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Abstract
As an endocrine hormone, vitamin D plays an important role in bone health and 
calcium homeostasis. Over the past two decades, the non-calcemic effects of 
vitamin D were extensively examined. Although the effect of vitamin D on beta 
cell function were known for some time, the effect of vitamin D on glucose and 
fuel homeostasis has attracted new interest among researchers. Yet, to date, 
studies remain inconclusive and controversial, in part, due to a lack of 
understanding of the threshold effects of vitamin D. In this review, a critical 
examination of interventional trials of vitamin D in prevention of diabetes is 
provided. Like use of vitamin D for bone loss, the benefits of vitamin D supple-
mentation in diabetes prevention were observed in vitamin D-deficient subjects 
with serum 25-hydroxyvitamin D < 50 nmol/L (20 ng/mL). The beneficial effect 
from vitamin D supplementation was not apparent in subjects with serum 25-
hydroxyvitamin D > 75 nmol/L (30 ng/mL). Furthermore, no benefit was noted 
in subjects that achieved serum 25-hydroxyvitamin D > 100 nmol/L (40 ng/mL). 
Further studies are required to confirm these observations.
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Core Tip: Vitamin D deficiency is a well-recognized health issue and contributes to 
bone loss and calcium dysregulation. Evidence suggests that excess vitamin D is not in 
and of itself of therapeutic benefit. Available clinical data suggests that vitamin D 
supplementation appears to limit the development of diabetes in vitamin D deficient 
subjects. However, no benefit was observed in non-vitamin D deficient subjects. 
Furthermore, overreplacement of vitamin D is of no beneficial effect and could 
possibly be harmful.

Citation: Chang Villacreses MM, Karnchanasorn R, Panjawatanan P, Ou HY, Chiu KC. 
Conundrum of vitamin D on glucose and fuel homeostasis. World J Diabetes 2021; 12(9): 
1363-1385
URL: https://www.wjgnet.com/1948-9358/full/v12/i9/1363.htm
DOI: https://dx.doi.org/10.4239/wjd.v12.i9.1363

INTRODUCTION
The potential role of vitamin D deficiency induced by migration of human beings has 
been suggested to be involved in human evolution and various modern health 
conditions[1]. The history prospective of vitamin D evaluation will enhance our 
understanding of the development in this field. The role of dietary deficiency in the 
pathogenesis of rickets was established by Platt[2] in 1919. Although it was thought to 
be caused by vitamin A deficiency initially, McCollum et al[3] identified a vitamin 
deficiency other than vitamin A that caused rickets in 1922. Since vitamin A, B, and C 
were already identified, the new molecule was named as vitamin D[4].

Beginning with its discovery in 1922, scientific publications focusing upon vitamin 
D numbered no more than some 10 per year but this increased to 35 per year by 1945 
(Figure 1). As knowledge of the structure, molecular biology and function of vitamin D 
increased[5,6], there was a concurrent increase in vitamin D-specific publications. With 
the observations of the non-calcemic effects of vitamin D[7], vitamin D-focused public-
ations peaked at 5152 in 2017. Recently, the role of vitamin D deficiency in relation to 
coronavirus disease 2019 (COVID-19) infection attracted attention[8].

Vitamin D on bone health
The role of vitamin D on calcium and bone metabolism was well-summarized[9]. 
There is no doubt about the association between rickets and vitamin D deficiency and 
the reversal and prevention of rickets with vitamin D supplementation. However, 
controversy still surrounds the efficacy of vitamin D supplementation upon bone 
mineral density and fracture prevention. Multiple studies failed to demonstrate any 
benefit from vitamin D supplementation[10-12] and a systematic review and meta-
analysis also failed to confirm any beneficial effect on bone density or fracture 
prevention from vitamin D supplement[13]. Nevertheless, placebo-control randomized 
clinical trials revealed a threshold effect of vitamin D[14,15] with no benefit observed 
on the subjects with baseline 25-hydroxyvitamin D level ≥ 75 nmol/L (30 ng/mL). 
Furthermore, possible detrimental effects on bone mineral density were observed in 
subjects who received a higher dose of vitamin D (250 μg or 10000 IU daily) with a 
mean 25-hydroxyvitamin D of 200 nmol/L or 80 ng/mL[12]. While not conclusive, 
these data suggest that the optimal effects of vitamin D are found at a 25-
hydroxyvitamin D level of 75 nmol/L (30 ng/mL).

Vitamin D as a hormone
Vitamins are defined as micronutrients that cannot be self-synthesized and that 
necessary for the proper function of key enzymatic processes. Consequently, vitamins 
must be obtained through the diet. Vitamin D is synthesized from cholesterol to 7-
dehydrocholesterol, also known as pro-vitamin D3, in the skin through the action of 
ultraviolet radiation[16]. In addition, the liver forms 25-hydroxyvitamin D3, also 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Vitamin D publications from 1922 to 2020. Data were obtained from PubMed (https://pubmed.ncbi.nlm.nih.gov/) accessed on October 20, 2020.

known as pre-vitamin D3. To become an active compound, further hydroxylation in 
the kidney is required to form 1,25-dihydroxyvitaomin D3, which is a biologically 
active vitamin D. Then, 1,25-dihydroxyvitamin D is released into circulation to exert 
its effects on the target cells and promote calcium and bone homeostasis. Thus, 
vitamin D is a hormone and, like the pituitary-thyroid axis, has a complex natural 
history in the body (Table 1).

The half-life of thyroid hormone depends upon thyroid status[17]. The half-life for 
levothyroxine (T4) is 6-7 d in euthyroid subjects, 9-10 d in subjects with hypothy-
roidism, and 3-4 d in subjects with hyperthyroidism. The half-life of liothyronine (T3) 
is 18-24 h in euthyroid subjects, 12-16 h in hyperthyroid subjects, and 26-32 h in 
hypothyroid subjects. The half-life of vitamin D averages 15 h but depends upon of the 
type of vitamin D (cholecalciferol or vitamin D3 vs ergocalciferol or vitamin D2) and 
vitamin D binding protein concentration[18]. The half-life of 1,25-dihydroxyvitamin D 
is 10-20 h[19], while there is no information regarding the half-life of 1,25-
dihydroxyvitamin D3 vs D2. Since 1,25-dihydroxyvitamin D is released into the blood 
and exerts its effects upon osteocytes to promote mineralization and on the 
gastrointestinal epithelium to increase calcium and phosphorus absorption, it is 
appropriate to classify vitamin D as a hormone.

EVIDENCE OF NON-CALCEMIC EFFECTS
In addition to the target organs, both the vitamin D receptor and 1alpha-hydroxylase 
(CYP27B1) are expressed in various other tissues[20], suggesting additional functions 
of vitamin D beyond bone metabolism and calcium homeostasis. Interestingly, the 
vitamin D receptor is expressed in the pancreatic islets[21], liver[22], muscle[23], and 
adipose tissue[24]. 1alpha-hydroxylase (CYP27B1) is expressed in pancreatic islets[25], 
liver[26], muscle[27], and adipose tissue[28]. Thus, it is possible that vitamin D could 
take part in glucose and fuel homeostasis.

In contrast to calcemic effects of vitamin D which is primary mediated by circulating 
1,25-dihydroxyvitamin D produced in the kidney, the non-calcemic effects of vitamin 
D are mediated by circulating 25-hydroxyvitamin D through a paracrine or autocrine 
function[29]. Within the target cells or its vicinity, circulatory 25-hydroxyvitamin D 

https://pubmed.ncbi.nlm.nih.gov/
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Table 1 Vitamin D as a hormone: Comparison of the pituitary-thyroid and parathyroid hormone-vitamin D axes

Pituitary-thyroid axis Parathyroid-vitamin D axis

Organ(s) Thyroid glands Skin/liver/kidney

Source compound Iodine, tyrosine Cholecalciferol (cholesterol), ergocalciferol

Prehormone Levothyroxine, T1/2 = 6-7 d 25-hydoxyvitamin D2/D3, T1/2 = 13-17 d

Active hormone Triiodothyronine, T1/2 = 14-24 h 1,25-dihydroxyvitamin D2/D3, T1/2 = 10-20 h

Transportation Thyroxine binding globulin Vitamin D binding protein

Receptor Thyroid hormone receptor Vitamin D receptor

Stimulating factor Thyroid stimulating hormone Parathyroid hormone

Effect Energy homeostasis Calcium homeostasis

enters cells and is converted to 1,25-dihydroxyvitamin D by the locally existing 1alpha-
hydroxylase (CYP27B1). Hence, 25-hydroxyvitamin D is the key circulatory element 
for the non-calcemic effects of vitamin D whereas 1,25-dihydroxyvitamin D the 
promotes the calcemic effects.

EFFECTS UPON CELL DIFFERENTIATION AND CELL PROLIFERATION 
Colon, prostate, breast, and ovarian cancer 
A role for vitamin D in the pathogenesis of cancer was proposed in 1980[30] after it 
was observed that colon cancer rates were higher in the northern rather than the 
southern United States. The association of vitamin D deficiency with cancer, including 
breast[31], prostate[32], and colon cancer[33] was attributed to the ability of vitamin D 
to differentiation cells[34] and to suppress cell proliferative[35] along with other effects
[36,37].

Immunity, autoimmunity, and inflammation
The risk of type 1 diabetes was reduced by vitamin D supplement in a birth-cohort 
study from Finland[38]. Furthermore, a polymorphism in the vitamin D receptor was 
associated with increased risk of type 1 diabetes[39]. Not unexpectedly, a role of 
vitamin D deficiency in the pathogenesis of type 1 diabetes was proposed[40]. In 
addition, the association of vitamin D deficiency with multiple sclerosis[41], systemic 
lupus erythematosus[42], and other autoimmune diseases[43] was attributed to the 
immunomodulatory and anti-inflammatory effects of vitamin D[44]. Furthermore, 
vitamin D plays an important role in the maintenance of B cell homeostasis[45], and 
vitamin D replacement may reduce B cell-mediated autoimmune disorders.

The role of vitamin D in the treatment of tuberculosis was appreciated with the 
observation that sun exposure altered the clinical presentation of tuberculosis[46]. 
Subsequently, vitamin D was administered as part of the treatment of tuberculosis
[47]. Vitamin D deficiency was frequently observed in patient with untreated 
tuberculosis[48]. It is now known that Toll-like receptors up-regulate expression of the 
vitamin D receptor and the vitamin D-1-hydroxylase genes, leading to induction of the 
antimicrobial peptide cathelicidin and killing of intracellular Mycobacterium 
tuberculosis[49]. Thus, the role of vitamin D in fighting infection is established[50]. 
Further, vitamin D deficiency is associated with acute respiratory tract infection[51], 
bacterial vaginosis[52], pneumonia[53], foot infection in diabetics[54], chronic hepatitis 
C infection[55], and human immunodeficiency virus infection[56]. Recently, vitamin D 
deficiency was recognized as a risk factors for COVID-19 infection[57-61]. Thus, 
vitamin D could play a role in fighting infection.

An association between vitamin D receptor polymorphism and the severity of 
coronary artery disease was reported[62]. Deficiency was also noted to associate with 
an increased risk of myocardial infraction[63], hypertension[64], and stroke[65]. The 
mechanism proposed to account for these associations included activation of the renin-
angiotensin system[66], coronary calcification[67], platelet activation and aggregation
[68], increased proinflammatory cytokines[69], and vascular endothelial dysfunction
[65].
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Fuel metabolism
In patients with vitamin D deficiency and diabetes, vitamin D supplementation 
improved beta cell function and glucose tolerance[70]. An association between vitamin 
D deficiency and glucose intolerance and beta cell dysfunction was observed in east 
London Asians[71]. Similarly, alternations in vitamin D metabolism in obese subjects 
manifesting as low 25-hydroxyvitaimin D is well-recognized[72]. This topic will be 
reviewed in this article.

Neuropsychiatric disorders
Vitamin D deficiency was reported to be associated with depression[73], schizophrenia
[74], autism[75], and Parkinson’s disease[76]. Various mechanisms have been reported 
to support a role of vitamin D in neuropsychiatric disorders. Vitamin D has a 
protective effect on dopaminergic neurons[77]. Vitamin D deficiency could result in 
altered synaptic plasticity through its effect on perineuronal nets leading to cognitive 
deficits[78]. Vitamin D deficiency alters brain protein expression in rats[79]. 
Furthermore, immunohistochemical study revealed the expression of vitamin D 
receptor and 1alpha-hydroxylase (CYP27B1) in various regions of human brain with 
the strong expression in the hypothalamus and in the large (presumably dopami-
nergic) neurons within the substantia nigra[80]. Thus, vitamin D deficiency could play 
a role in the pathogenesis of various neuropsychiatric disorders.

VITAMIN D REPLACEMENT THERAPY
Source of vitamin D
Vitamin D is available in two forms: ergocalciferol (vitamin D2) and cholecalciferol 
(vitamin D3). Ergocalciferol comes from plants in the form of ergosterol (provitamin 
D2). Ergosterol is an important component of mushrooms. Through ultraviolet b (UVB) 
irradiation, which can occur within mushroom or artificially, it becomes ergocalciferol
[81]. Cholecalciferol comes from animals and people through the biosynthesis of 
cholesterol to 7-dehydrocholesterol (Provitamin D3). Again, through UVB irradiation, 
this intermediate becomes cholecalciferol. Thus, dietary intake and sun exposure are 
the major determinants of serum 25-hydroxyvitamin D levels.

Sun, mainly UVB irradiation, plays an important role in biosynthesis of vitamin D. 
Since 7-dehydrocholesterol can be synthesized from cholesterol, theoretically vitamin 
D supplementation is not required once sun exposure is adequate. Skin color is a key 
determinant of vitamin D synthesis[82]. Vitamin D has been proposed to play a role in 
human evolution and migration away from equator by affecting skin color through the 
development of depigmented and tannable skin via genetic pathways under positive 
selection[1,83]. Sun exposure is highly effective in raising serum 25-hydroxyvitamin D 
concentration, while its effects diminish significantly on donning clothing and using 
sun screen[84]. In this regard, more body surface area exposure is more effective than 
longer exposure time[85]. However, the efficacy of sun exposure to increase serum 25-
hydroxyvotamin D concentrations diminishes with the degree of skin tanning[86]. 
Thus, minimized sun exposure time for 5 min to 30 min (depending on time of day, 
season, latitude, and skin pigmentation) with maximize body surface exposure is 
recommended[9]. However, increased risk of sun-mediated skin cancer makes this 
approach to prevent vitamin D deficiency less optimum[87].

Vitamin D can be obtained through dietary intake. However, except for cod liver oil, 
vitamin D content in naturally occurring food is relatively low, even in mushrooms 
(Table 2). Although ergosterol is highly abundant in the membrane of mushrooms, 
mushroom are cultivated under shadow without UVB irradiation[81]. Thus, dietary 
intake of vitamin D is inadequate and vitamin D supplement is often needed to avoid 
deficiency.

Comparison of metabolism of vitamin D2 vs vitamin D3

It is estimated that 65% of vitamin D is present as vitamin D while 35% is in the form 
of 25-hydroxyvitaomn D. As well, almost 75% of vitamin D is in adipose tissue, while 
25-hydroxyvitamin D is distributed 20% in muscle, 30% in serum, 35% in fat, and 15% 
in other tissues[88]. The metabolism of vitamin D3 and vitamin D2 is summarized in 
Table 3. Vitamin D binding protein transports the various forms of vitamin D in 
circulation, including vitamin D, 25-hydroxyvtamin D, and 1,25-dihydroxyvitamin D
[89]. Each vitamin D binding protein molecule has one binding site for vitamin D 
and/or its metabolites. The relative affinity of vitamin D binding protein to vitamin D3 
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Table 2 Vitamin D content of selected foods

Food Per serving Percent DV

IU μg

Cod liver oil, 1 tablespoon 1360 34.00 170

Trout (rainbow), farmed, cooked, 3 ounces 645 16.13 81

Salmon (sockeye), cooked, 3 ounces 570 14.25 71

Mushrooms, white, raw, sliced, exposed to UV 
light, 1/2 cup

366 9.15 46

Milk, 2% milkfat, vitamin D fortified, 1 cup 120 3.00 15

Soy, almond, and oat milks, vitamin D fortified, 
various brands, 1 cup

100-144 2.50-3.60 13-18

Ready-to-eat cereal, fortified with 10% of the DV 
for vitamin D, 1 serving

80 2.00 10

Sardines (Atlantic), canned in oil, drained, 2 
sardines

46 1.15 6

Egg, 1 large, scrambled (Vitamin D is in the yolk) 44 1.10 6

Liver, beef, braised, 3 ounces 42 1.05 5

Tuna fish (light), canned in water, drained, 3 
ounces

40 1.00 5

Cheese, cheddar, 1 ounce 12 0.30 2

Mushrooms, portabella, raw, diced, ½ cup 4 0.10 1

Chicken breast, roasted, 3 ounces 4 0.10 1

Beef, ground, 90% lean, broiled, 3 ounces 1.7 0.04 0

Adapted from: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/#en25. The Food and Drug Administration developed daily values (DVs) 
to help consumers compare the nutrient contents of foods and dietary supplements within the context of a total diet. The DV for vitamin D on the new 
Nutrition Facts and Supplement Facts labels used for the values in Table 2 is 20 μg (800 IU) for adults and children aged 4 years and older. Foods providing 
20% or more of the DV are considered to be high sources of a nutrient, but foods providing lower percentages of the DV also contribute to a healthful diet. 
DV: Daily value.

Table 3 Comparison of transportation and metabolism of vitamin D3 vs D2

Ref. Symbol Name (chromosome location) Function D3/D2

Haddad et al[90], 1993 VBP Vitamin D binding protein (4q12-q13) Vitamin D transportation 1.14

Holmberg et al[91], 1986 CYP2R1 25-hydroxylase (11p15.2) Conversion of vitamin D to 25-hydroxy vitamin D 5.0

Zarei et al[93], 2016 CYP27B1 1alpha-hydroxylase (12q13.1-q13.3) Conversion of 25(OH)D to 1,25(OH)2D 2.4

Jones et al[94], 1980 VDR Vitamin D receptor (7q36) Receptor for vitamin D 1.3

is 1.14 times stronger than to vitamin D2[90]. 25-hydroxylase (CYP2R1) catalyzes 25-
hydroxylation of vitamin D3 5 times more efficiently than vitamin D2[91]. Thus, after 
administration of a single oral dose of vitamin D3 and vitamin D2, a more sustainable 
and prolonged increase in serum 25-hydroxybitamin D3 concentration is observed 
compared to serum 25-hydroxybitamin D2 concentration[92]. 1alpha-hydroxylase 
(CYP27B1) coverts 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 2.4-time more 
efficiently than 25-hydroxyvitamin D2[93]. In receptor binding assays, 1,25-
dihydroxyviramin D3 has 1.3 times more receptor affinity than 1,25-dihdroxyvitamin 
D3[94]. These data indicate that vitamin D3 is more biologically potent than vitamin D2.

Comparison of biological potency of vitamin D2 vs vitamin D3

Vitamin D2 and vitamin D3 were reported to have similar efficacy in raising serum 25-
hydroxyviramin D concentration[95]. However, other studies demonstrated that 
vitamin D3 was more efficacious at raising serum 25(OH)D concentrations than 
vitamin D2[96-100]. This finding was confirmed by a meta-analysis of the randomized 

https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/#en25
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control trials[101]. Furthermore, 25-hydroxyvitamin D3 has a longer half-life compared 
to 25-hydroxyvitamin D2 (15.1 ± 3.1 d vs 13.9 ± 2.6 d, P = 0.001, mean ± STD)[18]. In 
comparison to oral vitamin D2, oral vitamin D3 achieves a higher serum concentration 
of 1,25-dihydroxyvitamin D[100,102] and a more effective suppression of serum 
parathyroid hormone concentration[97]. Physicians preferring use of vitamin D2 
should be aware of its markedly lower potency and shorter duration of action when 
compared to vitamin D3. Thus, vitamin D3 is the preferred form of vitamin D for 
replacement therapy.

OPTIMAL SERUM 25-HYDROXYVITAMIN D CONCENTRATION
Minimal serum 25-hydroxyvitamin D concentration
The primary function of vitamin D is to maintain calcium homeostasis. The minimal 
serum 25-hydroxyvitamin D concentration for health was defined based on the serum 
parathyroid hormone response to replacement therapy with ergocalciferol[103]. A 
serum 25-hydroxyvitamin D concentration of 50 nmol/L (20 ng/mL) was 
recommended since no further changes in serum parathyroid hormone levels were 
found in subjects with a serum 25-hydroxyvitamin D level of 50 nmol/L (≥ 20 ng/mL). 
In 2010, the United Sates Institute of Medicine adapted this value as a target for 
ensuring good bone health[104]. However, based on a larger observational study with 
1569 subjects in France, serum parathyroid hormone concentration were noted to still 
decrease when the serum 25-hydroxyvitamin D rose to 78 mmol/L (31 ng/mL)[105]. 
Furthermore, a serum 25-hydroxyvitamin level of 75 nmol/L (30 ng/mL) is a 
recognized threshold for intestinal calcium absorption[106]. As shown in Table 4, 
many professional organizations and agencies have since adapted 75 nmol/L (30 
ng/mL) as the minimal acceptable serum 25-hydroxyvitamin D concentration 
recognizing this may have beneficial effects beyond bone health, targeting beyond 
bone health while the Institute of Medicine define the minimal 25-hydroxyvitamin D 
concentration 50 nmol/L (20 ng/mL) on bone health with a public health interest.

Maximal serum 25-hydroxyvitamin D concentration
The maximal allowed serum 25-hydroxyvitamin D concentration is defined by the 
appearance of adverse effects. Although the Institute of Medicine dose not define 
maximal serum 25-hydroxyvitamin D concentration[104], a warning against elevated 
serum 25-hydroxyvitamin D concentrations is stated. This warning is based upon the 
observed association of increasing mortality with serum 25-hydroxyvitamin D concen-
tration > 125 nmol/L (50 ng/mL)[107] by limiting the maximal daily vitamin D 
allowance (Table 4). This notion was further supported by the finding of increased 
cardiovascular mortality with serum 25-hydroxyvitaminD > 125 nmol/L (50 ng/mL)
[108]. In addition, a progressive decline in bone mineral density with serum 25-
hydroxyvitamin D greater than 125 nmol/L (50 ng/mL) was observed in a United 
States population[109]. Conversely, bone mineral density improved after discon-
tinuation of vitamin D supplementation in patients with a serum 25-hydroxyvitamin D 
concentration greater than 50 ng/mL[110]. Although vitamin D supplementation 
increased calcium absorption without a threshold effect[111], reanalysis of the data 
revealed a diminished response (per 1000 IU of vitamin D in Table 5) with increasing 
dose of vitamin D supplement suggesting a threshold effect of vitamin D on calcium 
absorption[112], something noted by others[106]. We reported lack of improvement in 
insulin sensitivity in individuals with a serum 25-hydroxyvitamin D concentration > 
125 nmol/L (50 ng/mL)[113]. Although hypercalcemia from vitamin D intoxication 
occurs mainly when the serum 25-hydroxyvitamin D concentration is > 374 nmol/L 
(150 ng/mL)[114], serum 25-hydroxyvitamin D concentrations > 75 nmol/L (50 
ng/mL) could be either harmful or lack beneficial effect.

Comparison of daily replacement vs intermittent replacement of vitamin D
The observation that a single oral dose of vitamin D3 2.5 mg (100000 IU) can maintain 
serum 25-hydroxyvitamin D above the target goal[115] provides a unique dosing 
strategy of vitamin D replacement therapy with greater adherence. It could even 
ensure 100% compliance if given by or under the direct supervision of a health care 
provider. Weekly[103], monthly[116], biyearly[117], and even yearly[118] schedules 
were reported in various trials leading to initiation of more convenient dosing 
schedule at less frequent intervals in clinical practice. To reduce the dosing frequency, 
a much higher dose of vitamin D is required which is predicted to cause a short-term 
spike (> 75 nmol/L or 50 ng/mL) in serum 25-hydroxyvitamin D concentration shortly 
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Table 4 Recommended daily vitamin D intake as promulgated by selected organizations and agencies

Organization Daily intake Goal

IU μg ng/mL nmol/L

Institute of Medicine 600-800 15-20 > 20 (20-50) > 50 (50-125)

Agency of Healthcare Research and Quality, Department of Health and Human Services > 1000 > 25 > 30 > 75

Office of Dietary Supplements, NIH 600-800 15-20 20-50 50-125

National Osteoporosis Foundation 800-1000 20-25 > 30 > 75

American Association of Clinical Endocrinologists 1000-2000 25-50 30-60 75-150

Endocrine Society 1500-2000 37.5-50 30-100 75-250

Table 5 Diminished response of intestinal calcium absorption in response to increasing vitamin D supplementation

Daily vitamin D supplementation Observed increase in calcium 
absorption

Estimated increase in calcium absorption per 1000 IU (25 
μg)

IU μg

800 20 3.90% 4.88%

2000 50 5.00% 2.50%

4000 100 6.70% 1.68%

after oral administration. In addition to the adverse effects as described in the above 
section 4.2, increased falls and fracture are observed with annual vitamin D 
replacement therapy. These mainly occur within the first 3 mo after oral adminis-
tration of 12.5 mg vitamin D3[118]. Furthermore, the associations of high-dose vitamin 
D treatment with gastrointestinal complaints[119], increased bone turnover markers
[120], hypercalcemia[121], hypercalciuria[122], and increased urinary magnesium loss
[123] have been reported. Similar levels of serum 25-hydroxyvitamin D concentration 
were achieved at the end of a 56-d trial from daily (1500 IU/d), weekly (10500 IU/wk), 
and monthly (45000 IU/4 wk) replacement therapy. Excessive serum 25-
hydroxyvitamin D concentration was not observed in those on the daily regimen but 
was observed in individuals on the weekly regimen and was still more common in 
those on monthly regimen[124]. Thus, high-dose vitamin D replacement therapy 
results in excessive serum 25-hydroxyvitamin D concentration.

A Lysine (K) amino acid polymorphism, in replacement of Threonine (T), at position 
436 of vitamin D binding protein is associated with increased affinity of vitamin D and 
is associated a 416% elevation in serum 25-hydroxyvitamin D concentration if high-
dose (4000 IU) vitamin D3 replacement therapy if given as opposed to low-dose (600 
IU) vitamin D3 replacement therapy. Individuals carrying the TT SNP showed only a 
136% increase in circulating vitamin[125]. Since the K allele is a minor allele and KK 
genotype accounts for less than few percent of population, the KK subjects may 
account for the excessive serum 25-hydroxyvitamin D-associated complications noted 
in certain studies. Given the above, daily vitamin D supplementation would seem to 
be most physiological and safest way to correct vitamin D deficiency and avoid the 
possible adverse effects associated with the excessive serum 25-hydroxyvitamin D 
concentration.

Factors affecting serum 25-hydroxyvitamin D concentration
Various genetic loci are associated with serum 25-hydroxyvitamin D concentration
[126] with 4 major loci identified (Table 6). These are all key proteins involved in the 
transportation and metabolism of vitamin D. Race and ethnicity were noted to have 
significant impact on serum 25-dihyrdroxyvitamin D concentration[127], again 
implicating a genetic influence[126] including skin color[128].

Seasonable variations in serum 25-hydroxyvitanim D concentrations related to sun 
exposure are well described[126]. Consistent with this, latitude has a significant impact 
on serum 25-dihydrocyvitamin D concentration[129]. Living closer to the equator and 
increasing sun exposure can improve vitamin D levels. However, the increased risk of 
skin cancer from sun exposure should be balanced employing maximum skin 
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Table 6 Major loci associated with changes in serum 25-hydroxyvitamin D concentration

Chromosome SNP Gene symbol Protein P value

4p12 rs2282679 GC Vitamin D binding protein 1.9 × 10-109

11q12 rs12785878 DHCR7 7-dehydrocholsterol reductase 2.1 × 10-27

11p15 rs10741657 CYP2R1 1-alpha-hydroxylase 3.3 × 10-20

20q13 rs6013897 CYP24A1 1,25-dihydroxyvitamin D3 24-hydroxylase 6.0 × 10-10

Adapted from Wang et al[126]. SNP: Single nucleotide polymorphism.

exposure area with decreased exposure time[85]. Dietary supplementation also 
corrects deficiency. Obesity is associated with a lower serum 25-hydroxyvitamin D 
concentration[72] while weight reduction with loss of adipose tissue is associated with 
improvement in serum 25-hydroxyvitamin D concentration[130]. These findings 
indicate that vitamin D status may be improved through modification of lifestyle.

Practical recommendations for vitamin D replacement therapy
As showed in Table 4, the recommended vitamin D supplement varies between 
organizations and agencies. The reasons for this relate to the purpose of vitamin D 
supplementation, visive calcemic vs non-calcemic effects. For calcemic effects, bone 
health is the goal of supplementation and is maximized through using a conservative 
daily vitamin D to achieve the minimal serum 25-hydroxyvitamin D concentration 
while avoiding possible adverse effects associated with overreplacement. A public 
health approach to this is displayed in Table 7. In contrast, a more personized 
approach is rationale when the target is to promote the non-calcemic effects of vitamin 
D.

We recommend using vitamin D3, instead of vitamin D2, for the rationale as 
discussed in the sections 3.2 and 3.3. We are in favor of daily replacement therapy and 
against intermittent mega dose replacement. This is supported by the recommend-
ations of the Endocrine Society for indefinitely intermittent mega dose replacement
[131]. It has been estimated that supplement with cholecalciferol 1000 IU (50 μg) daily 
will increase serum 25-hydroxyvitamin D concentration by 10 ng/mL[132]. Since 
vitamin D is a fat soluble, replacement therapy can be further enhanced by taking it 
with the largest meal of day[133]. We recommend vitamin D3 1000 IU daily for 
achievement of an initial serum 25-hydroxyvitamin D concentration between 51 
nmol/L (21) ng/mL and 75 nmol/L (30 ng/mL); 2000 IU daily for between 26 nmol/L 
(11 ng/mL) and 50 nmol/L (20 ng/mL); and 5000 IU for equal or less than 25 nmol/L 
(10 ng/mL). Serum 25-hydroxyvitamin concentration should be measured within 3 mo 
for assessment and, if indicated, dose adjustment. We are targeting serum 25-
hydroxyvitamin D concentration between 75 nmol/L (30 ng/mL) and 125 nmol/L (50 
ng/mL).

VITAMIN D AND DIABETES PREVENTION
Vitamin D diabetes prevention trials 
To date, eight clinical trials employed vitamin D to reduce prediabetes progression to 
overt diabetes (Table 8). Only two studies[134,135] demonstrated positive results. 
Although these two studies had small sample size, they recruited true vitamin D 
deficient (25-hydroxyvitamin D < 50 nmol/L or 20 ng/mL) subjects and achieved final 
25-hydroxyvitamin D concentration at 89-90 nmol/L, after intervention for 1 year and 
6 mo, respectively. Of note, the study in India[134] was a randomized open label study 
demonstrating an odds ratio of 0.31 [95% confidence intervals (CI): 0.11-0.90]. The 
study in Iran was a randomized placebo control study[135] revealing an odds ratio of 
0.06 (95%CI: 0.01-0.51). Because of relatively small sample sizes of both studies, the CI 
were very wide. Additional studies with similar initial and final 25-hydroxyvitamin D 
concentration (< 50 nmol/L and 90-100 nmol/L, respectively) and much larger sample 
sizes are required to confirm these data.

Two negative studies[136,137] were noted to have similar initial 25-hydroxyvitamin 
D concentrations (25-42 nmol/L). The negative results could be due to the relatively 
short interventions (8-16 wk) and small sample sizes. The study in Holland only 
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Table 7 Vitamin D supplementation versus vitamin D replacement therapy

Vitamin D supplement Vitamin D replacement therapy

Target goal Bone health Beyond bone health

Target 25-hydroxyvitamin D level > 20 ng/mL (50 nmol/L) > 30 ng/mL (75 nmol/L)

Initial testing for 25-hydroxyvitamin D level No Yes

Concern of over-replacement Yes Yes

Follow-up testing for 25-hydroxyvitamin D level No Yes

Dose adjustment No Yes

Approach Public health Individualized

Table 8 Preventive trials of vitamin D supplementation to prevent the development of type 2 diabetes

Placebo control Intervention

25(OH)D 
nmol/L

25(OH)D 
nmol/LRef. Country Race/ethnicity

n
Initial Final

n
Initial Final

Dose Frequency Duration Diabetes 
prevention

Dutta et al[134], 
20141

IndiaAsian Indian 49 45 44 55 43 89 1500 
μg

Weekly X 8, 
monthly

1 yr Positive2

Niroomand et al
[135], 2019

IranIranian 83 32 40 83 31 90 1250 
μg

Weekly for 3 mo, 
monthly

6 mo Positive3

Wagner et al
[136], 20164

Sweden 22 47 46 21 42 83 750 μg weekly 8 wk Negative

Oosterwerff et al
[137], 2014

HollandNon-Western 65 22 23 65 25 60 30 μg daily 16 wk Negative

Barengolts et al
[141], 20155

United States African 
American

86 35 50 87 37 120 1250 
μg

weekly 12 m Negative

Davidson et al
[139], 20136

United States Latino and 
African American

53 55 60 56 55 167 2222 
μg 

weekly 12 mo Negative

Jorde et al[140], 
2016

Norway 255 61 64 256 60 110 500 μg weekly 5 yr Negative

Pittas et al[138], 
2019

United States mixed 1212 70 72 1211 69 136 100 μg daily 24 mo Negative

1This study was an open label randomized design, instead of randomized placebo-control design as other studies.
2Intervention is associated with significantly lower progression to diabetes (11% vs 27%; P = 0.04) and higher reversal to normoglycemia (43% vs 20%; P = 
0.02).
3The rate of progression toward diabetes was significantly lower in the intervention group (3% vs 28%; P = 0.002).
4Meadian 25-hydroxyvitamin was provided, rather than mean 25-hydroxyvitamin D as in other studies.
5Ergocalciferol was used, rather than cholecalciferol in other studies.
6Weekly dose of cholecalciferol was adjusted to titrate serum 25-hydroxyvitamin D between 162 nmol/L and 200 nmol/L.

achieved a final suboptimal 25-hydroxyvitamin D concentration of 60 nmol/L.
The other four studies[138-141] had a final 25-hydroxyvitamin D concentration > 

100 nmol/L which might not be optimal for glucose metabolism. Among them, the 
study in African American[141] was the only study that recruited true vitamin D 
deficient subjects (initial 25-hydroxyvitamin D 37 nmol/L). Of note, ergocalciferol was 
used which could be less effective biologically as discussed above in 3.2 and 3.3. 
Enrollment of non-vitamin D deficient (25-hydroxyvitamin D < 50 nmol/L) subjects
[138-140] could further reduce the chance of finding any effect. Furthermore, the study 
in Norway had a significant dropout rate in the interventional group with only 45% of 
participants completing the planned 5-year visit. The largest intervention trial[138] 
included more than 1000 subjects in each group. To be able to apply to the general 
population in the United States, this study did not target vitamin D deficient subjects 
and allowed the participants to take additional vitamin D up to 25 μg daily. Therefore, 
it had the highest initial 25-hydroxyvitamin D among these studies, 70 nmol/L in the 



Chang Villacreses MM et al. Vitamin D on glucose and fuel homeostasis

WJD https://www.wjgnet.com 1373 September 15, 2021 Volume 12 Issue 9

control group and 69 nmol/L in the interventional group, which might diminish the 
power of this study to detect the beneficial effect of vitamin D. Regardless of the 
negative results in most studies, the beneficial effect of vitamin D supplementation 
cannot be completely excluded, especially in subjects with vitamin D deficiency (25-
hydroxyvitamin D < 50 nmol/L).

The effects of vitamin D supplement on parameters of glucose metabolism
Various parameters of glucose metabolism were reported in most of above-mentioned 
studies, except one[138]. After vitamin D intervention for 1 year, the study from India
[134] observed improvement in fasting and 2-hr post-challenge glucose concentrations, 
insulin sensitivity by Homeostasis Model (HOMA) insulin resistance index, QUICKI, 
and 1/fasting insulin concentration while no impact on HbA1c and beta cell function 
by HOMA. Following vitamin D supplement for 6 mo, the study from Iran[135] 
reported the improvement in the HOMA insulin resistance index and marginal 
improvement in fasting insulin concentration (P = 0.05) and 2-hour post-challenge 
blood glucose concentration (P = 0.07) with no impact on fasting blood glucose concen-
tration.

After an 8-wk intervention, the study from Sweden[136] assessed insulin sensitivity 
and beta cell function using the hyperglycemic clamp. They observed a significant 
improvement in deposition index based on the first phase insulin response (P = 0.005) 
and marginal improvement in first phase insulin response (P = 0.06), insulin sensitive 
index (P = 0.09), deposition index based on the second phase insulin response (P = 
0.06), and A1c (P = 0.06) but no impact on the second phase insulin response and 
fasting and 2-hr post-challenge blood glucose concentration.

In contrast, the study from Holland[137] evaluated glucose metabolism parameters 
based on the 75-g glucose tolerance test following intervention for 16 wk. They 
reported negative results, finding no effects upon insulin area under curve, glucose 
area under curve, insulin sensitivity by composite insulin sensitivity index, Stumvoll 
index, insulin resistance index by HOMA, and beta cell function by insulinogenic 
index. Of note, the final 25-hydroxyvitamin D concentration was only 60 nmol/L 
which could be suboptimal for glucose metabolism. Similarly, after the vitamin D 
supplementation for 5 years, the study from Norway[140] observed no impact on 
fasting and 2-hr post-challenge serum glucose concentration, fasting and post 
challenge serum insulin concentration, fasting serum C-peptide concentration, HbA1c, 
and insulin sensitivity by HOMA insulin resistance index and QUICKI.

Following a 12-mo intervention, the study involving Latino and African Americans
[139] observed a significant improvement in HbA1c but no effects on fasting and 2-hr 
post-challenge blood glucose concentration, beta cell function by the ratio of insulin 
and glucose area under curve, Stumvoll first and second insulin response, 
insulinogenic index, insulin sensitivity index by HOMA insulin resistance index and 
composite insulin sensitivity index, and oral disposition index. However, a significant 
improvement in composite insulin sensitivity index but not Matsuda index, 
insulinogenic index, C-peptidogenic index, and HbA1c was noted.

Excepting two studies[137,140] with negative results, favorable outcomes on 
parameters of glucose metabolism were reported in five studies[134-136,139,141] 
suggesting some benefits to supplementation under these conditions.

Summary of vitamin D and diabetes prevention
In vitamin D deficient (25-hydroxyvitamin D < 50 nmol/L) prediabetic subjects, 
vitamin D supplement appears to be effective in reduction of the development of overt 
diabetes. However, there appears to be no benefit in vitamin D sufficient subjects, 
which was noted in a study from Norway[142]. Based on pooled data from four 
intervention trials, in subjects without vitamin D deficiency there is no improvement 
in glucose metabolism with high dose vitamin D supplementation and if anything, the 
effect is negative[143]. This notion is consistent with the observed threshold effect of 
vitamin D on bone health and lack of benefit in subjects with baseline 25-
hydroxyvitamin D level ≥ 75 nmol/L (30 ng/mL)[14,15].

LABORATORY EVIDENCE SUPPORTING THE EFFECT OF VITAMIN D ON 
GLUCOSE AND FUEL HOMEOSTASIS
Beta cell function 
Functional beta cell studies: The important role of vitamin D on insulin secretion has 
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been noted in laboratory animals since 1980. Insulin secretion was reduced by about 
50% in isolated perfused islets from vitamin D-deficient rats compared to controls
[144]. Interestingly, 1,25-dihydroxyvitamin D3 was noted in cell nuclei in the islets of 
langerhans[145]. Furthermore, administration of 1,25-dihydroxyvitamin D3 to vitamin 
D-deficient rats improved insulin secretion significantly when compared to controls
[146]. Vitamin D deficiency impaired both phases of insulin release in rats while 
correction of hypocalcemia failed to reverse the defect in insulin release[147]. Vitamin 
D, but not calcium, was essential for normal insulin secretion from the perfused rat 
pancreas[148]. The positive effect of single dose of 1,25-dihydroxyvitamin D3 on 
insulin secretion was apparent at 8 h in perfused rat pancreata, peaked at 14 h, and 
then decreased to pretreatment baseline values by 36 h[149]. Dietary vitamin D3 
supplementation improved impaired glucose tolerance and insulin secretion in the 
vitamin D-deficient rats[150]. A dose-dependent effect from parenteral 1,25-
dihydroxyvitamin D on insulin secretion and glucose metabolism was observed within 
3 h and remained effective up to 20 h in the vitamin D-deficient rats[151]. The role of 
vitamin D on insulin synthesis and secretion was supported by studies in vitamin D 
receptor knockout mice. Insulin secretory capacity was reduced by 60% in vitamin D 
receptor knockout mice[152] with increased post-challenged blood glucose but normal 
fasting blood glucose concentration and reduced insulin mRNA levels in pancreatic 
islets but normal pancreatic beta cell mass, islet architecture, and islet neogenesis when 
compared to wild type mice. Thus, vitamin D plays an important role in pancreatic 
insulin synthesis and secretion in vivo.

Mechanistic studies of beta cell function: Although the essential role of vitamin D on 
insulin secretion has been established in vitamin D depleted laboratory animal, details 
of the underlying molecular mechanism remain to be defined. Employing a proteomic 
approach, treatment with 1,25-dihydroxyvitamin D3 resulted in 31 differentially 
expressed proteins in INS-1 beta-like cells[153] with 29 upregulated, some of which 
were implicated in insulin granule motility and insulin exocytosis as well as regulation 
of ions. Pretreatment of INS1E cells with 1,25-dihydroxyvitamin D or 25-
hydroxyvitamin D and glucose resulted in 526 and 181 differentially expressed genes, 
respectively[154].

Several molecular mechanisms were proposed to account for the effects of vitamin 
D on beta cells, including changes in the local pancreatic islet renin-angiotensin system
[155], restoration of GLUT2 expression[156], enhancement of IP3 and AMPA receptor 
expression[157], vitamin D-binding protein-induced beta cell dedifferentiation[158], 
reduction of oxidative damage[159], reduced cholinergic pancreatic effects[160], 
enhanced transcriptional regulation of voltage-gated calcium channels[161], and 
elevation of PPAR-γ expression[162]. However, further studies are required to confirm 
the proposed mechanisms.

Insulin sensitivity 
Functional studies of insulin sensitivity: In contrast to beta cell function, there are 
fewer studies of insulin sensitivity. Dietary supplementation of vitamin D improved 
insulin sensitivity, hepatic steatosis, and myocardial fibrosis in Western diet fed rats
[163]. In dietary-induced obese mice, vitamin D receptor activation in liver 
macrophages improved insulin sensitivity with reduction of hepatic inflammation and 
steatosis[164]. Vitamin D treatment improved insulin resistance index in a nongenetic 
model of type 2 diabetes[165]. However, vitamin D status were not reported in these 
studies.

Mechanistic studies of insulin sensitivity: Chronic central administration of 1,25-
dihydroxyvitamin D3 dramatically reduced body weight, putatively by lowering food 
intake, in obese rodents[166]. Treatment with vitamin D increased mitochondrial 
function and insulin sensitivity, in part, through upregulation of perilipin 2, a perilipin 
protein upregulated with 1,25-dihydroxyvitamin D treatment[167]. In skeletal 
myocytes, vitamin D reduced insulin resistance by altering lipid partitioning and lipid 
droplet packaging in favor of lipid turnover[168]. FGF-23 knockout mice are 
hypoglycemic with profoundly increased peripheral insulin sensitivity and improved 
subcutaneous glucose tolerance. Ablation of vitamin D signaling in these mice 
normalized subcutaneous glucose tolerance tests and insulin sensitivity[169]. 
Caveolin-1 protein, which is necessary for vitamin D signaling, could play a role in 
vitamin D-induced insulin sensitivity in skeletal muscle[170]. In cultured rat 
osteoblasts, 1,25-dihydroxyvitamin D3 treatment increased expression of the insulin 
and vitamin D receptors, and elevated osteocalcin levels under high glucose exposure
[171], which may in turn improve insulin sensitivity.
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However, the results of vitamin D receptor knockout mice were less uniform. 
Skeletal muscle-specific vitamin D receptor knockout mice developed insulin 
resistance and glucose intolerance accompanied by increased expression and activity 
of FOXO1[172]. Deletion of macrophage vitamin D receptor promoted insulin 
resistance and monocyte cholesterol transport and accelerated atherosclerosis[173]. In 
contrast, deletion of the vitamin D receptor gene in endothelial cells improved glucose 
tolerance and insulin sensitivity in skeletal muscle and reduced expression and 
secretion of insulin in pancreatic islets[174]. Together these data indicate that vitamin 
D has positive and negative effects on insulin sensitivity that are cell and organ 
specific.

CONCERNS ARISING WITH REPORTED STUDIES
Lack of true vitamin D deficient subjects
Due to publicity and potential non-calcemic benefits of vitamin D supplementation, 
the sale of vitamin D supplements increased significantly and taking vitamin D 
supplements is common. Thus, there are less true vitamin D deficient subjects 
available for inclusion in clinical trials. As well, a general lack of funding support for 
large trials impedes addressing the ability of researchers to address the gaps in 
knowledge surrounding vitamin D and its beneficial effects.

Lack of beneficial effects from suboptimal replacement and detrimental effects of 
over-replacement
To obtain the maximal effect of vitamin D, serum 25-hydroxyvitamin D concentration 
should be maintained in an optimal range, namely between 75 nmol/L (30 ng/mL) 
and 125 nmol/L (50 ng/mL). Inadequate vitamin D replacement therapy will reduce 
the chance to observe the expected beneficial effect of vitamin D while adverse effects 
associated with excessive serum 25-hydroxyvtamin D concentration will also cloud 
data interpretation. Although mega doses of vitamin D given intermittently could 
improve compliance in a study protocol, the predicted wide swings in serum 25-
hydroxyvitamin D concentrations will confound outcomes. It is important in clinical 
studies to use a proper daily dose to avoid these pitfalls.

Inadequate sample size
The Diabetes Prevention Program demonstrated a 58% (95%CI: 48%-66%) reduction in 
the incidence of diabetes in the lifestyle intervention group (cumulative incidence of 
diabetes 14.4% in 1079 participants) and a 31% reduction in diabetes (95%CI: 17%-43%) 
in the metformin treated group (cumulative incidence of diabetes 21.7% in 1073 
participants) when compared to the placebo (cumulative incidence of diabetes 28.9% 
in 1082 participants)[175]. Insulin sensitivity improved by 61.8% in the lifestyle 
intervention group and 28.3% in the metformin group[176]. This study can be 
employed to calculate a sample size sufficient for assessing the effects of vitamin D 
intervention.

Based on the non-linear relationship of serum 25-hydroxyvotamin D concentration 
and insulin sensitivity index as we reported[113], we constructed Table 9. Assuming a 
linear relationship between improvement in insulin sensitivity and reduction of 
diabetes from the Diabetes Prevention Program[175,176], we calculated the required 
sample size to detect the reduction of diabetes incidence after vitamin D replacement 
therapy in a population similar to that of the Diabetes Prevention Program[175] with a 
power of 0.80 to detect the proposed difference and a type I error rate, alpha, of 0.05 in 
a clinical trial of 3 years. Starting with a baseline serum 25-hydroxyviyamin D of 25 
ng/mL (10 ng/mL), 170 subjects would be needed. Such a study cohort size is not 
excessive. However, if the baseline serum 25-hydroxyvitamin D is equal or greater 
than 50 nmol/L (20 ng/mL) the cohort size needed increases markedly. These 
calculations suggest that all studies to date are flawed secondary to inadequate sample 
size.

It has been frustrating to confound the published negative reports while ample 
evidence supports the benefit of vitamin D. Accordingly, we propose these guidelines
[177]. Future studies into the effects of vitamin D supplementation need to ensure the 
proper selection of study subjects, adequate vitamin D replacement to achieve an 
optimal serum 25-hydroxyvitamin D concentrations, avoidance over-placement to 
eliminate detrimental effects, and adequate sample size to detect the proposed effects.
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Table 9 Calculated sample size requirement to detect an improvement in insulin sensitivity based on a baseline serum 25-
hydroxyvitamin D concentration of 40 ng/mL (100 nmol/L) and a power of 0.80 and alpha of 0.05

Initial serum 25-
hydroxy-vitamin D 
concentration

ng/mL nmol/L

Estimated insulin 
sensitivity 
index(μM/min/m2/pM)

Improvement in insulin sensitivity index with 
postintervention Serum 25-hydroxyvitamin D 
concentration 40 ng/mL (100 nmol/L)

Diabetes reduction 
based on the Diabetes 
Prevention Program

Sample 
size

10 25 4.1326 0.8664 0.4361 340

15 37 5.4144 0.4246 0.2118 1602

20 50 6.2812 0.2280 0.1121 5934

25 62 6.8674 0.1232 0.0589 21878

30 75 7.2638 0.0619 0.0278 99260

35 87 7.5319 0.0241 0.0086 1041162

THE ISSUES THAT NEED TO BE ADDRESSED BY THE FUTURE STUDIES
Optimal serum 25-hydroxyvitamin D concentration for glucose metabolism
Table 4 summarizes the recommended serum vitamin D concentrations from several 
institutions and agencies. As appreciated, studies on bone health[14,15] showed no 
additional benefit in the subjects with serum 25-hydroxyvitmanin D > 75 nmol/L (30 
ng/mL) and this agrees with the effects upon diabetes prevention. However, increased 
all-cause mortality[107] and cardiovascular mortality[108] occurred prior to the 125 
nmol/L (50 ng/mL) threshold, implying a much lower maximum dose for optimal 
serum 25-hydroxyvitamin D concentration. The question remains whether the same 
relationship applies to glucose homeostasis.

Detrimental effects on glucose metabolism for serum 25-hydroxyvitamin D 
concentrations above a maximum threshold
The detrimental effects noted in individuals with serum 25-hydroxyvitamin D concen-
tration above a maximum threshold was observed in a cross-sectional study[109]. 
Further, improvement in bone density after discontinuation of vitamin D supple-
mentation in osteoporotic patients with elevated serum 25-hydroxyvitamin D concen-
tration was reported[110]. Elevated serum 25-hydroxyvitamin D concentrations were 
also associated with increased falls and fracture[118]. These reports suggest that 
assessment of negative effects from elevated serum 25-hydroxyvitamin D concen-
tration may be uncovered with additional study.

Diabetes prevention in vitamin D deficit subjects
Although various evidence suggests the benefit of vitamin D on glucose metabolism, 
published diabetes prevention trails are not convincing and suffer from improper 
designed and execution. To address this issue, a well-designed and well-conducted 
randomized, placebo-control trial to test the effects of vitamin D to limit development 
of diabetes is warranted, by selecting true vitamin D deficient subjects, achieving 
optimal but not excessive serum 25-hydroxyvitamin concentration, and enrolling 
adequate number of subjects. Properly monitoring serum 25-hydroxyvitamin D 
concentrations is required during the study.

CONCLUSION
The role of vitamin D in glucose metabolism and fuel homeostasis is supported by a 
number of observational studies. We reported that serum 25-hydroxyviatmin D 
concentration accounted for 21.2% of the variation in insulin sensitivity index in 
univariate analysis and 6.1% by itself among 42% with other covariates in multivariate 
analysis[178]. We also reported that serum 25-hydroxyviatmin D concentration 
accounted for 8.2% of the variation in beta cell function in univariate analysis and 4.5% 
by itself among 25.5% with other covariates in multivariate analysis[179]. Although the 
intervention studies have failed to provide concordant data for multiple reasons, 
laboratory studies revealed a number of molecular mechanisms that underlie the effect 
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of vitamin D supporting the important role of the vitamin in glucose metabolism and 
fuel homeostasis. Since the independent contributions of vitamin D to insulin 
sensitivity[178] and beta cell function[179] are relatively small, vitamin D deficiency 
could be the last straw that breaks camel’s back in polygenetic and multifactorial 
diseases, such as diabetes, obesity, and hyperlipidemia.
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