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Abstract
Hepatocellular carcinoma (HCC) is the most common type of cancer among 
primary malignant tumors of the liver and is a consequential cause of cancer-
related deaths worldwide. In recent years, uncovering the molecular mechanisms 
involved in the development and behavior of this tumor has led to the identi-
fication of multiple potential treatment targets. Despite the vast amount of data on 
this topic, HCC remains a challenging tumor to treat due to its aggressive 
behavior and complex molecular profile. Therefore, the number of studies aiming 
to elucidate the mechanisms involved in both carcinogenesis and tumor 
progression in HCC continues to increase. In this context, the close association of 
HCC with viral hepatitis has led to numerous studies focusing on the direct or 
indirect involvement of viruses in the mechanisms contributing to tumor 
development and behavior. In line with these efforts, this review was undertaken 
to highlight the current understanding of the molecular mechanisms by which 
hepatitis B virus (HBV) and hepatitis C virus (HCV) participate in oncogenesis 
and tumor progression in HCC and summarize new findings. Cumulative 
evidence indicates that HBV DNA integration promotes genomic instability, 
resulting in the overexpression of genes related to cancer development, 
metastasis, and angiogenesis or inactivation of tumor suppressor genes. In 
addition, genetic variations in HBV itself, especially preS2 deletions, may play a 
role in malignant transformation. Epigenetic dysregulation caused by both viruses 
might also contribute to tumor formation and metastasis by modifying the 
methylation of DNA and histones or altering the expression of microRNAs. 
Similarly, viral proteins of both HBV and HCV can affect pathways that are 
important anticancer targets. The effects of these two viruses on the Hippo-Yap-
Taz pathway in HCC development and behavior need to be investigated. 
Additional, comprehensive studies are also needed to determine these viruses' 
interaction with integrins, farnesoid X, and the apelin system in malignant 
transformation and tumor progression. Although the relationship of persistent 
inflammation caused by HBV and HCV hepatitis with carcinogenesis is well 
defined, further studies are warranted to decipher the relationship among inflam-
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masomes and viruses in carcinogenesis and elucidate the role of virus-microbiota 
interactions in HCC development and progression.
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Core Tip: Hepatocellular carcinoma remains an aggressive tumor, despite extensive 
studies on its ontogeny and prognosis. Although the occurrence of this tumor in both 
hepatitis B virus (HBV) and hepatitis C virus (HCV) backgrounds indicates the effect 
of persistent inflammation in malignant transformation, the viral effects are not limited 
to the impaired microenvironment. Recent studies have revealed complex mechanisms 
that reflect concerted and cumulative effects of chronic inflammation-related alter-
ations, modification of oncogenic pathways (especially tumor suppression, prolif-
eration, and apoptosis), and epigenetic dysregulation driven by both HBV and HCV. In 
addition, the integration of HBV into host DNA may also affect tumor development 
and behavior.

Citation: Elpek GO. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An 
update. World J Clin Cases 2021; 9(19): 4890-4917
URL: https://www.wjgnet.com/2307-8960/full/v9/i19/4890.htm
DOI: https://dx.doi.org/10.12998/wjcc.v9.i19.4890

INTRODUCTION
Primary liver cancer is a major global health problem. Its incidence and mortality are 
increasing, in contrast to the decreasing incidence of many organ cancers worldwide. 
Indeed, hepatocellular carcinoma (HCC), which accounts for 90% of liver 
malignancies, is the 5th and 9th most common cancer in men and women, 
respectively, and is the 3rd leading cause of cancer-related deaths[1,2]. Despite exten-
sive research on its diagnosis and treatment, difficulties in early diagnosis and a lack 
of specific medical treatment in advanced stages have led to HCC continuance as an 
aggressive tumor with a poor prognosis.

Although risk factors associated with the development of HCC are numerous, the 
damage caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) infections 
plays a large role in the development and progression of HCC[1]. In this context, the 
detection of HBV and HCV in 50% and 30% of patients with HCC, respectively, and 
the higher prevalence of HCC in endemic regions of the world are strong indicators 
supporting the relationship between HCC and viral infection[3-6]. In addition, among 
patients with HBV infection worldwide, higher rates of HCC development and 
mortality in patients with a coinfection of HBV (24%) or HCV (1%) compared to those 
with HVB monoinfection also support the contribution of viruses to oncogenesis and 
tumor behavior[7-10]. Therefore, defining the mechanisms by which viruses 
participate in molecular events in HCC development and progression is paramount 
for identifying new treatment targets.

This review aims to provide an overview of basic and clinical studies dealing with 
the molecular regulation and cell biology of HBV and HCV that affect carcinogenesis 
and tumor behavior in HCC. Additionally, it addresses the current understanding of 
existing mechanisms to facilitate the identification of new therapeutic targets and 
strategies to combat this disease.

GENERAL FEATURES OF THE VIRUSES
HBV
This virus is a member of the hepadnaviridae family with cellular tropism for 
hepatocytes[11-13]. HBV has a compact, partially double-stranded relaxed circular 
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DNA genome (rcDNA) containing four overlapping open reading frames[14]. Viral 
protein products include three surface proteins [also known as large/pre-S1 (L-
HBsAg), medium/pre-S2 (M-HBsAg) and small/major (S-HBsAg)], a core antigen 
(HBcAg), secreted "e" antigen (HBeAg), viral polymerase (reverse transcriptase, DNA 
polymerase, and RNaseH activity) and protein X (HBx), which play an important role 
in HBV pathogenesis and viral transcription[14].

Determination of viral genotypes in HBV has also been found to play an important 
role in assessing HCC risk. Among the ten subgenotypes of HBV (A to J), HCC risk 
from highest to lowest is ranked as genotypes C, B, F, D, and A[6,15]. It has been 
suggested that core promoter mutations (T1762/A1764) convey a higher risk for 
developing HCC, particularly in young and noncirrhotic subjects infected with HBV 
genotype B or C[16]. Finally, there is also evidence that in genotype C infections, the 
development of HCC can be predicted by mutations/deletions in the preS region[17]. 
Comprehensive information regarding viral replication and other features of HBV is 
available in many recent studies.

HCV
HCV, part of the Flaviviridae family, is a single-stranded RNA virus[18]. HCV infects 
hepatocytes because they contain both essential entry receptors and suitable cellular 
host factors (miR-122) for the virus[19,20]. As a function of HBV, three structural 
proteins (core, E1, and E2), as well as seven nonstructural proteins (NS2, NS3, NS4A, 
NS4B, NS5A, and NS5B), are involved[18]. Recently, two mini-core proteins containing 
the C-terminal portion of the p21 core nucleocapsid (but lacking the N-terminus) and 
translated from an alternative open reading frame at amino acids 70 and 91 have been 
described[21,22]. Their mutations were found to be correlated with an increased risk of 
HCC, insulin resistance, and failure of interferon therapies. Following viral replication 
and protein translation, the core protein is collected on a lipid droplet in the ER, 
allowing the nucleocapsid to form by collecting the encapsulated HCV to release the 
viral particles associated with very low-density lipoproteins from the cytoplasm[23-
25]. These data are all evidence for the dependence of HCV on lipoproteins for 
survival.

There are 6 main genotypes (1 to 6) of HCV. However, findings regarding the HCV 
genotype and the risk of HCC development differ[6,10]. In the United States, HCV 
genotype 3 infections have been observed as conveying a higher risk for developing 
HCC than genotype 1 infections. Another study from Asia reported an increased risk 
of genotype 6 infections[26,27]. Although geographical distribution appears to affect 
these data, further studies are needed to examine the relationship between HCV 
genotypes and HCC risk.

HBV-RELATED CARCINOGENESIS
HBV DNA integration in host chromosomes
The integration of HBV DNA into host chromosomes is not an essential step in the 
HBV life cycle. However, this phenomenon promotes the stimulation of carcinogenesis 
by causing instability of the host chromosomes and increasing the expression of genes 
related to cancer development, metastasis, and angiogenesis, or by inactivating tumor 
suppressor genes. Since the 1980s, when the integration of HBV DNA into the host 
genome was first reported, the genomic integration regions on the chromosomes have 
long been thought to be random. In recent years, whole-genome sequencing 
techniques of tumor tissues have revealed repetitive integration spots. In tumor tissues 
from patients with HBV-HCV, HBV DNA integration was observed in 80% of cases, 
and the frequency of integration was significantly higher in HCC than in nontumor 
areas[28,29]. Moreover, the integration sites in tumors tend to be in the vicinity of 
important promotor regions, such as CpG islands and telomeres, suggesting that 
preferential targeting of these regions is related to gene regulation[29-31]. Target genes 
affected by HBV genome integration include the following: tumor suppressor protein 
53; telomerase reverse transcriptase; catenin beta 1 (CTNNB1); retinoic acid receptor 
beta; catenin delta 2; Axin1; AT-rich interactive domain-containing protein 1A 
(ARID1A); ARID1B; ARID2; myeloid/Lymphoid or mixed-lineage leukemia 3 (MLL3); 
MLL4; cyclin E1; cyclin A2; protein tyrosine phosphatase receptor type D; and unc-5 
netrin receptor D[32-36]. Neuregulin 3, aryl-hydrocarbon receptor repressor, SUMO-
specific peptidase 5, rho-associated coiled-coil containing protein kinase 1, fibronectin, 
angiopoietin 1 calcium signaling-related genes, platelet-derived growth factor, 
apoptosis-related genes, and ribosomal protein 60S-like genes are also affected by HBV
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[37-41].
On the other hand, the integration of HBV DNA into host chromosomes often 

results in fragmentation, rearrangement, and degradation of the viral genome, leading 
to structural alterations. The most frequent change occurs with a high frequency of 
integration in the HBx coding sequence, leading to the formation of chimeric 
transcripts containing both viral and host sequences and the expression of C-
terminally truncated HBx[30,42,43]. This form of HBx has been shown to contribute to 
expanding cell lines with cancer stem cell-like properties, induce Wnt-5a, and 
participate in metastasis and cell proliferation[44-47]. It also stimulates oxidative DNA 
damage and promotes MMP-10 expression[48-50]. Additionally, it can also counteract 
the growth-suppressive and apoptotic effects of full-length HBx[51,52]. Hybrid 
transcripts formed by integration with host DNA (HBx-LINE1, HBx-S protein-coding 
region breaks, and truncated preS/S proteins) may also have an oncogenic effect[34,42,
53].

HBV induced epigenetic dysregulation
Epigenetic changes include all chromatin changes, which can be reversible according 
to physiological conditions that include three interactive types, DNA methylation, 
histone modification, and RNA-related silencing without any changes in the DNA 
sequence.

DNA methylation: In addition to epigenetic modifications of HBV DNA itself, HBV 
may also play a role in the methylation of genes that affect the activation of pathways 
involved in carcinogenesis development. In HBx-transgenic mice, the contribution of 
hypomethylation of GpG islands to the downregulation of E and N-cadherins 
involved in epithelial-mesenchymal transition (EMT) was demonstrated[54]. This 
hypomethylation also affects Smad6 and Kcp, which are involved in Smad-dependent 
TGF-β and Wnt signaling pathways[54]. Moreover, genes with important roles in HCC 
development such as p16 (INK4A), GSTP1, CDH1 (E-cadherin), RASSF1A, and p21 
(WAF1/CIP1), can be affected by HBV methylation[55]. In cell cultures, decreased 
transcriptional activity of CD82, which is both a tumor and metastasis suppressor, by 
HBV-mediated methylation also emphasizes the importance of viral-induced 
hypomethylation in carcinogenesis[56]. Ankyrin repeat-containing, SH3 domain-
containing, and proline-rich-region-containing protein (ASPP) family members are 
newly identified apoptosis regulatory proteins. Recently, downregulation of the 
ASPP1 and ASPP2 genes was correlated with HBV-related DNA methylation in HCC-
HBV[31]. In addition, HBx, which increases the recruitment of DNA methyltransferase 
1 (DNMT1) and DNMT3a to ASPP2, influences the host genome in carcinogenesis. 
Furthermore, after the suggestion that HBx plays a role by increasing the recruitment 
of DNMT1 and DNMT3a to the promoter region of ASPP2 during methylation, many 
studies have shown that the effect of HBx on host promoter methylation is associated 
with oncogenesis and tumor behavior[31]. The HBx protein contributes to tumor 
aggressiveness by methylating the CpG1 island that contains the P53 repressor and 
metastasis-associated protein 1 (MTA1) promoters by recruiting DNMT3a and 
DNMT3b. Similarly, it participates in oncogenesis by methylating the SOCS-1 tumor 
suppressor[57,58]. HBx can modulate oncogenesis and tumor behavior by modulating 
tumor suppressors, such as RASSF1A, protocadherin-10, insulin-like growth factor-
binding protein 3, and E-cadherin[59-62].

Histone modifications: For gene regulation, acetylation is important for the posttrans-
lational modifications of histones and involves the transfer of acetyl groups from 
acetyl-CoA to lysine residues on their N-terminal tail. This phenomenon is regulated 
by histone acetyltransferases and histone deacetylases (HDACs) and allows the 
binding of trans-acting factors to promote gene activation. In particular, increased 
expression of HDACs can contribute to oncogenesis due to their negative effects on 
suppressor genes[63,64]. In an elegant study, Liu et al[65] demonstrated that HBx 
binds to methyl-CpG binding domain protein 2 (MBD2) and the transcriptional 
coactivator CREB1 binding protein (CBP)/p300, leading to activation of insulin-like 
growth factor 2 (IGF-2) in HCC. They also demonstrated that HBx promotes 
hypomethylation and acetylation of histone H4 in the IGF-2 promoter and facilitates 
the formation of the MBD2-HBx-CBP/p300 complex, leading to transcriptional 
activation.

MicroRNAs in HBV: MicroRNAs (miRs) are small noncoding RNA molecules 
involved in gene silencing, and their modulation in the liver is associated with hepato-
carcinogenesis and tumor behavior, similar to many other cancers. In HBV-HCC, it has 
been noted that while the expression of miR-224, miR-545, miR-374a, and the miR-17-
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92 polycistron is increased[66-68], the expression levels of miR-145, miR-199b, let-7a, 
and miR-152 are decreased[67,69-71], supporting the distinct roles of miRs in these 
processes. Recently, upregulation of miR21, which is highly expressed in HBV-HCC, 
was found to be induced by HBx, leading to increased cell proliferation by inhibiting 
programmed cell death protein-4 and PTEN[72,73]. Li et al[74] suggested that miR21 
upregulation is dependent on stimulation of IL-6, facilitating STAT3 activation. In the 
liver, impaired lipid metabolism results in cellular damage and lipid accumulation 
involved in oncogenesis. In HCC, the levels of miR205, which regulates the expression 
of acyl-CoA synthetase long-chain family member 1 (an important lipid metabolism 
enzyme), decrease, leading to excessive lipid synthesis and accumulation[75,76], and 
the suppressive effect of HBx on miR205 has also been demonstrated. The results of a 
recent comprehensive study on the alterations of miRs in the liver suggest that 
different miRs are involved during the different steps of hepatocarcinogenesis[77]. In 
HBV-HCC, the expression of miR-150, miR-342-3p, miR-663, miR-20b, miR-92a-3p, 
miR-376c-3p, and miR-92b was found to be altered. However, in HBV, alterations in 
miR-98, miR-375, miR-335, miR-199a-5p, and miR-22 have been described. There is 
evidence that some of these miRs may be potential biomarkers for detecting HCC 
developing in HBV backgrounds, while others may represent therapeutic targets[69]. 
However, further studies are warranted to elucidate the biological significance of 
alterations in miRs during oncogenesis.

Genetic variations in HBV
HBV DNA polymerase is predisposed to errors, which can result in mutations in all 
four genes in the viral genome[30]. As described above, HBsAg proteins are in the 
form of three envelope proteins, L-HBsAg, M-HBsAg, and S-HBsAg. While L-HBsAg 
is involved in viral binding to the hepatocyte surface, the function of M-HBsAg is not 
fully understood. Nevertheless, increasingly more findings indicate that M-HBsAg 
deficiency does not affect viral replication or maturation. Among these three proteins, 
the most frequently observed S-HBsAg protein has its primary hydrophilic region 
(MHR) located between amino acids 99 and 169, containing the major antigenic 
determinant (determinant "a") between amino acids 127-147[30,31,77]. It has been 
shown that mutations in this determinant can lead to escape from vaccine-induced 
immunity[78]. In addition, various MHR mutations may lead to the reactivation of 
viral infection after an immunosuppressive therapy or may reduce the antibody 
development and antigenicity of HBsAg[79,80]. On the other hand, mutations in the 
preS sequence have been detected in the serum and tumor tissues of HBV-HCC 
patients[81,82]. PreS deletions may also disrupt the interaction of L-HBsAg with S-
HBsAg[83]. This may lead to retention of the L-HBsAg protein in the ER. Indeed, 
ground glass hepatocyte formation in HBV hepatitis is caused by the accumulation of 
the L-HBsAg protein in the ER due to PreS mutation[84-86]. However, the accumu-
lation of L-HBsAg proteins is not limited to ground glass formation but also leads to 
the induction of ER stress and subsequent oxidative DNA damage followed by 
malignant transformation with genomic instability[81,82]. Demonstrations of the 
association among preS or preS2 mutations with increased L-HBsAg expression and 
borderline dysplastic lesions and HCC development in experimental studies support 
the involvement of PreS deletions in carcinogenesis[81,87]. Another new mutant 
formed by the change in the 4th amino acid of the PreS1 protein (from tryptophan to 
proline or arginine) was found to be associated with an increased risk of HCC[88]. In 
addition, PreS mutants have also been shown to induce anchorage-independent 
cellular growth, inflammatory cytokines, the DNA repair gene OGG-1, and the 
expression of ER chaperones[84,89].

Among the naturally occurring nucleotide mutations involving all four HBV genes, 
the double nucleotide mutations A1762T and G1764A, which reside in the basal core 
promoter (BCP), greatly reduce the levels of precore protein mRNA and consequently 
HBeAg expression[79,90]. This mutant is often found in HBeAg-negative patients with 
chronic hepatitis[90]. This double mutation transforms a nuclear receptor binding site 
in BCP into an HNF1 transcription factor binding site and increases HBV replication
[91,92]. Mutation of BCP usually occurs in the form of G1896A, which abolishes 
HBeAg expression by converting codon 28 of the precore sequence into the TAG 
termination codon[91,93]. This mutation differs across HBV genotypes due to the 
localization of G1896 in an epsilon (e) structure (stem-loop structure) required for the 
initiation of pgRNA encapsulation[94]. G1896A mutation is uncommon in HBV 
genotype A and may lead to destabilization of the (e) structure. However, in other 
types of HBV, it can increase viral replication by stabilizing the (e) structure[95]. 
Previous studies have shown that these mutations are associated with high HCC risk, 
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while other BCP mutations (such as T1753C and C1766T) are associated with carcino-
genesis[96-98]. In addition, Yan et al[99] showed that these mutations were associated 
with upregulation of S phase kinase-associated protein 2 and induction of p53 
degradation.

The role of HBx protein in HCC
HBx and gene expression: HBx does not bind DNA directly but can interact with 
multiple transcription factors to alter the expression of host and viral genes. This 
protein, which plays a crucial role in the prevalence of HCC, is a 154 amino acid 
peptide chain containing a C-terminal transactivation domain consisting of an N-
terminal negative regulatory domain with a molecular mass of 17 kDa. HBx, which is 
formed from HBx gene transcription initiated by integrating viral DNA into the host 
genome, can be found in different subcellular regions[44]. Therefore, HBx acts 
differently depending on its subcellular localization within hepatocytes[100]. HBx in 
the nucleus performs viral replication both by increasing HBV gene expression and 
preventing HBV gene methylation[101-103]. Within the cytoplasm, HBx affects 
signaling pathways and transcription factors. On the other hand, it regulates protein 
degradation, cellular transcription, apoptosis, and cell proliferation by colocalization 
in the mitochondrial cytoplasm and nucleus[104]. Therefore, it is not surprising that 
HBx interacts with many factors and pathways directly and indirectly involved in 
carcinogenesis and tumor progression.

One of HBx’s mechanisms of action is its ability to bind to transcription factors 
involved in oncogenesis and the progression of HCC. These factors include nuclear 
factor kappa-Β (NF-κB), RNA polymerase binding protein, transcription factor II B, 
transcription factor II H, CBP/p300, activating transcription factor 2, and activating 
protein-2[105]. Furthermore, the effect of HBx on several transcription factors is not 
limited to being a binding partner and may further affect their function through 
distinct mechanisms. For instance, HBx not only binds to the cAMP response element 
binding protein (CREB) but also facilitates the participation of CREB in viral DNA by 
interfering with protein phosphatase 1 activity[105,106]. Similarly, HBx interferes with 
SIRT1, allowing the release of β-Catenin, which enables activation of the expression of 
cancer-promoting genes, such as cyclin-D1 and c-myc[107].

HBx also regulates gene expression through epigenetic modifications. Restriction of 
the expression of the secreted frizzled-associated proteins SFRP1 and SFRP5, members 
of the extracellular glycoprotein family, occurs through epigenetic silencing mediated 
by HBx[44,108,109]. In this process, HBx facilitates the binding of DNMT1 and 
DNMT3 to the promoters of these genes, leading to their hypermethylation[109]. 
Suppression of SFRP1 and SFRP5 allows transactivation of Wnt target genes, including 
c-myc and cyclin D1, consequently promoting EMT and malignant transformation
[109]. The decrease in the expression of both SFRP1 and SFRP5 in HBV-HCC is also in 
line with these findings[108-110]. SUZ12 and ZNF198 are two transcription repressive 
complexes held together by binding to the long noncoding RNA HOTAIR. SUZ12 
constitutes a subunit of polycomb repressor complex 2 (PRC2), and ZNF198 stabilizes 
the transcription suppressor complex (LSD1, Co-REST, and HDAC1). The effect of 
HBx on these two transcription suppressors leads to reduced PRC2 and LSD1/Co-
REST/HDAC1 complexes of target genes, such as epithelial cell adhesion molecule 
(EpCAM), which play an important role in tumor development and progression[111,
112].

HBx and DNA repair: Cells inhibit cell cycle progression by inactivating cyclin-
dependent kinases (CDKs) in response to DNA damage. The absence of such a 
response can cause genetic instability, mutagenesis, and tumor growth. Accumulating 
evidence indicates that HBx facilitates the accumulation of DNA damage by 
interfering with cell cycle checkpoints and DNA repair[31]. HBx also affects DNA 
repair by competing with XPB/D to bind and sequester p53[113]. An important 
protein in the base excision repair pathway is human thymine DNA glycosylase 
(TDG), structurally similar to HBx. Van de Klundert et al[114] suggested that HBx 
causes the accumulation of DNA damage and cellular transformation by altering or 
preventing the function of TDG in the DNA repair process. There is also evidence that 
HBx stimulates CDK2 and CDC2, which play a role in the transition of the cell to S and 
M phases, forcing the cell to enter the proliferation cycle.

HBV and cellular signaling pathways in hepatocarcinogenesis
Wnt/β-Catenin pathway: It has been shown that CTNNB1, the gene encoding beta-
catenin, is mutated in 40% of HBV-HCC cases[115]. Similarly, activation of Wnt/β-
Catenin was noted with loss of function due to hypermethylation in the tumor 
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suppressor APC gene, which is an important component of this pathway[116,117]. 
Detection of different expression levels of components in the canonical Wnt/β-Catenin 
pathway in HBV-related HCC (HBV-HCC) has presented findings supporting the role 
of HBV in oncogenesis. In such cases, higher expression of the regulators of Wnt/β-
Catenin (Frizzled 2, Frizzled 7, Segment polarity protein disheveled homolog DVL-3, 
secreted frizzled-associated protein 4, Wnt-1 inducible signaling pathway protein 1 
and fos-associated antigen 1) in tumor tissues compared to nontumoral mucosa and 
decreases in transducin-like enhancer protein, naked cuticle 1 (NKD1) and NKD2 gene 
expression indicate notable evidence for the involvement of this pathway in HBV-
associated carcinogenesis[109,115-119].

In this context, the HBx protein activates the Wnt pathway by inhibiting E-cadherin 
in different ways (promoter hypermethylation, changes in SNAIL gene expression, 
and Src signal activation) and represses SFRP1 and SFRP5[109,115-118]. On the other 
hand, HBx can disrupt the degradation of β-Catenin through its ability to bind with 
APC. Again, inhibiting the GSK3b degradation complex and stimulating URG7 causes 
abnormal activation of the Wnt signaling pathway. As a result, the expression of c-
myc, CTFG, and WISP2 increases[120,121]. HBx may also indirectly cause an increase 
in EpCAM from target genes of this pathway on miRs. It has been suggested that it 
may contribute to hepatocarcinogenesis, especially with the increase in c-myc onco-
protein[115].

HBsAg affects the Wnt pathway by increasing the expression of lymphoid 
enhancing factor, a transcription factor in this pathway. Differences in the expression 
of this factor in nontumor areas and tumors (cytoplasmic vs nuclear) indicate the role 
of HBsAg in the Wnt pathway in carcinogenesis[122]. Viral influences on this pathway 
are summarized in Figure 1.

NF-κB pathway: NF-κB consists of 5 proteins [NF-κB1 (p105/p50), NF-κB2 
(p100/p52), Rel A (p65), cRel and RelB], all of which contain a nuclear localization 
signal Rel homology region, while some (p65, cRel and RelB) have a transactivation 
region. More comprehensive information on this factor was presented in a recent 
review by Shokri et al[123], with viral contributions to the NF-κB pathway summa-
rized in Figure 2. The participation of these pathways in very important cellular 
events, such as growth, differentiation, proliferation, apoptosis, angiogenesis, and 
immune responses, is supported by demonstrating that aberrant expression of these 
pathways plays an important role in carcinogenesis and tumor progression. The use of 
NF-κB inhibitors as a therapeutic target in various cancers suggests that it may also be 
a suitable treatment option for HCC. However, the effects of viruses on this pathway 
should be better understood to use these pathways effectively in treatment. HBV 
activates this pathway through oxidative stress and TNF-α activation. HBx, HBsAg, 
and HBcAg can cause NF-κB activation by inducing ROS production[124]. By 
increasing the expression of cytokines, such as IL-6, IL-8, and CXCL2, the HBx protein 
contributes to inflammation and fibrosis and the development of HCC[125]. It has 
been demonstrated that activation of NF-κB by HBx is possible by affecting Rel-related 
and Rel-unrelated proteins. HBx induces a prolonged NF-κB response by decreasing 
cytoplasmic levels of p105 and p50 and increasing IKBα phosphorylation and 
degradation and Rel-A release[123,126]. In addition, by replacing p50, HBx can 
activate the NF-κB pathway[123]. It has been experimentally demonstrated that Rel-A, 
a component of nucleosome remodeling and the deacetylase complex, can bind to the 
promoter region of MTA1, leading to increased MTA1 expression and NF-κB 
activation. Bui-Nguyen et al[127] revealed that this situation was associated with 
invasion and metastasis in HCC. There is also evidence that the TANK-binding kinase 
responsible for RelA phosphorylation (TBK-1) may also play a role in HBx-associated 
NF-κB activation[123]. The existing role of the HBx protein in activation of the Wnt-β 
catenin pathway (see the previous section) may indirectly lead to NF-κB activation. 
Similarly, HBx may play an indirect role by activating cytoplasmic signaling pathways 
(PIK3C, Ras/Raf/MAP kinase, Src, and JAK-STAT) that promote the phosphorylation 
and degradation of IKBα[128]. HBx can also induce NF-κB activation either synergist-
ically by binding to von Hippel-Lindau binding protein or by stabilizing the amplified 
in breast cancer 1 oncogene, enabling NF-κB signal transition[129]. The effect of HBx 
has also been shown to be dependent on chaperone proteins, such as ribosomal 
protein S3[130].

Hippo-YAP/TAZ pathway: In the liver, there is evidence that Hippo-YAP/TAZ 
inactivation plays a role in fibrosis, hepatocarcinogenesis, and tumor behavior. More 
detailed information on this factor is presented in a recent review by Moon et al[131], 
with viral contributions to the Hippo-YAP/TAZ pathway summarized in Figure 3. 
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Figure 1 A schematic overview shows the impacts of hepatitis B virus and hepatitis C virus proteins in the Wnt signaling pathway. In an 
inactive state, cytoplasmic β-Catenin interacts with a multiprotein degradation complex comprised of CK1a, APC, GSK3β, and Axin, and following phosphorylation, is 
targeted for proteasome-dependent degradation. On binding Wnt ligands to FZD and LRP5/6 receptors, the scaffolding protein DVL is recruited to the membrane and 
phosphorylates GSK3β leading to the disassembly of the β-Catenin destruction complex. This event results in the rescue of β-Catenin from proteasomal degradation 
leading to its accumulation in the cytoplasm and eventually allowing its translocation to the nucleus. Consequently, β-Catenin activates the transcription of target 
genes through interaction with TCF and LEF family members. Wnt signaling is regulated by secreted proteins, including SFRPs and DKKs, which inhibit Wnt signaling 
by binding to FZD and LRP5/6 receptors, respectively. Independent of its transcriptional activity, β-Catenin, forming a complex with E-cadherin, also facilitates cellular 
junctions between cells. The disintegration of E-cadherin production causes the dissociation of the complex and subsequent internalization of β-Catenin, ending with 
activation of its target genes. Hepatitis B virus and hepatitis C virus proteins deregulate the expression of various components of the Wnt/β-Catenin pathway and 
contribute to tumor development and behavior. APC: Adenomatous polyposis coli; CK1: Casein kinase 1a; DKK: Dickkopf family of proteins; DVL: Disheveled 
segment polarity protein; FZD: Frizzled family of the receptor; GSK3b: Glycogen synthase kinase–3b; LEF: Lymphoid enhancing factor; Lrp5/6: LDL receptor-related 
protein 5/6; SFRPs: Secreted frizzled-related protein; TCF: DNA-bound T-cell factor; ⊥: Inhibition.

The primary region of the Hippo pathway, which is considered a critical tumor 
suppressor, consists of a protein complex. If the Hippo pathway is inactive or 
suppressed, YAP and TAZ are translocated to the nucleus and regulate the activation 
of transcription factors that play a role in cell proliferation, survival, miR processing, 
metastasis development, and maintaining stem cell continuity. Some studies have 
revealed that HBx expression in HCC tissues correlates with both the miR level and 
immunohistochemical nuclear expression of YAP[132,133] and its relationship with the 
cyclic adenosine monophosphate response element binding protein CREB pathway 
has been revealed[132]. In subsequent studies, there were also data demonstrating that 
HBx exerts its effect on p53 and ubiquitination of histone H2B, which plays a role in 
transcription control, through upregulation of FOX-1A and male-specific lethal 2 
(MSL2), a ubiquitin E3 Ligase[134]. HBx also increases in YAP 1 by using NEDD with 
the E3 Ligase HDM2 to protect against ubiquitination and degradation[135]. In HBV-
HCC cases, it has been shown that the c-terminal truncated middle surface protein of 
HBV, which is integrated into 30% of the host genome, increases TAZ activation by 
suppressing miR338-3p, promoting carcinogenesis[136]. Although these data on preS2, 
whose role in carcinogenesis has not been fully elucidated, are valuable, further 
studies are needed to address the effects of HBV on this pathway.

Angiogenesis pathways: In HCC, antitumor cell therapies, such as chemotherapy, are 
unsuccessful due to tumor cell heterogeneity. This has led to the application of new 
treatment options targeting relatively stable vascular cells in recent years. Currently, 
agents targeting angiogenesis are being used in the treatment of HCC. Vascular 
endothelial growth factor (VEGF) appears to be an important angiogenic factor in 
HBV-associated hepatocarcinogenesis. Together with VEGF in experimentally induced 
HBV-HCC mice, the increase in its expression supports this view[137]. In tumor 
tissues from patients with HBV-HCC, VEGF was also found to be upregulated, 
together with COX-2, and its expression correlates with microvessel density, which is a 
marker of angiogenesis[138]. In HBV-HCC, the primary inducer of VEGF expression is 
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Figure 2 A schematic overview showing the influences of hepatitis B virus and hepatitis C virus proteins on the nuclear factor kappa-Β 
signaling pathway. Nuclear factor kappa-Β (NF-κB) normally localizes to the cytoplasm and binds to members of the inhibitory IκB family (IκBα, IκBβ, p105, and 
p100) of proteins, blocking the nuclear translocation of NF-κB. Therefore, deregulation of the IκB family is required for NF-κB to be translocated into the nucleus. 
Hepatitis B virus and hepatitis C virus use different mechanisms to modulate these transduction pathways by modulating NF-κB proteins activation, interaction with 
cellular proteins, interaction with other signaling cascades, and ER stress induction. COX-2: Cyclooxygenase-2; ERK: Extracellular signal-regulated kinase; IKK: IκB 
kinase; IL: Interleukin; JNK: c-Jun N-terminal kinase; p38 MAPK: p38 Mitogen-activated protein kinase; PG: Prostaglandin; ROS: Reactive oxygen species; TNF-α: 
Tumor necrosis factor-α; TNFR: Tumor necrosis factor receptor; ⊥: Inhibition.

Figure 3 Involvement of hepatitis B virus and hepatitis C virus proteins in the Hippo-Make-TAZ signaling pathway. In the cytoplasm, YAP/TAZ 
proteins are inactivated by phosphorylation leading to their cytoplasmic retention. When YAP/TAZ is dephosphorylated, they can translocate into the nucleus and 
activate the transcription of their target genes through the interaction with the TEA domain transcription factor Scalloped transcription factors. Additionally, YAP 
stabilizes CREB through interacting with p38MAPK and beta-transducin repeat containing E3 ubiquitin protein ligase. MEK1 also inhibits the latter. On the other hand, 
GABP is negatively regulated by the Hippo signaling pathway. AMOT: Actin-associated protein angiomotin; BTRC: Beta-transducin repeat containing E3 ubiquitin 
protein ligase; CREB: cAMP response element-binding protein; LATS1/2: Large tumor suppressor kinase 1 and 2; MST1/2: Mammalian sterile 20-like kinase 1 and 2; 
P38 MAPK: P38 mitogen-activated protein kinase; NF2: Neurofibromin 2; SAV1: The adaptor proteins Salvador 1; Scribble: A basolateral polarity factor; TEAD: TEA 
domain transcription factor Scalloped; TCF4: Transcription factor 4; ⊥: Inhibition.

HBx. This protein increases VEGF expression in multiple ways in transfected cells and 
other cell cultures by stabilizing HIF-α or inducing mTOR and IKKβ[139]. In addition 
to VEGF, it also participates in angiogenesis by promoting increased expression and 
secretion of angiopoietin-2 (Ang-2) in liver tissue through activation of MAPK[139,
140]. HBx may also contribute to HCC angiogenesis through the upregulation of 
MMPs that promote angiogenesis by disrupting the basement membrane and other 
extracellular matrix components and allowing endothelial cells to migrate into the 
surrounding tissue. The correlation between HBx expression and the regulation of 
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MMP-2, MMP-9, MMP-14, and MMP protein levels and activities has been demon-
strated[141]. It has also been reported that HBx contributes to angiogenesis in HCC by 
upregulating endothelin by activating PIK/AKT and downregulating lethal 7 by STAT 
activation[142]. HBx induces angiogenesis by increasing the expression of the 
metastasis-associated protein 1 (MTA1) coregulator through NF-κB signaling and by 
downregulating mammary serine protease inhibitor (Maspin)[141,142].

The Pre-S protein has also been reported to enhance VEGF expression, thereby 
increasing the angiogenic environment produced by the virus[139].

Integrins: The integrin family (ITGs) consists of cell-surface glycoprotein receptors 
composed of 14a and 8b subunits found in at least 20 species. The combination of these 
subunits leads to the emergence of more than 100 integrin heterodimers, resulting in a 
diversity of receptor-ligand combinations that can produce different effects specific to 
cell adhesion, which play important roles in the invasion and metastatic properties of 
tumor cells[143,144]. ITGs play two important roles in cancer development and 
progression: they mediate uncontrolled cell growth and differentiation by transmitting 
signals from the ECM into the cell and facilitating the invasive properties of tumor 
cells by changing the content of the surrounding matrix. However, the roles of ITGs in 
HCC, as in other cancers, are not easy to determine due to the complexity of their 
structures and functions and require further investigation. Despite the complexity of 
the functions of ITG, while ITGβ can act as a receptor for collagen, fibronectin, and 
laminin, ITGβ4 acts solely on laminin by binding with ITGα6[143]. Laminin-induced 
a6b4 may play a role in tumor formation and progression by affecting multiple 
signaling pathways, including p53, Ras, RhoA, and epidermal growth factor receptor 
family, to activate signaling pathways involved in tumorigenesis and metastasis, 
including PI3K, AKT, and MAPK signaling[144]. In HCC, there is an increase in the 
expression of some subunits of ITGs (α1, α2, α3, α6, and β1), especially at the tumor 
margin. Among these, decreased expression of ITG5β1, a negative regulator of 
fibronectin signal transmission, in poorly differentiated tumors with high metastatic 
capacity is a finding that supports integrins having differential roles in HCC. The 
results of several studies have shown that integrin α6β4 plays a role in HCC 
independent of the differences among hepatitis virus types[143]. More recently, Kim et 
al[144] observed that the levels of ITGa6, a laminin receptor, were higher in patients 
and animals with HBV-HCC than in other groups, including HCV-HCC, and this was 
found to be associated with early migration and invasion of tumor cells. In particular, 
HBx has been found to be involved in the expression of this glycoprotein, and its 
suppression reduces the metastatic properties of tumor cells. It has also been indicated 
that the key signaling molecule between ITGa6 and HBx is the p53 tumor suppressor. 
Therefore, the use of ITGa6 as a therapeutic target has been suggested[144]. However, 
the relationships of integrins with other HBV proteins during carcinogenesis in HCC 
remain to be elucidated.

The farnesoid X receptor: The farnesoid X receptor (FXR), a member of the nuclear 
receptor family, primarily stimulates bile excretion by suppressing the import and 
synthesis of bile acids into hepatocytes. However, the protective effect of FXR in 
hepatocytes is not limited to preventing the toxicity of bile acids but also involves 
inhibition of lipogenesis and stimulation of insulin sensitivity[145]. Moreover, it 
enhances EMT effects induced by TGF-β. After being experimentally determined to be 
an initiator of liver regeneration, FXR has also been found to be involved in HCC 
carcinogenesis related to chronic liver injury[146]. FXR expression is significantly 
lower in the livers of patients with HCC. In Huh7 cell lines, Niu et al[147] demon-
strated that silencing FXR facilitates the growth, invasion, and metastatic properties of 
cancer cells. Parallel to this finding in FXR-/- mice, the cell cycle-associated proteins 
CyclinD1 and CyclinE1 were significantly increased. In brief, recent findings suggest 
that alterations in FXR might contribute to the development of HCC. Regarding HBV-
HCC, limited data are available on the role of viruses in FXR expression. It has been 
demonstrated that HBx can activate FXR signaling, supporting its role through this 
nuclear receptor in hepatocellular carcinogenesis[147].

ROLE OF HCV IN HEPATOCARCINOGENESIS
HCV-induced epigenetic dysregulation
Unlike HBV, HCV, which does not integrate into the host genome, may play an 
important role in carcinogenesis and tumor behavior by creating epigenetic disorders
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[148,149].

DNA methylation: Since HCV viral proteins can be found in the nucleus, they can 
generate nuclear signals in the host DNA[150,151]. The finding that the core protein 
significantly increases the expression of DNMT-1 and histone deacetylase HDAC1 
suggests that it is capable of epigenetically silencing tumor suppressor gene expression 
that prevents tumor growth and progression[152]. This protein causes EMT induction 
and disruption of Wnt/β-Catenin signaling by suppressing SFRP[152,153]. The effects 
of HCV on changes in the methylation of genes, including APC, p73, p14, and OGMT, 
suggest that it may play a role in epigenetic silencing in malignant transformation[154,
155].

Histone modifications: Detection of viral-mediated acetylation of lysine 27 position 
histone 3 (H3K27Ac) in HCV-infected liver tissue suggests an effect of HCV on the 
disease through histone deacetylation[156,157]. H3K27Ac separates active from 
inactive/poised enhancer elements, promoting the transcription of associated genes, 
and is considered an activation mark during developmental states[158]. Moreover, the 
correlation between HCV-induced genome-wide H3K27Ac changes and the 
expression of genes at risk of developing cancer supports this virus's involvement in 
carcinogenesis through histone modification[156]. Another histone in HCV-mediated 
acetylation in carcinogenesis is histone H3 Lysine 9 (H3K9Ac), which shows parallel 
findings with H3K27Ac[159]. The fact that these epigenetic changes create a memory, 
or footprint, has been attributed to their detection persisting even after viral therapy
[159,160]. Indeed, the presence of this epigenetic footprint is associated with 
aggressive tumor behavior in HCV-HCC cases, as well as increased cancer-risk gene 
expression after treatment in both experimental studies and patients with HCV 
hepatitis[156,159,161]. The persistence of the HCV-specific epigenetic footprint of 65 
oncogenes has been detected both in the fibrotic liver of patients with cured HCV and 
in the liver of HCV-cured animals[156]. In addition, a fibrosis-related footprint of 1693 
cancer-risk genes was observed in a study group including patients with fibrotic liver 
of HCV, and dysregulation of subgroups of these fibrosis-related epigenetic footprint 
genes have been defined as prognostic epigenetic signatures and may be useful in 
determining cancer risk[157]. An attempt was made to identify new treatments that 
could remove these footprints with various epidrugs[162].

miRs in HCV: Similar to HBV, HCV alters miR expression in a way that affects liver 
carcinogenesis[163-165]. miR-19a, miR-135-5p, miR-146a-5p, and miR-122 are also 
impaired by HCV infection and are associated with HCC development[165-167].

HCV and cellular signaling pathways in hepatocarcinogenesis
Wnt/β-Catenin pathway: In HCV-HCC, the frequency of CTNNB1 mutations is 
approximately 26%, and this rate is significantly higher than that in either HBV-HCC 
(12%) or nonviral HCC (21%)[168-170]. Parallel to this finding, experimental studies 
have shown that HCV infection leads to CTNNB1 mutation. It has been suggested that 
the NS3 protein of HCV may contribute to oncogenic transformation by disrupting 
DNA repair mechanisms, leading to CTTNB1 mutation[171]. It should be noted that 
these data are very striking for a virus that does not exhibit DNA integration, and 
further studies are warranted to determine causal relationships. However, the effect of 
HCV is not limited to the CTNNB1 mutation, and HCV-associated proteins also 
participate in the activation of Wnt/β-Catenin signaling[160]. The core protein is one 
of them. In particular, by regulating the hepatocyte transcription factor in the nucleus, 
the core protein can activate this pathway[172]. The core protein also induces the FZD 
receptor and low-density lipoprotein receptor-related protein 5/6 (LRP5/6), 
supporting their activities by inhibiting antagonists, such as FZD-related protein 2 and 
Dickkopf 1 (DDK1)[173-176]. In the early phase of HCV infection, DDK1 inhibition 
plays a role in epigenetic silencing of the promoters by enabling the recruitment of 
DNA methyltransferase 1 and histone deacetylase[175]. In addition, it contributes to 
the inhibition of β-Catenin sequestration by hypermethylation of the gene promoter of 
E-Cadherin (CDH1)[174].

On the other hand, NS5A, one of the proteins involved in the HCV replication 
complex, is known to stabilize GSK3b both by direct binding and indirect inhibition 
through the PIK3-AKT pathway, leading to activation of Wnt/β-Catenin signaling
[172]. There is also evidence that HCV, similar to HBV, activates this pathway through 
its effects on miRs. The effect of HCV on the Wnt/β-Catenin pathway is summarized 
in Figure 1.
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NF-κB pathway: In the liver, the role of NF-κB in inflammation, fibrosis, carcino-
genesis, and tumor progression has been demonstrated in HCV-HCC. HCV may have 
different effects (both activator and inhibitor) on this pathway[123]. In previous 
studies, it has been reported that NF-κB is overexpressed in patients with HCV[177]. 
For instance, core proteins can induce the TNF receptor (TNFR), which plays a key role 
in the activation of this pathway, by direct induction or by mimicking proinflam-
matory cytokines, such as TNF-α[178,179]. This protein can also stimulate Th-17 cells 
that produce cytokines that stimulate CD161, IL-17A, IL-17F, IL-21, and IL-22 on 
TNFR, enabling NF-κB activation[179-182]. There is evidence that E1 and E2 proteins 
also increase TNF-α secretion[183]. In contrast, recent experimental studies have 
observed that HCV can downregulate this pathway by activating several genes that 
suppress NF-κB. The NS3 and NS5B proteins suppress NF-κB activation by TNF-α
[184]. Considering the important role of inflammation and oxidative stress in liver 
diseases, it is not surprising that core E1, E2, NS3, NS4A, NS4B, and NS5A induce 
oxidative stress to increase NF-κB, and these signals, in turn, induce ROS production 
through mitochondrial effects[124,185]. Paracha et al[186] demonstrated that core, NS3, 
and NS5A proteins are effective in promoting Ca++ release from mitochondria. In 
addition, ROS induced by viral proteins activate phosphorylation of extracellular 
signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK), and 
c-Jun N-terminal kinase (JNK), which then promote NF-κB activation. Subsequently, 
activated NF-κB induces the expression of many genes, such as cyclooxygenase-2 
(COX-2) and IL-8, by nuclear translocation. Chen et al[187] observed that the NS5A 
protein activates the NF-κB pathway and increases COX-2 expression by increasing 
ERK and JNK phosphorylation by inducing IL-8 production. On the other hand, COX-
2 inhibits NF-κB activity by inhibiting IKK by bypassing the production of 
prostaglandins J2, A2, and A1. The role of HCV in this pathway is summarized in 
Figure 2.

Hippo-YAP/TAZ pathway: Similar to HBV, studies related to the Hippo-YAP-1 
pathway are few, and most of them are experimental in HCV-HCC. The contribution 
of HCV to this pathway is presented in Figure 3. The HCV NS5B protein has been 
shown to play a role in EMT by inactivating the Hippo signaling pathway, upregu-
lating Snail activity, and enabling PIK3/AKT activation[188]. In a few studies, there is 
evidence that the HCV E2 protein can mimic CD81, the major binding ligand for 
glypican 3. In this way, interestingly, it reduces Hippo activation and decreases YAP, 
attenuating proliferation[189]. Considering that CD81 is the entry route of HCV, it is 
concluded that due to the loss of CD81 in early carcinogenesis, this feature enables 
tumor cells to resist HCV during early HCC development, contributing to the clonal 
expansion of neoplastic cells compared to nontumor cells. Therefore, examining the 
possible effects of both factors on the Hippo pathway in carcinogenesis will enable us 
to determine whether this pathway represents a target for HCC therapy.

Angiogenesis pathways: Although various components of HCV have been reported to 
influence hepatocarcinogenesis, among them, the core protein has been reported to 
have the strongest potential associations with angiogenesis. It enhances the expression 
of angiogenic factors, including VEGF and Ang-2, by activating various growth factor 
signaling pathways, such as MAPK, PIK3, and JNK[190-193]. Some studies have 
reported that the core protein increases VEGF through androgen receptor-mediated 
transcription by activating STAT3[194]. On the other hand, despite the same 
correlation of androgen and VEGF expression in other studies, no increase in STAT3 
was observed[195]. It has been suggested that this may be due to experimental 
methodological differences, such as the use of different genotypes of the core protein. 
Similarly, inconsistent results were obtained regarding the interaction of the core 
protein with the PIK3 and MAPK pathways during the induction of VEGF expression
[196-198]. Recently, Shao et al[195] demonstrated that the HCV core protein's 
proangiogenic activity is dose-dependent and that the mechanism involves an increase 
in VEGF expression through activator protein-1 activation. The core protein can also 
induce angiogenesis by increasing the expression of endoglin (CD105), which plays an 
important role in TGF-β signaling[199].

After the apelin system (APJ) was shown to have a role in HCV-HCC during 
carcinogenesis progression in recent years, the relationship of this system with 
angiogenesis was revealed[200]. Although more research is needed to better 
understand apelin's role in HCC, Cabiati et al[201] recently demonstrated that higher 
expression of this angiogenic agent in patients with HCV-HCC is consistent with 
pathological staging and emphasized that APJ could be considered important for 
developing therapeutic targets that identify new pathways for cancer treatment.
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In the study of gene expression for secreted proteins in HCV-infected hepatoma 
cells by applying microarray analysis, it was found that HCV exerts a proangiogenic 
effect by inducing the EGFR-ERK signaling pathway[202].

FXR: Although there are several studies on the role of FXR in the pathogenesis of HCV 
hepatitis, further studies are needed to understand its role in HCV-HCC.

ROLE OF HBV AND HCV IN INFLAMMATION AND CARCINOGENESIS
At the onset of inflammation, hepatocyte differentiation and proliferation after 
exposure to acute injury or microbe patterns or danger-related molecular models 
(DAMPs) are directed toward liver repair[203]. However, persistent inflammation 
caused by cellular damage and loss triggers the immune response, leading to the 
development of HCC. Therefore, inflammation plays a very important role in hepato-
carcinogenesis, similar to other types of cancer. The autoamplification cycle created by 
proinflammatory pathways induced by the release of DAMPs in necroinflammation, 
defined as cell death caused by the immune response, promotes hepatocarcinogenesis 
by disrupting genetic stability during DNA degradation[125]. In addition, during 
hepatocarcinogenesis, disruption of the immune system and release of cytokines that 
cause immune suppression (IL-10, IL-13, and TGF-β) promote malignant trans-
formation by preventing the elimination of atypical cells by both innate and acquired 
immunity[143].

Viral inflammation plays a significant role in the development of both HBV-HCC 
and HCV-HCC. In this section, the effects of viral inflammation on carcinogenesis will 
be discussed separately under three main headings, each of which has a significant 
role in HCC development.

Inflammasome
Inflammasomes are important components of the innate immune system that regulate 
caspase-1 activation and inflammation and have recently been proposed as therapeutic 
targets for many inflammatory diseases. They consist of large protein complexes that 
initiate downstream signaling, resulting in the release of type I interferons and 
proinflammatory cytokines through model recognition receptors (PRRs) that are 
stimulated by pathogen-related molecular models and DAMPs [125]. Several PRR 
families are important components in the inflammasome complex, including the 
nucleotide-binding domain, leucine-rich repeat proteins (also known as NOD-like 
receptors, NLRs), and melanoma (AIM)-like receptors (also known as ALRs)[204]. 
After stimulation, the relevant inflammasome PRR (for instance, NLRP3 in 
hepatocytes) oligomerizes to become a caspase-1 activator, leading to cleavage of 
proinflammatory IL-1 cytokines into IL-1β and IL-18 and subsequent pyroptosis[205] 
(Figure 4).

Different findings have been reported on the participation of inflammasomes in 
oncogenesis in the liver and their interaction with viruses in the development of HCC
[206]. Some studies have demonstrated that the NLRP3 inflammasome is significantly 
reduced in tumors compared to nontumor tissues[207]. It also induces IL-18, resulting 
in NK cell-mediated suppression of colorectal cancer metastasis to the liver[208]. In 
addition, 17β-estradiol (E2), which plays a protective role in hepatocarcinogenesis, 
decreases tumor progression by increasing the NLRP3 inflammasome by the 
E2/ERβ/MAPK signaling pathway[209]. These findings support the NLRP3 inflam-
masome's preventive role in HCC. In contrast, it has been observed that during 
hypoxia, HMGB1, through activation of NLRP3, enhances caspase-1, IL-1β, and IL-18 
to promote tumor invasion[210]. HCV activates NLRP3, leading to its accumulation in 
lipid droplets, where it coordinates with sterol-regulatory-element-binding proteins to 
promote liver disease[211]. HCV also induces hepatic macrophages to produce IL-1β 
through the NLRP3 inflammasome, leading to disease progression[212].

Another inflammasome, AIM2, induces IL-18 expression in human Kupffer cells, 
which stimulates NK cells to produce interferon (IFN)-γ in the regulation of innate 
immunity[213]. In patients with HBV, increased AIM2 expression was observed in the 
high HBV replication group compared to the low HBV replication group, with high 
AIM2 Levels being positively associated with IL-1β and IL-18 expression, suggesting 
that this inflammasome may be involved in viral elimination[214]. However, another 
finding indicated that AIM2 prevents the recognition of DDS expressed by HBV to 
assist in immune evasion[213]. These data also demonstrate that inflammasomes are 
differentially regulated by HBV proteins (Figure 4).
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Figure 4 Schematic overview showing the effects of hepatitis B virus and hepatitis C virus proteins on the functioning of NLR family 
pyrin domain containing 3 and absent in melanoma 2 inflammasomes. Inflammasome activation is defined by oligomerization of NLR family pyrin 
domain containing 3 and absent in melanoma 2, which recruits apoptosis-associated speck like proteins and pro-caspase- 1, leading to caspase-1 activation and 
subsequent conversion of pro-IL- 1β into active IL-1β. HCV: Hepatitis C virus; ASC: Apoptosis-associated speck-like protein containing a CARD; AIM2; Absent in 
melanoma 2; IL: Interleukin; LPS; Lipopolysaccharides; LBP: Lipopolysaccharide binding protein; NLRP3: NLR family pyrin domain containing 3; TLR: Toll-like 
receptor; TNFR: TNF receptor; ⊥ : Inhibition.

In the liver, Kupffer cells play a critical role in IL-β and IL-18 release in the inflam-
masome-mediated inflammatory response. However, there are different reports 
regarding IL-1β inhibiting HBV infection in liver cells. For instance, priming with IL-
1β reduces host cell susceptibility to HBV infection through activation-induced 
cytidine deaminase[215] and oxidative stress[216]. Although HCV-infected monocytes 
induce IL-18 through inflammasomes that activate IFN-γ-producing NK cells, patients 
with chronic HCV infection exhibit reduced monocyte function and low IFN-γ levels
[217]. These findings are explained by changes in membrane protein composition on 
monocytes derived from chronic HCV patients who present depleted levels of IFN-γ 
due to decreased numbers of CD14+ monocytes. Taken together, these findings show 
that inflammasomes derived from monocytes, NK cells, and macrophage-derived 
inflammasomes perform differential functions in hepatitis.

However, all of these data necessitate further investigations to decipher the role of 
inflammasomes in HCC.

NF-κB and STAT3 signaling in inflammation-related oncogenesis
The effect of HBV and HCV on the inflammation-mediated contribution of NF-κB to 
viral carcinogenesis in HCC has been discussed above.

STAT3 signaling plays an important role in the contribution of inflammation to the 
development and formation of HCC[143,218]. This pathway can be activated by many 
cytokines and growth factors, including IL-6, TNF, the EGF family, and hepatocyte 
growth factor[219,220]. As indicated by Wu et al[143], STAT3 activation leads to strong 
inhibition of SHP phosphatases and suppressor of cytokine signaling 3, which is 
inhibited in tumor cells. The accumulation of oxidative stress in both HBV and HCV 
infection can activate STAT3 by inducing JNK expression, allowing phosphorylation of 
a critical tyrosine kinase residue (Tyr705). Therefore, viral inflammation causes overex-
pression of proinflammatory cytokines, including IL-6, IL-10, IL-11, and TGF-α, which 
regulate the liver microenvironment to support oncogenic conditions, such as 
inhibition of apoptosis. The multiple roles of STAT3 activation in proliferation and 
anti-apoptosis (Cyclin D, Bcl-xL, Bcl-2, Caspase), migration and invasion (MMP-4, 
MMP-9, Slug, Twist), angiogenesis (VEGF, bFGF, HIF-α), and cancer stemness (CD131, 
NANOG, Notch) make its inhibition an attractive therapeutic target[218]. More 
recently, in an elegant study, Qin et al[221] demonstrated that in patients with 
advanced HBV-HCC, the use of icaritin, a small molecule that displays anticancer 
activities through the IL-6/JAK/STAT3 pathway, could be used as an alternative 
immune-modulatory regimen to treat advanced HCC patients with poor prognosis.

Immune escape
Hepatocytes have the capacity to develop a tolerogenic immune milieu in which 
innate and acquired immunity play important roles in preventing permanent damage
[222]. Unfortunately, these mechanisms also allow tumor cells to escape from the 
immune system during oncogenesis. Indeed, the reduction in antigen presentation 
activity, evidenced by decreased expression of HLA class I molecules and suppression 
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of CD8+ T cells with an increasing number of Tregs, contribute to oncogenesis[223-
225]. Similar findings were also noted for NK T cells, myeloid-derived suppressor 
cells, tumor-associated macrophages (TAMs), and decreased CD4+ T cells[226,227]. In 
this context, the transition between proinflammatory (M1) and anti-inflammatory (M2) 
phenotypes of macrophages is very important. The transformation of macrophages 
into the M2 phenotype, which is effective in exhibiting anti-inflammatory functions by 
releasing Th2 cytokines (IL-4, IL-10, and IL-13), favors hepatocarcinogenesis[125,228]. 
In addition, it has been reported that HSCs exhibiting loss of p53 may contribute to the 
increase in macrophages with the M2 phenotype[143]. In HCC, positive correlations 
among the increase in anti-inflammatory cytokines, distant metastasis, and poor 
prognosis demonstrate that immune escape during inflammation promotes carcino-
genesis and tumor behavior[229]. Moreover, inflammatory cells and cytokines 
demonstrably support cancer stem cells by the IL-6/STAT3 pathway. In vitro, the 
release of IL-6 may induce the expansion of CD133-positive cancer progenitor cells
[230]. The IL-6/STAT3 paracrine signaling pathway from TAMs also triggers the 
proliferation of cancer progenitor cells to facilitate hepatocarcinogenesis[222]. 
Recently, the results of a study by Song et al[231] delineated that HBV/HCV-related 
HCC includes new types of immune cells that may play a role in immune escape and 
highlighted the potential of this condition to play a role in HCC formation and the 
progression of viruses in uncovering new targets for tumor therapy.

AUTOPHAGY IN HBV AND HCV RELATED HCC
Autophagy is an evolutionarily conserved cellular pathway in which long-lived 
cytoplasmic proteins and organelles are engulfed into double-membrane vesicles 
known as autophagosomes that subsequently fuse with lysosomes and are regulated 
by a series of autophagy-related genes (Atgs)[232]. Atg5, Atg7, and Beclin 1 (BECN1) 
are essential genes in this process, and silencing any of these genes leads to blockage of 
autophagy. Previous studies suggest that autophagy acts as a double-edged sword in 
carcinogenesis and tumor behavior[233]. It can function as a tumor suppressor in the 
early stage of cancer development by inhibiting inflammation and promoting genomic 
stability. In contrast, autophagy confers a survival advantage to tumor cells by 
supplying nutrients and energy and promoting angiogenesis. Many studies have 
evidenced the role of autophagy in HCC initiation and development. The results 
indicate that autophagy plays a suppressive role in the onset of HCC development and 
acts as a promoter after tumor development in advanced stages. For more detailed 
information on this topic, the elegant reviews by Cui et al[234] and Lee et al[235] are 
recommended.

Recent studies have shown that HBV induces autophagy, particularly with HBx and 
HBs proteins, to improve its survival and replication[236]. However, the role of 
autophagy in HBV-associated tumorigenesis is not entirely clarified. Autophagy 
downregulated HBV-HCC in both humans and mouse models[237]. HBV-induced 
liver cell neoplasia progression stimulated in BECN1-null mice suggests that increased 
malignant transformation risk is inversely correlated with autophagy induction[238]. 
In HBV-HCC tissues, the expression of BECN1 and Atg5 is decreased compared to that 
in chronic hepatitis[239].

Similarly, although the exact mechanisms of downregulation of autophagy in HBV-
HCC remain unclear, it is suggested that autophagy can increase the antitumor 
immune response[240], induce cell death[241], and lead to oncogenic microRNA 
degradation[242]. These results imply that autophagy, which plays a tumor-
suppressive role in hepatocarcinogenesis, is inhibited in HBV-associated tumori-
genesis. However, the mechanism by which high autophagy during HBV infection 
shifts to low autophagy in HBV-related tumorigenesis remains to be elucidated.

HCV infection can also promote inflammation by leading to the activation of inflam-
masomes and the production of proinflammatory cytokines, including IL-1α and IL-
1β, thereby promoting fibrosis carcinogenesis[212]. NLRP3 inflammasome activation 
through calcium mobilization linked to phospholipase-C through HCV core protein is 
defined during progressive liver disease, and HCC is also noted[243]. Together with 
the finding that this activation can be counteracted by autophagy activation under 
certain circumstances, these data support HCV disease's contribution to progression 
by autophagy[244]. HCV-induced endoplasmic reticulum ER stress is evidenced by 
the observation of increased elevation of ER stress markers in HCV-related cirrhosis
[245]. Moreover, in HCV cell cultures, Aydın et al[246] observed that excessive ER 
stress activates NRF2-mediated autophagy switching to promote cell survival. 
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Considering that NRF2 plays a role in the development of HCC through the accumu-
lation of p62, HCV may also contribute to carcinogenesis through autophagy 
regulation mechanisms[247]. Recently, the contribution of immunity-related GTPases 
(IRGs), a family of IFN-inducible GTPases, to autophagy has been implicated[248]. 
IRGM is a critical negative regulator of NLRP3 inflammasome activation by 
interacting with NLRP3 and ASC and subsequently inhibiting inflammasome 
assembly[249]. A recent study pointed out that HCV-induced IRGM-mediated 
phosphorylation of ULK1 induces autophagy[250]. It is proposed that IRGM-mediated 
autophagy after HCV infection might contribute to the tumor-promoting effects of 
HCV.

Currently, further studies are needed to fully understand the effect of HCV on 
carcinogenesis and tumor behavior through autophagy.

Finally, it should also be noted that the association of autophagy with the pathways 
mentioned above involved in HCC development also contributes to both HBV and 
HCV-associated carcinogenesis.

MICROBIOTA IN HBV AND HCV RELATED HCC
Although its role in HCC is not fully clarified, there is evidence that the intestinal flora 
is involved in carcinogenesis[251-253]. For instance, a human study has shown that 
Helicobacter hepaticus is present in the livers of patients with HCC compared to the 
livers of controls without carcinoma[251]. A remarkable observation is the absence of 
this microorganism in HBV-HCC and HCV-HCC, which necessitates further studies to 
be clarified entirely. On the other hand, in an elegant study, Huang et al[253] found 
that Bacteroides, Lachnospiraceae incertae sedis, and Clostridium XIVa were enriched in 
HBV-HCC patients with a high tumor burden. Therefore, extensive research in this 
context could reveal more comprehensive information about the use of microbiota 
changes as a treatment target.

CONCLUSION
Despite extensive studies on its development and behavior, HCC remains a major 
health problem worldwide. The main therapeutic strategies that are currently being 
used in the treatment of HCC include angiogenesis inhibitors, multikinase inhibitors, 
pathway-targeted therapies (especially the Wnt-β-Catenin and NF-κB pathways), 
immunotargeting (for immune escape), inflammasome-targeting therapies, and 
immunotherapy[143]. Compared to other common cancers, such as breast and colon 
cancers, the numerous variations caused by this tumor's very complex molecular 
profile constitute a critical limitation for clinical trials. Therefore, uncovering the 
molecular mechanisms associated with HCC development and tumor behavior is very 
significant for both decreasing tumor prevalence and identifying new treatment 
targets. In this context, it is crucial to clarify the effects of HBV and HCV on the 
molecular events involved in oncogenesis and prognosis due to their close relationship 
with HCC. Unfortunately, unlike other viruses, it is not possible to identify a single 
oncogene or mechanism in terms of carcinogenesis and progression. In contrast, 
complex mechanisms reflect concerted and cumulative effects of chronic inflam-
mation-related alterations, modification of oncogenic pathways (especially tumor 
suppression, proliferation, apoptosis), and epigenetic dysregulation in response to 
both viruses. In addition, the integration of HBV into host DNA may also affect tumor 
development and behavior.

Therefore, further studies to characterize new mechanisms of HBV and HCV-
associated carcinogenesis and tumor progression may reduce the prevalence of HCC 
and lead to the discovery of new treatment targets to overcome the grim prognosis of 
this disease.
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