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Abstract
Hepatitis E virus (HEV), a fecal-orally transmitted foodborne viral pathogen, 
causes acute hepatitis in humans and is responsible for hepatitis E outbreaks 
worldwide. Since the identification of HEV as a zoonotic agent, this virus has been 
isolated from a variety of hosts with an ever-expanding host range. HEV-open 
reading frame (ORF) 3, the smallest ORF in HEV genomes, initially had been 
perceived as an unremarkable HEV accessory protein. However, as novel HEV-
ORF3 function has been discovered that is related to the existence of a putative 
third virion structural form, referred to as “quasi-enveloped” HEV particles, HEV 
is challenging the conventional virion structure-based classification scheme, 
which assigns all viruses to two groups, “enveloped” or “non-enveloped”. In this 
review, we systematically describe recent progress that has identified multiple 
pathogenic roles of HEV-ORF3, including roles in HEV virion release, biogenesis 
of quasi-enveloped virus, regulation of the host innate immune response, and 
interference with host signaling pathways. In addition, implications of HEV-
ORF3-associated quasi-enveloped virions are discussed to guide future 
development of improved vaccines against zoonotic HEV infection.

Key Words: Hepatitis E virus; Zoonosis; Quasi-enveloped virion; Hepatitis E virus-open 
reading frame 3; Innate immunity
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Core Tip: Hepatitis E virus (HEV)-open reading frame (ORF) 3 was originally though 
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response, and interference with host signaling pathways. More novel function of HEV-
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INTRODUCTION
Hepatitis E virus (HEV), a quasi-enveloped, single-stranded positive-sense RNA virus, 
is classified as a member of the family Hepeviridae[1]. Hepeviridae is a highly diverse 
family that contains several HEV and HEV-like virus species with zoonotic, anthropo-
tropic, and animal-restricted tropisms[2]. Currently, nearly 3 million symptomatic 
cases of HEV infection are reported annually, resulting in approximately 70000 deaths 
and 3000 stillbirths in each year[3]. Generally, mortality of HEV ranges from 0.5% to 
3% overall, but HEV mortality rates have approached 30% in pregnant women[4,5].

The viral genome of HEV is 7.2 kb in length and is an mRNA-like molecule (capped 
and poly-adenylated at 5' and 3' ends, respectively)[6]. To date, three well-defined 
open reading frames (ORFs) have been detected in all HEV genotypes studied 
(Figure 1)[7,8]. HEV-ORF1 protein is translated directly from HEV genome with HEV-
ORF2 and-ORF3 proteins translated from subgenomic RNAs[9]. Moreover, ORF4, 
whose expression is promoted by an atypical internal ribosome entry site (IRES)-like 
element, completely overlaps with ORF1 and was identified recently only in HEV-1 
isolates[10]. In addition to ORFs, HEV genome contains at least four cis-reactive 
elements (CREs) that are required for viral replication in vivo[11-13]. Two of these 
CREs, which are located within intergenic-junctional regions between HEV-ORFs, 
form “stem-loop” structures that act as promoter-like elements for initiation of 
subgenomic RNA synthesis[11,12]. Conversely, another two CREs within ORF1 and 
ORF2, function as a scaffold that generates specific signals that trigger recruitment of 
viral and host factors for a replication complex[13].

The latest classification system of HEVs includes two genera within the family 
Hepeviridae, Orthohepevirus (covering all HEV isolates with mammalian and avian 
origin) and Piscihepevirus (only HEV-like virus with cutthroat trout origin). All four 
previously characterized HEV genotypes (1-4) that cause human infection are 
categorized within the species Orthohepevirus A[1], with Orthohepevirus B, C, and D 
species encompassing HEV isolates found in other non-human hosts[1]. Within 
Orthohepevirus A, HEV-1 and HEV-2 isolates are anthropotropic viruses without any 
animal reservoirs, while HEV-3 and HEV-4 isolates are zoonotic[6,14]. The HEV 
isolates originally identified from Japanese wild boar, containing unique RNA 
sequences, are categorized into HEV-5 and 6, whereas camel HEV isolates belong to 
HEV-7 and HEV-8 genotypes[1,15]. Notably, HEV isolated from a human liver 
transplant patient has been reported to most closely match camel HEV, suggesting that 
camel HEVs may be zoonotic as well, although this concept requires further 
confirmation[16]. In addition to mammalian HEVs, two unique groups of HEV-like 
viruses that have been isolated from avian species and cutthroat trout (Oncorhynchus 
clarkia) have been assigned to species Orthohepevirus B and to genus Piscihepevirus (as 
the only member), respectively.

Initially, HEV was assumed to be solely restricted to humans, in whom it induced 
self-limiting hepatitis symptoms. However, the emergence of HEV and HEV-like 
isolates in swine and other animal species supports a much wider HEV host tropism, 
with some HEV genotypes identified as zoonotic pathogens[17]. Currently, hepatitis E 
cases have been frequently reported in both developing and developed countries and 
have occurred in step with increasingly more frequent observations of expanding host 
ranges[18-22]. Generally, inter-species transmission and infection of zoonotic type of 
virus from animal to humans is considered to be primary routing of HEV transmission 

http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Schematic illustration of hepatitis E virus genome and three well-defined open reading frames. The numbers above or below the RNA 
boxes indicate nucleotide numbers based on hepatitis E virus-1 prototype Sar55 strain (GenBank accession number AF444002). NCR: Non-coding region; ORF: 
Open reading frame.

within Western worlds, while fecal-oral transmission appears to be the predominant 
route of HEV transmission within developing countries[23,24]. Notably, immune 
serological surveillance data support a high prevalence rate of previous HEV infection 
in the general population but demonstrate a declining trend in recent years that may 
be due to undetected endemic HEV circulation[25,26]. Meanwhile, frequent detection 
of recent cases of chronic HEV, HEV-related acute hepatic failure, and extrahepatic 
HEV manifestations supports this speculation as well[25,27-30]. Moreover, these 
observations imply that zoonotic HEV infection is a complicated pathogenic process 
underlying various forms of HEV-related disease. However, our understanding of 
HEV remains restricted due to the lack of a robust in vitro HEV cell system. 
Nevertheless, the HEV genome is known to contain three well-defined ORFs that have 
been found in all HEV genotypes[7,8]. HEV-ORF3, the smallest ORF found in HEV 
genomes, encodes a unique protein with multiple indispensable functional roles 
associated with viral replication and pathogenesis. In this review, we discuss the 
recent progress toward understanding HEV-ORF3 pathological roles in detail and 
provide new insights.

PROTEINS ENCODED BY HEV 
HEV-ORF1 polyprotein as viral replicase
The HEV-ORF1 protein is the largest protein encoded by the HEV genome and can be 
directly translated from the mRNA-like genome of HEV[8]. Bioinformatics-based 
protein homology analysis indicated that at least eight function domains are present 
within HEV-ORF1 according to similarities to counterparts from other RNA viruses 
(Figure 2)[31]. These protein domains include methyltransferase domain, the Y 
domain, papain-like cysteine protease (PCP) domain, a hypervariable region 
containing previously assigned hypervariable domain and proline-rich domain, the X 
domain (also named macro-domain), RNA helicase domain, and a RNA polymerase 
domain (RdRp)[2,32]. The methyltransferase domain and Y domain together are 
thought to constitute the functional unit of RNA capping enzyme[2,32]. It remains 
unknown whether HEV-ORF1 protein acts alone to perform all putative viral replicase 
functions or is cleaved by host protease or viral protease (via PCP domains) to generate 
independent units resembling viral replicases similar to other positive-sense RNA 
viruses[2,33-35]. To date, available data suggests that proteolytic cleavage of the HEV-
ORF1 product involves PCP domain encoded within HEV-ORF1[2,33-35]. Besides viral 
replication, another notable characteristic of HEV-ORF1 protein is its flexibility for 
insertions or deletions within the hypervariable region. The proline-rich domain 
within the hypervariable region was proposed to act as a linking hinge for the 
upstream PCP domain and downstream macro-domain, leading to formation of an 
unstable tertiary structure[31,36-38]. Conversely, the hypervariable region is 
considered an intrinsically disordered region containing extensive gene segment 
insertions or deletions and may participate in viral replication[39-42]. As a unique 
example, one HEV-3 isolate, Kernow-C1 p6 strain, which was originally isolated from 
an HIV patient chronically infected by HEV as well, contains a 174-nt insertion of a 
human ribosomal protein S17 sequence originating from the host[43], which confers 
ORF1 protein with novel nuclear/nucleolar trafficking capability and may promote 
viral replication in vitro[44,45].
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Figure 2 Function domains of hepatitis E virus-open reading frame 1 polyprotein. Putative functional domains of hepatitis E virus (HEV)-open 
reading frame 1 polyprotein based on HEV-1 prototype Sar55 strain are listed as follows: Methyltransferase domain; Y domain; papain-like cysteine protease; 
hypervariable region; proline-rich domain; X-domain; Hhelicase; RNA-dependent RNA polymerase. Met: Methyltransferase domain; Y: Y domain; PCP: Papain-like 
cysteine protease; HV: Hypervariable region; Pro: Proline-rich domain; X: X-domain; Hel: Helicase; RdRp: RNA polymerase; ORF: Open reading frame.

HEV-ORF2 encodes viral capsids
HEV-ORF2 encodes the putative capsid protein of HEV virions with a full-size of 660 
aa residues, and has a predicted molecular mass of 72 kDa[46]. Notable, the full length 
ORF2 protein carries N-linked glycans at three putative glycosylation Asn residues at 
positions 137, 310, and 562, as well as a 15 aa signal peptide at the N-terminus 
directing full length ORF2 protein to the endoplasmic reticulum (ER)[47]. One notable 
characteristic of HEV-ORF2 is the existence of various forms of ORF2-derived proteins 
with multiple functions. Researchers observed very early that multiple processed 
ORF2-derived products were detected when recombinant ORF2 was expressed in 
different systems. The mature HEV capsid protein is generated from the full-length 
ORF2 precursor via proteolytic processing to remove the first N-terminal 111 aa and 
the last C-terminal 52 aa. However, at least two other forms of HEV-ORF2 have been 
detected in HEV infected cells and patients[48,49]. The first was a secreted form of 
ORF2 protein (ORF2s), which utilized an upstream start codon and contained a signal 
peptide that earmarked ORF2 for subsequent glycosylation and secretion[50]; the 
second was a capsid-associated truncated form of ORF2 (ORF2c), which was translated 
beginning at an internal methionine-encoding AUG start codon (aa16 of ORF2)[50]. 
Meanwhile, a truncated form of ORF2 (ORF2c) detected in HEV-infected cells may be 
secreted into the extracellular milieu, as is ORF2s[49].

The mature HEV capsid that lacks N-terminal 111 aa and the last C-terminal 52 aa of 
full ORF2 can form virus-like particles when expressed in insect cells[51,52]. Genetic 
analysis of ORF2 sequences of HEV genotypes 1-4 suggests that these proteins share 
greater than 85% similarity overall, with divergence mainly observed within the first 
N-terminal 111 aa, which are not incorporated into final virions[53]. A recombinant 
subunit vaccine using truncated HEV-1 ORF2 protein (HEV239) as major immunogen 
is licensed in China (Hecolin®)[2].

A multi-functional protein encoded by HEV-ORF3
ORF3, the smallest ORF among all HEV ORFs, partially overlaps with the N-terminus 
of ORF2 for about 300 nt and is translated from a different reading frame[9]. It was 
initially proposed that ORF3 protein contains 123 aa that are encoded by a subgenomic 
RNA distinct from the RNA encoding ORF2[7]. However, it was later confirmed that 
ORF3 protein is translated from a bicistronic subgenomic RNA to generate a 114-aa 
protein with a predicted molecular weight of 13 kDa (vp13), which is actually 9 aa 
shorter than the initially predicted length[9,54]. Basic sequence analysis of HEV-ORF3 
protein indicated that there are two hydrophobic domains and two proline-rich 
domains present within the N-terminal half and C-terminal portion of HEV-ORF3 
proteins, respectively[55,56], of which the first proline-rich domain contains a 
mitogen-activated protein kinase (MAPK) phosphorylation site (Ser71)[57]. 
Furthermore, two presenilin-associated protein (PSAP) motifs within the ORF3 protein 
were identified in HEV-1 prototype strain Sar55, with the first PSAP motif comprised 
of aa 86-89 and the second comprised of aa 95-98[58]. Although ORF3 protein is not 
required for viral RNA replication in vitro[59], it is irreplaceable for in vivo HEV 
infection and required for viral particle releasing[54,60,61]. In fact, most studies 
demonstrated that HEV-ORF3 is indispensable for viral particle egress and biogenesis 
of lipid membrane-wrapped HEV particles, which is now recognized as quasi-
enveloped particles. Moreover, the second PSAP motif within the HEV-ORF3 protein 
has been shown to be required for the formation of membrane-associated HEV 
particles, a process that relies on an association of ORF3 with lipids[58,62]. Currently, 
HEV-ORF3 is thought to form an ion channel that shares key structural features with 
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class I viroporins that are required for virion particle release from cells during 
infection[63]. This observation aligns with the reported putative role of pORF3[61] and 
with other evidence indicating that HEV-ORF3 protein interacts with tumor suscept-
ibility gene 101 (TSG101), the key component of host endosomal sorting complex 
required for transport (ESCRT) pathway, which is mainly employed by enveloped 
virus for budding and acquiring of viral envelope. Formation of ESCRT complex has 
been shown to lead to biogenesis of quasi-enveloped HEV particles[64-67].

HEV-1 specific ORF4 
In recent years, a hidden ORF4 from HEV-1 was characterized[10]. Translation of 
HEV-ORF4 protein is promoted by a novel element located in HEV-ORF1 appearing to 
be an atypical IRES sequence and works in combination with a suboptimal Kozak 
sequence[10]. The exact function of HEV-1 specific pORF4 is still unclear. It was 
demonstrated that pORF4 stimulates ER stress upon HEV replication[10]. It also 
interacts with multiple ORF1 domains in vitro which are presumably to form a 
complex further enhancing RdRp activity [10]. Furthermore, HEV-pORF4 specific 
antibodies are detectable in HEV-infected patients[10]. Nonetheless, additional invest-
igations are needed to understand functions of the ORF4 product that are unique to 
genotype 1 HEVs.

REGULATION OF HOST INNATE IMMUNITY AND SIGNALING BY HEV-
ORF3 PROTEIN
Initially, HEV-ORF3 protein did not receive much attention, due to its presumed role 
as an accessory protein involved in regulation of host signaling to promote HEV 
replication and invasion. This hypothesis was partially evidenced by the fact that 
ORF3 protein was dispensable for in vitro replication of HEV-RNA[59]. However, 
subsequent research studies demonstrated that HEV-ORF3-associated putative 
interference mechanisms acted on multiple host cell signaling pathways, such as those 
involved in host innate immunity[2,68,69], indicating that HEV-ORF3 activities 
ultimately promote viral replication and pathogenesis.

As a multifunctional protein, HEV-ORF3 has been demonstrated to play both 
positive and negative roles in interferon (IFN) induction. In our previous research, we 
found that HEV-ORF3 protein could enhance retinoic acid-inducible gene I (RIG-I) 
activation to subsequently enhance IFN induction[68]. More specifically, HEV-1 ORF3 
extended protein half-life of RIG-I and interacted with the RIG-I N-terminal portion to 
enhance ubiquitination-mediated RIG-I activation triggered by addition of the dsRNA 
analog poly (I:C)[68] (Figure 3A). Interestingly, it is notable that genotypic differences 
in HEV-ORF3-associated enhancement of RIG-I-mediated IFN induction were 
observed. For example, ORF3 proteins from the HEV-1 Sar55 strain and HEV-3 
kernowC1 p6 strain could enhance RIG-I activation, while HEV-2 and HEV-4 ORF3 
proteins could not[68], suggesting that HEV-ORF3 participated in genotype-specific 
HEV virulence and pathogenic effects. Moreover, these results also aligned with 
results of a more recent report demonstrating HEV-ORF3-associated increases of IFN-
α/β and interferon-stimulated gene 15 levels in hepatoma cell line HepG2/C3A[70]. 
Conversely, other reports have demonstrated that overexpression of HEV-ORF3 
downregulated Toll-like receptor (TLR) 3 and TLR7 and their downstream signaling 
pathways[71,72] (Figure 3B). Meanwhile, another study has demonstrated that ORF3 
protein from an HEV-1 strain interacted with signal transducer and activator of 
transcription (STAT) 1 to block type I IFN-activated pathway[73] (Figure 3C). 
Furthermore, another study found that ORF3 proteins blocked nuclear translocation of 
STAT3 to down-regulate STAT3-dependent gene expression, including expression of 
acute-phase response proteins[74].

Besides the innate immune response, yeast two-hybrid-based screening detected 
that binding of ORF3 to Pyst1, a MAPK phosphatase, led to activation of MAPK 
pathways[75]. Thus, ORF3 appears to regulate host gene expression, as MAPK is 
related to host gene expression and signaling. Meanwhile, HEV-ORF3 may promote 
expression of glycolytic pathway enzymes by enhancing phosphorylation and 
transactivation function of p300/CREB-binding protein as well[76]. Additionally, 
microarray analysis of Huh7 cells has suggested that liver-specific genes may also be 
modulated by HEV-ORF3, since it modulated phosphorylation of hepatocyte nuclear 
factor 4[77]. Moreover, recent research has demonstrated that HEV-ORF3 plays a 
functional role in virus-cell interactions by influencing expression of integral 
membrane protein and basement membrane proteins to alter host cell processes 
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Figure 3 Regulation of host innate immune response by hepatitis E virus-open reading frame 3 proteins. A: Promotion of retinoic acid-inducible 
gene I mediated activation by hepatitis E virus (HEV)-open reading frame (ORF) 3; B: Inhibition of Toll-like receptor (TLR) 3 and TLR7 by HEV-ORF3; C: Blocking of 
the phosphorylation of signal transducer and activator of transcription (STAT) 1 to inhibit Janus kinase/STAT signaling. RIG-I: Retinoic acid-inducible gene I; RIP-I: 
Ribosome-inactivating proteins type I; FADD: Fas-associated protein with death domain; IKK: IkappaB kinase; TBK: Tank-Binding-Kinase; IRF: Interferon regulatory 
factor; NF-kB: Nuclear factor kB; IFN: Interferon; TLR: Toll-like receptor; TRIF: Toll-interleukin 1 receptor domain-containing adapter inducing interferon-beta; NAPI: 
Net anthropogenic phosphorus input; IFNAR: Inflammation-the type I interferon receptor; JAK: Janus kinase; TYK: Targeting tyrosine kinase; STAT: Signal transducer 
and activator of transcription; ISGF: Interferon-stimulated gene factor; ISRE: Interferon-stimulated response element; ISGs: Interferon-stimulated genes; CBP: CREB-
binding protein.
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associated with apoptosis and lipid metabolism[78]. Taken together, these data suggest 
that HEV-ORF3 modulates multiple signaling pathways, including those involved in 
host innate immunity, to ultimately promote HEV pathogenesis.

INVOVEMENT OF HEV-ORF3 PROTEIN IN BIOGENESIS OF QUASI-
ENVELOPED HEV PARTICLES 
The presence of a lipid layer-based envelope has long been used as the basic criterion 
for virus classification[66]. The presence of a lipid layer can be assessed through 
treatment of virus preparations with bile salts, a process that abrogates infectivity of 
enveloped virions, but not non-enveloped virions, by removing their surface lipid 
layers[66]. Generally, it is believed that during the virion budding process a viral 
envelope is formed from membranes of infected cells that contain molecules of at least 
one membrane-embedded virus-encoded glycoprotein (presented as peplomers). Viral 
envelopes interact with corresponding virus receptors located on target cells to 
promote membrane fusion of cellular membrane and viral envelop after initial 
interactions of virions and corresponding receptors. Meanwhile, surface glycoproteins 
located in viral envelope serve as antibody-neutralization targets in most cases[66], 
while the lipid layer of the virus envelope prevents internal virus antigens, such as 
nucleocapsid proteins, from serving as viral neutralization targets[79]. Thus, as 
compared to a non-enveloped virus, a quasi-enveloped virion would be perceived by 
the host immune system as antigenically distinct from a naked virion. For example, 
hepatitis A virus (HAV) was the first non-enveloped virus which is confirmed to 
hijack host cell membrane similar to enveloped virus as an enveloped form[80]. 
Biogenesis of enveloped HAV particles has been shown to depend on the ESCRT 
system[80,81], which is involved in budding of enveloped viruses. Membrane-
wrapped or enveloped HAV particles mainly exist in circulation system during acute 
infection phase of HEV and envelopment confers protection of virus from recognition 
by neutralizing antibodies, which prevents impairment of virion infectivity[80]. 
Similar to HAV, HEV was originally classified solely as a non-enveloped virus before 
membrane-wrapped HEV particles were discovered, with HEV-ORF3 involvement in 
biogenesis of quasi-enveloped HEV virions confirmed only very recently.

It was observed very early that HEV-ORF3 protein is not required for viral RNA 
replication in vitro[59]; however, this protein is irreplaceable for HEV replication in 
vivo and is required for viral particle release from HEV infected cells in vitro[54,60,61]. 
Meanwhile, antibody-capture assays of HEV virions with or without detergent 
treatment demonstrated that HEV virion from either serum samples of patients or 
supernatants of HEV-infected cells were associated with lipid layer and ORF3 
protein[82]. Subsequent screening to detect proteins interacting with HEV-ORF3 
protein pinpointed the TSG101, a component of the ESCRT complex, as the potential 
interacting partner of HEV-ORF3[62]. Importantly, the ESCRT complex recognizes and 
earmarks ubiquitinated proteins for subsequent incorporation into multivesicular 
bodies (MVBs), an essential step for lysosomal degradation[83]. The ubiquitin E2 
variant domain in TSG101 recognizes and interacts with the P(T/S)AP motif present in 
target proteins to recruit targets to the endosomal membrane[84].

Many enveloped viruses are equipped with a P(T/S)AP motif within their structural 
proteins that interact with TSG101 to redirect assembled viral components to cell 
membrane for virion release from infected cells[85]. Originally, two PSAP motifs 
comprised of aa 86-89 and aa 95-98 were identified within HEV-ORF3 proteins, the 
second of which was found to be conserved among HEV genotypes[58]. Replacement 
of the PSAP motif in HEV-ORF3 proteins with heterologous domain motifs (PPPY, 
YPDL, and PSAA) or mutated PSAP motifs has been shown to affect HEV virion 
release from infected cells[58,86], including avian HEV release[87]. Additionally, HEV-
ORF3 expressed in cells was found to associate with the cellular cytoskeleton fraction, 
with deletion of the N-terminal hydrophobic domain of vp13 abolishing this 
association[57]. Moreover, a more recent study demonstrated that green fluorescent 
protein-tagged ORF3 protein interacted with cellular microtubules and modulated 
microtubule dynamics[55]. This microtubule-like filament of HEV-ORF3 protein 
indicated that it was potentially involved in a process that promotes virus egress; this 
process is reminiscent of the process by which the pUL37 protein of herpes virus 
interacts with dystonin, an important cytoskeleton cross-linker involved in 
microtubule-based transport of capsids during virion egress[88]. Although HEV was 
originally defined as a non-enveloped virus, such HEV-ORF3 functions that were 
formerly attributed only to enveloped viruses may now be related to HEV in its 
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recently discovered “quasi-enveloped” form[64-67].
Consistent with the aforementioned roles of HEV-ORF3 in virus egress[61], a recent 

study found that HEV-ORF3 shares key features with class I viroporins, including its 
function as an ion channel participating in viral particle egress or release[63], a 
function that had been previously demonstrated for the well-characterized viroporin 
of influenza A virus matrix-2 (M2) protein[63]. Meanwhile, a putative transmembrane 
region identified in pORF3 may be involved in ER localization of this protein[63]. 
Since viroporins of other viruses, such as M2 of influenza A virus, are components of 
virions, these observations imply that HEV-ORF3 is a structural HEV virion protein 
that exists in a membrane-associated state during the formation of envelope structures 
of quasi-enveloped HEV virions[89]. Interestingly, palmitoylation of cysteine residues 
within the N-terminal region of HEV-ORF3 has been shown to participate in its 
association with the membrane and is also required for infectious particle 
secretion[90].

The unique role that HEV-ORF3 plays during biogenesis of quasi-enveloped virus 
particles makes it a novel target candidate for antiviral drug development. In fact, one 
study has shown that the addition of a cyclic peptide inhibitor (CPI) to HEV-infected 
cells interrupted the interaction between the HEV-ORF3 PSAP motif and TSG101[85] 
and reduced virion release by over 90% when a 50% inhibitory concentration of CPI of 
2 μM was used. Thus, HEV-OR3 has potential as a novel candidate for further 
development as an anti-HEV drug.

POTENTIAL ROLES OF HEV-ORF3 PROTEIN IN HEV HOST TROPSIM
Since the isolation of zoonotic HEV strains from swine HEV and discovery of other 
HEV-like viral isolates, HEVs have been continually identified from various 
mammalian hosts. Based on their ability to cause inter-species infection, HEV isolates 
can be divided three distinct groups: HEV-1 and 2 are only restricted in human; HEV-
3, 4, and 7/8 are zoonotic types; while Orthohepevirus C is animal-restricted type. Based 
on reports in the literature, it implies that either factors or viral determinants 
contribute to HEV host tropisms and cross-species transmission events.

Among all ORFs, HEV-ORF1 encodes the largest HEV protein and appears to be 
indispensable for determining HEV host range. An in vitro study demonstrated that 
swapping of genetic fragment among HEV-1 and HEV-4 infectious clones indicated 
that chimeric virus formed from an HEV-1 infectious clone bearing surface HEV-4 
ORF1 could replicate in porcine kidney cells, while the original HEV-1 virus could 
not[91]. Meanwhile, chimeric virus containing the junction region between ORF1/2 
and the 3' non-coding region (NCR) of HEV-3 or the 3' end of the HEV-1 backbone 
failed to infect piglets, suggesting that the 5′ NCR and ORF1 are involved in HEV 
cross-species infection[92]. By contrast, a recent report demonstrated, via genetic 
fragment swapping of ORF1 regions between HEV-1 and HEV-3 infectious clones, that 
recombinant chimeric viruses could be generated in vitro. In any case, these chimeric 
viruses could not infect piglets in vivo[93], suggesting that ORF1 is not the only 
determinant that can confer cross-species infectivity of HEV in vivo.

As the viral capsid protein, HEV-ORF2 was initially thought to be an unlikely 
determinant of host tropism, since it is conserved among all major genotypes infecting 
humans[94]. However, results of in vivo reverse genetics-based studies that swapped 
segments between different HEV genotypes indicated that HEV-3 or HEV-4 based 
chimeric viruses inserting ORF2 from HEV-1 was incapable to cause effective infection 
in swine[95]. Thus, it appears that HEV-ORF2 is also involved in HEV-interspecies 
infectivity, in agreement with results of another report demonstrating that 
replacement of the HEV-3 capsid region spanning aa 456 to 605 (the putative virus 
receptor-binding region) with corresponding region from HEV-1 prevented chimeric 
virus from entering and infecting swine cells[96]. Therefore, these data imply that in 
addition to ORF1, viral capsid proteins also determine host preference. Nevertheless, 
until cellular receptors for HEV are identified, the link between viral capsid residues 
and cellular receptor determinants underlying HEV host tropism still requires further 
investigation.

In addition to ORF1/2, other reports have demonstrated that ORF3 proteins may be 
involved in determining host range of HEV. Up to date, the literature suggests that 
HEV-ORF3 protein acting as an ion channel essentially resembles viroporins involved 
in viral particle release during HEV infection[63]. This viroporin-like function depends 
on the highly conserved PSAP motif spanning aa 95-98 within Orthohepevirus A, which 
has been proposed to interact with host TSG101. However, truncation analysis has 
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indicated that the N-terminal 25 aa of HEV-1 ORF3 are required for its association with 
microtubules as well as virus release[55]. Meanwhile, alignment of ORF3 aa sequences 
of all eight HEV genotypes indicates that the region containing the M-terminal 25 aa of 
different HEV-ORF3 proteins are more conserved than the rest of HEV-ORF3. 
Therefore, the conservation of this region may reflect the conserved role of HEV-
ORF3-dependent virion release across all genotypes. Nonetheless, a recent study 
demonstrated that rat HEV-ORF3 protein possessed the PxYPMP motif in place of the 
original PSAP motif found in human HEV-ORF3 proteins[97]. Intriguingly, unlike 
human HEV-ORF3 proteins, rat HEV-ORF3 proteins did not bind to TSG101, but 
instead utilized MVB-based sorting to achieve virion release; this mechanism differed 
from the aforementioned TSG101-dependent mechanism for effecting release of 
human HEV from infected cells[97]. Thus, these results taken together imply that 
HEV-ORF3 may have an important species-specific function.

Meanwhile, except for the abovementioned conserved motifs, less homology is 
observed elsewhere in the HEV-ORF3 protein, especially within its C-terminal half (aa 
62 to aa 114) (Figure 4), a region that appears to be important for adaptation to various 
hosts. It is also notable that genomic locations of ORF3-encoding genes vary among 
species of Orthohepevirus (either of partially or fully overlapping with ORF2, Figure 5)
[98,99], which implies a genotype-specific evolution pattern influencing functions of 
HEV-ORF3 that affect HEV host tropism. This speculation is in line with a genotype-
specific enhancement of IFN induction by HEV-ORF3 proteins observed in our 
previous report[68]. Therefore, the mechanism by which a genotype-specific function 
of ORF3 product influences HEV host tropism requires further confirmation, although 
the accumulating literature indicates that a host-specific function exists that may 
influence host tropism by HEV-ORF3 proteins.

HEV-ORF PROTEIN AS VACCINE TARGET FOR HEV 
Since the discovery of quasi-enveloped virions, researchers have tried to determine if 
these particles differ from classically enveloped virions, since the outer lipid bilayers 
of quasi-enveloped particles, such as those of HAV, are devoid of any viral 
proteins[66,80], while both HAV virion forms are equally infectious[80]. This apparent 
paradox raises the question of how membrane-wrapped particles can infect cells in the 
absence of viral peplomers that are generally thought to be required for enveloped 
virus infectivity[66]. Nevertheless, HEV appears to differ from HAV, since researchers 
observed very early before (prior to the identification of quasi-enveloped HEV 
particles) that HEV-ORF3 protein specific monoclonal antibody (mAb) could capture 
viral particles from serum samples of HEV patients or cell culture supernatants of 
HEV infected cells[89]. It is now clear that HEV-ORF3 protein associates with the lipid 
layer in quasi-enveloped virions produced both in vitro and in vivo, while HEV virions 
from feces fail to be captured by this mAb due to the lack of the HEV-ORF3-containing 
envelope[89]. This observation was recently confirmed by electron microscopy 
showing that immunogold-labeled mAb recognizing HEV-ORF3 proteins bound to 
quasi-enveloped HEV particles as well[100]. Moreover, although in vitro infectivity 
appears to be equivalent between quasi-enveloped HAV particles and naked 
counterparts, quasi-enveloped HEV particles infect fresh cells in a less efficient manner 
in vitro, as reflected by their need for a longer inoculation time to achieve maximal 
infectivity[67]. Meanwhile, it appears that cell entry by quasi-enveloped HEV virions 
depends on endosomal trafficking, which can be abrogated by blocking endosomal 
acidification[67]. Furthermore, additional investigations have demonstrated that HEV-
ORF3 protein acts on ion channel protein and participates in the release of infectious 
virions from infected cells[63]; this role is similar to that of other well-characterized 
viroporins such as M2 protein of influenza A virus[63]. It is also notable that two 
hydrophobic domains located in N-terminal half of HEV-ORF3 demonstrated unique 
functions, whereby the first one is required associating with microtubules[55], while 
the second one contains a putative transmembrane region involved in ER 
localization[63]. Since viroporins of other viruses, such as M2 protein of influenza A 
virus, are components of virions, these observations imply that HEV-ORF3 is also a 
structural component of HEV virions, although it is not known if antibody-based 
neutralization mechanisms differ between the two types of HEV particles. 
Nevertheless, since HEV-ORF3 is present within quasi-enveloped HEV virions[89], it 
would be an interesting question to be determined if HEV-ORF3-specific antibodies 
are capable to neutralize quasi-enveloped HEV viral particles since capsid specific 
antibodies fail to do so.
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Figure 4 Alignment of amino acid sequence of hepatitis E virus-open reading frame 3 from 4 genotypes in Orthohepevirus A virus. 
Alignment of amino acid sequence of open reading frame 3 from all seven genotypes classified as Orthohepevirus A virus. Hepatitis E virus (HEV)-1 (reference 
sequence GenBank accession #M73218), HEV-2 (reference sequence GenBank accession #M74506), HEV-3 (reference sequence GenBank accession 
#AF082843), and HEV-4 (reference sequence GenBank accession #AJ272108) are shown. Those residues that are the same as consensus sequence are shown as 
“.”. HEV: Hepatitis E virus.

Figure 5 Hepatitis E virus genome organization. Genome location of open reading frame 3 among different hepeviruses. HEV: Hepatitis E virus; NCR: Non-
coding region; CRE: Cis-reactive element; ORF: Open reading frame.

It remains unclear whether HEV-ORF3 acts as a potential neutralizing target for 
HEV. A previous report suggested that a recombinant vaccine candidate using HEV-4 
ORF3 protein fused with interleukin-1β might confer partial protection against virus 
challenge[101]. Moreover, similar to vaccines based on HEV-4 ORF3, our research on 
avian HEV demonstrated that chickens immunized with recombinant avian HEV-
ORF3 protein showed partial protection upon challenge and had milder disease 
symptoms than did controls[102]. However, it is notable that challenge experiments 
for these vaccines only employed virus stocks obtained from fecal samples which 
contained only naked viral particles (without envelopes containing HEV-ORF3 
protein)[102]. Therefore, it is possible that antibodies induced by current ORF3-based 
vaccines cannot prevent first-round infection during initial challenge with naked virus, 
since naked HEV virions cannot be neutralized by antibodies specific for ORF3-HEV. 
Nevertheless, partial protection observed in both experiments may be due to ORF3-
specific antibody-based neutralization of newly synthesized quasi-enveloped HEV 
virion entering into circulation after initial infection caused by naked HEV virion used 
for challenging. In any case, these observations raise the interesting question of 
whether an ORF2-based vaccine could protect hosts from challenge with quasi-
enveloped HEV particles, a concept that warrants further investigation.

Up to date, available data indicated that ORF3 proteins (including avian HEV-
ORF3) is highly immunogenic to evoke host humoral response, with most B-cell 
epitopes located at the C-terminal of HEV-ORF3[103-106]. Thus, the C-terminal half 
(about 60 aa) of HEV-ORF3 proteins appears to be a promising candidate as a 
recombinant subunit vaccine. However, an obstacle to employing this region for a 
vaccine candidate is the potential antigen variation issue as predicted by aa sequence 
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alignment of HEV-ORF3s from the four reference strains of HEV-1 to -4 (Figure 4)[68]. 
Therefore, systematic mapping of antigenic epitopes within HEV-ORF3 proteins of 
different HEV genotypes may be required before using immunogenic ORF3 epitopes 
as additional components of HEV subunit vaccines.

CONCLUSION
Although nearly three decades have elapsed since the identification and character-
ization of the complete genome sequence from the first HEV isolate, the full spectrum 
of this virus remains unclear and HEV infection now is a public health concern in 
developed countries as well. Currently, cross-species infection and host tropisms of 
different HEV genotypes remain elusive, due to the lack of easy-to-handle animal 
model and a robust in vitro system for studying HEV. Although many details about 
this virus and its pathology have been revealed in recent years, it is notable that HEV-
ORF3 protein, the smallest ORF encoded by HEV, appears to have diverse functions 
and key roles in HEV virion release, biogenesis of quasi-enveloped virus, regulation of 
the host innate immune response, and neutralization of quasi-enveloped virus. These 
advances will guide further studies to reveal the basic biology of HEV, functions of 
HEV proteins, and HEV pathogenic factors toward the development of effective 
therapeutics and an improved vaccine.
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