could be developed by circumventing 
the targets that might damage the hosts.

Using MCA, Koit et al[75] found that HCC tissues showed suppressed respiratory 
chain complexes I functions. But, it was not the case for breast cancer tissues. 
Mitochondrial membrane permeabilities were different between the two types of 
tumor cells. These clues were valuable on how to select effective anti-tumor drugs. 
Many tumor therapies share the same drugs or drugs with similar mechanisms. 
Physicians could make more personalized therapeutic decisions with the MCA results.

Although the variability of a single person’s metabolome is universal, every 
individual has his/her relatively stable metabolic phenotype. It dominates the specific 
responses to specific stimuli. Assfalg et al[76] collected 40 urine specimens from 22 
healthy persons across 3 mo. According to the 1H NMR urine metabolomic data, the 
interindividual difference was larger than the intraindividual difference. Fifteen 
metabolites were enough to confirm an unknown sample origin with 100% confidence. 
The individual-specific phenotypes contained subject-specific nutrition tolerance, drug 
efficacy and toxicity, disease risk, and much physical and pathological response 
information[76]. The authors also implied that to define an individual’s phenotype 
needs specimens collected in a long period. This could exclude the casual influence. 
Thus, metabolomics could be a valuable tool for personalized medicine.

CONCLUSION
Genomics, transcriptomics, and proteomics studies have been applied in tumor fields 
for many decades. The findings from a single omic analysis are prone to being 
misinterpreted due to the tumor heterogeneities. Many analytical skills and tools could 
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be selected to perform metabolomic analysis. Compared to the other omics, 
metabolomics is still in its infancy. New methods of metabolite identification, 
bioinformatic analysis of the data, noise signal removal for the spectroscopic data, and 
analytical speed improvement are still under development. It should be noticed that 
all the above-mentioned GI cancer metabolite biomarkers are not “new” metabolites. 
All of them could be found in physiological conditions. Also, their concentration 
changes can be found in non-cancerous diseases. Nearly all the mentioned GI cancer 
metabolite biomarkers can be found in other cancers. Identical metabolite markers can 
be found in different GI cancers and even can be used for different purposes. Unlike 
the protein and the mutant gene biomarkers, metabolite biomarker concentrations are 
severely affected by diet styles and circadian rhythms. To use metabolite biomarkers 
should follow an intensive verification procession and must consider the backgrounds 
against which the metabolite markers are identified. Compared to the other omics, 
metabolomics had many advantages[77]: (1) Changes taking place at the gene or 
protein levels can be amplified at the metabolome level; (2) Metabolomic analysis does 
not need the complete gene sequence information; (3) The members of a metabolome 
are smaller than those of a genome or proteome; and (4) Performing a metabolomic 
analysis is cheaper than performing a transcriptome or a proteome analysis. Besides 
the above-mentioned applications, metabolomics has been used to explore gene 
functions[78], drug mechanisms[79], enzyme functions[80], and tumor driver 
metabolites (oncometabolites)[81]. Although the applications are scattered in different 
bioscience fields, it can be concluded that metabolomics is undoubtedly a valuable 
complement to the other techniques in prompting GI cancer research.
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