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Abstract
Gastrointestinal (GI) cancer is a high-risk malignancy and is characterized by high 
mortality and morbidity worldwide. Neutrophil extracellular traps (NETs), a 
weblike structure consisting of chromatin DNA with interspersed cytoplasmic 
and granule proteins, are extruded by activated neutrophils to entrap and kill 
bacteria and fungi. However, accumulating evidence shows that NETs are related 
to the progression and metastasis of cancer. In clinical studies, NETs infiltrate 
primary GI cancer tissues and are even more abundant in metastatic lesions. The 
quantity of NETs in peripheral blood is revealed to be associated with ascending 
clinical tumour stages, indicating the role of NETs as a prognostic markers in GI 
cancer. Moreover, several inhibitors of NETs or NET-related proteins have been 
discovered and used to exert anti-tumour effects in vitro or in vivo, suggesting that 
NETs can be regarded as targets in the treatment of GI cancer. In this review, we 
will focus on the role of NETs in gastric cancer and colorectal cancer, generalizing 
their effects on tumour-related thrombosis, invasion and metastasis. Recent re-
ports are also listed to show the latest evidences of how NETs affect GI cancer. 
Additionally, notwithstanding the scarcity of systematic studies elucidating the 
underlying mechanisms of the interaction between NETs and cancer cells, we 
highlight the potential importance of NETs as biomarkers and anti-tumour the-
rapeutic targets.

Key Words: Neutrophil extracellular traps; Gastric cancer; Colorectal cancer; Biomarkers; 
Therapeutic targets
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Core Tip: Neutrophil extracellular traps (NETs) have been reported to participate in 
progression and metastasis in gastrointestinal (GI) cancer. Recent reports demonstrate 
that NET formation is enhanced in GI cancer patients as well as some mouse models 
and that elevated levels of NETs indicate an adverse outcome in patients. Furthermore, 
NETs can trap disseminated cancer cells and assist the formation of metastatic lesions 
although the underlying mechanisms remain vague. More studies are needed before 
NETs can be used as reliable biomarkers and therapeutic targets in GI cancer.
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INTRODUCTION
According to cancer statistics, gastric cancer (GC) ranks third globally in terms of 
mortality, while colorectal cancer (CRC) is the second leading cause of cancer-related 
death. Both constitute a major cause of cancer-related death worldwide[1,2]. Despite 
advances in the techniques applied for cancer treatment, surgical resection accom-
panied by adjuvant therapy (chemotherapy, radiotherapy and molecular targeted 
therapies) remains the primary approach[3]. However, the efficacy of aforementioned 
treatment is related to tumour heterogeneity in patients[4]. Once the tumour pro-
gresses and spreads to distant organs (e.g., liver and lung), neither conventional 
surgery nor targeted therapies can reverse the dismal outcomes[5]. Therefore, it is of 
high importance in all future studies to understand the mechanisms of deterioration of 
GI cancer, by measuring not only the tumour itself, but also the surrounding cells that 
can be modified by the tumour to generate a supportive microenvironment; these cells 
include macrophages (tumour-associated macrophages), fibroblasts (cancer-associated 
fibroblasts) and neutrophils (tumour-associated neutrophils)[6,7].

Neutrophil extracellular traps (NETs) are extruded by activated neutrophils into the 
extracellular environment and have three-dimensional lattices, which are composed of 
decondensed chromatin with interspersed proteins such as neutrophil elastase (NE), 
cathepsin G, myeloperoxidase (MPO), histones and some other antimicrobial peptides
[8,9]. NETs were originally discovered to ensnare and kill extracellular bacteria and 
fungi and may act as a physical barrier to impede the dissemination of microbes[10]. 
However, recent studies have revealed that NETs, if dysregulated, can contribute to 
the development or progression of some inflammatory or immune-related diseases[11,
12], such as atherosclerosis[13], systemic lupus erythematosus (SLE)[14], diabetes[15], 
vasculitis[16], wound healing[17] and coronavirus disease 2019 (COVID-19)[18]. 
COVID-19 is still spreading worldwide, and clinical evidence shows that increased 
NET formation after the COVID-19 infection can be a potential biomarker for disease 
severity[19]; thus, targeting NETs may alleviate the condition of patients[20]. More 
work is needed before NETs can be used as reliable biomarkers in these diseases. In 
addition to the roles of NETs mentioned before, studies have expanded their biological 
scope and suggest that elevated numbers of neutrophils and levels of NETs in peri-
pheral circulation are a hallmark of cancer[21]. Recently, NETs have been suggested to 
participate in the biological process of cancer[22-24]. Several studies have shown that 
NETs can cause hypercoagulability[25], accumulate in peripheral blood vessels and 
impair organ function[26], promote cancer development and metastasis[27-30], se-
quester circulating tumour cells[31,32], and even stimulate dormant cancer cells[33]. 
Therefore, more work needs to be done to elucidate the mechanism between NETs and 
cancer.

In this review, we will discuss the role of NETs in GC and CRC according to the 
latest findings and consider their potential of NETs as biomarkers and therapeutic 
targets.

https://www.wjgnet.com/1007-9327/full/v27/i33/5474.htm
https://dx.doi.org/10.3748/wjg.v27.i33.5474
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NETS
The formation of NETs, known as NETosis, was first observed by Takei et al[34] via 
stimulation with phorbol-12-myristate-13-acetate (PMA) and is regarded as a novel 
form of neutrophil death that is different from apoptosis and necrosis. The antibac-
terial role of NETs was confirmed in 2004 and is dependent on the web-like structure
[10]. The core scaffold of NETs is the nuclear DNA extruded from neutrophils and that 
forms a three-dimensional meshwork with a number of interspersed specific cytoplas-
mic and granular proteins[35]. Notwithstanding the lack of mechanistic or interven-
tional studies investigating NET formation in peripheral circulation, initial studies 
suggest that NETs are released by dying neutrophils. This phenomenon of NET 
formation can be mainly described by at least two mechanisms. One mechanism re-
quires the lytic suicide of neutrophils, while the other mechanism is independent of 
this process[36,37]. Neubert et al[38] demonstrated that entropic chromatin swelling is 
the major physical driving force of NETosis. In addition, other myeloid cells, such as 
human blood monocytes[39], mast cells[40] and eosinophils[41], have been discovered 
to release DNA networks. However, neutrophils seem to remain the main source of 
these networks because of their high efficiency of secretion.

The functions of NETs in defending against infection depend on the composition of 
the network, including the DNA itself, which is a chelator of divalent cations that 
possesses antibacterial ability. The citrullination of histones loosens their grip on DNA 
and provides a chance for interaction between DNA and bacteria[42]. Moreover, 
highly toxic modified histones, which constitute the major part of NET-associated 
proteins, are also mediators of bactericide[43]. Moreover, NE synergizes with MPO to 
assist the formation and antibacterial role of NETs[44]. More generally, NETs prevent 
dissemination of infection by entrapping microbes and facilitate their killing by bacter-
icidal proteins which have been shown to be involved in both direct and indirect 
mechanisms. In addition, NETs are revealed to be vital factors in non-infectious 
diseases. Hakkim et al[45] suggested that the persistence of NETs exacerbates the 
autoimmune response and forms a vicious cycle in SLE. Similarly, studies on diabetes
[15], vasculitis[16], wound healing[17] and COVID-19[18-20] have described the patho-
physiological role of NETs.

Recently, an emerging role of NETs in promoting cancer progression has been 
described. Solid tumours are prone to generating a leukemoid reaction and pre-edu-
cate neutrophils to form extracellular DNA traps, and intratumoural NET formation is 
associated with thrombosis[46]. The accumulation of tumour-induced NETs in the 
peripheral circulation drives the systemic inflammation and vascular dysfunction in 
mice with cancer[26]. Leal et al[47] indicates that NETs serve as scaffolds and co-
llaborate with tumour-derived procoagulant exosomes in the establishment of a 
prothrombotic phenotype in cancer. CXCL8 (interleukin-8, IL8) is a chemokine that 
can be produced by tumour cells and its role in promoting angiogenesis in cancer has 
been well discussed[48]. Furthermore, the presence of IL8 activates the extrusion of 
NETs with potential involvement in cancer progression and promotes cancer cell 
metastasis partially through AKT and STAT3 signalling pathways[49,50]. NETs pro-
duced by tumour-infiltrating neutrophils mediate the crosstalk between the tumour 
microenvironment and deterioration by regulating the HMGB1/RAGE/IL8 axis[51]. 
IL17 is a cytokine described as a protumourigenic factor involved in the initiation and 
development of cancer[52]. A recent study demonstrated that IL17 can induce NETosis 
through epithelial cell signalling to favour tumour growth[53]. Rocks et al[54] asso-
ciated NETs with cancer cells and confirmed that the release of NETs favour tumour 
cell dissemination and colonization in organs.

Since the discovery of NETs, the role of neutrophils and NETs has attracted in-
creasing attentions. Additional studies have reported on numerous stimuli that affect 
NET formation in vitro and in vivo. PMA, a potent artificial activator of the neutrophil 
respiratory burst, has been broadly applied to identify the mechanism of NETosis. 
Cytokines, such as the aforementioned IL8, IL17 and tumour necrosis factor alpha[55], 
have been investigated with respect to their role in expediting NET formation. Ni-
cotine, a major addictive component of tobacco, is reported to induce NETosis in a 
dose-dependent manner, implying potential threats to human health[56]. Moreover, 
sulfasalazine, a drug used to treat inflammatory bowel disease and rheumatoid ar-
thritis, has been found to significantly promote NETosis by accelerating lipid oxidation
[57]. Most recently, Yasuda et al[58] established the relationship between NETosis and 
epigenetics and demonstrated that DNA demethylation enhances spontaneous NET 
formation by reinforcing PAD4 expression and histone citrullination.
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NETS IN GC
GC is the fifth most common cancer and ranks third in terms of mortality worldwide. 
Several studies have tried to confirm the characteristics of NETs in GC and clarify the 
underlying mechanisms in vitro and in vivo (Table 1).

Notwithstanding advances in diagnosis and therapy, recurrence and metastasis are 
still common as a result of its high molecular and phenotypic heterogeneity[59], which 
contributes to a coagulable state that causes the proliferation and invasion of GC cells
[60-63]. In GC patients, NET formation is significantly upregulated and its increased 
level is consistent with advanced TNM stage. Moreover, a procoagulant role of NETs 
in GC has been confirmed. When NETosis is inhibited by DNase I, the levels of TAT 
and D-dimers are downregulated. Furthermore, NETs obtained from GC patients can 
also stimulate control plasma to generate thrombin and fibrin[64].

A common target of metastatic gastrointestinal cancer is the peritoneal cavity[65]. 
The invention of heated intraperitoneal chemotherapy[66] and postoperative che-
motherapy[67] has indeed reduced the rate of peritoneal recurrence and metastasis. 
However, limitations still exist with regard to the benefit of these treatments, and 
severe general toxicity has always been an unavoidable side effect. To elucidate the 
underlying mechanisms, Kanamaru et al[68,69] collected the peritoneal lavages from 
GC patients before and after radical surgery. Then NET formation emerged after short 
term culture of purified low-density neutrophils (LDNs) separated from the lavages 
fluids. Moreover, the majority of NET-like structures were discovered on the surface of 
omental tissue. In a in vivo study, GC cells lines such as MKN45, OCUM-1 and NUGC-
4 were found attached to the NETs and remained healthy; this interaction was entirely 
prevented upon treatment with DNase I, which can degrade NETs.

Notwithstanding the advances of therapeutic strategies in GC, surgical resection 
remains the mainstay treatment. Therefore, the subsequent surgical stress, which sup-
presses immunity, constitutes one of the key factors that influence the prognosis of GC 
patients[70,71]. The percentage of LDNs in the peripheral circulation of GC patients 
who underwent abdominal surgery was elevated and in vitro studies observed the 
adhesion of cancer cells to NET structure, suggesting that partial adverse effects of 
surgical stress may be explained by the formation of NETs[72].

According to a pulmonary metastasis model of GC, accumulation of neutrophils in 
the adjacent vascular vessels has been found during the colonization of GC cells. 
Extracts from the root of Salvia miltiorrhiza (Danshen)[73], a medicinal plant used for 
cancer therapy, have been observed to prevent neutrophil trafficking to the metastatic 
sites and obstruct the formation of NETs via inhibitory activities on MPO and NADPH 
oxidase (NOX)[74]. A recent study has proposed that obstruction of NETosis by Cl-
amidine or DNase I significantly suppresses the progression of GC cells by regulating 
the expression of apoptosis-associated genes, among which Bcl-2[75] levels were 
downregulated and the expression of Bax[76] and NF-κB p65[77] increased signifi-
cantly[78].

NETS IN CRC
CRC is the third most frequent malignancy and second leading cause of cancer-related 
mortality worldwide. To date, metastasis and cancer-associated thrombosis are still the 
main causes of death in CRC patients. To address this issue, much work has been done 
or is currently in progress; recently, more attention has been drawn to the establish-
ment of tumour microenvironment. Of note, recent accumulating evidence has shown 
that NETs may play a pivotal role in the progression of CRC (Table 2).

CRC patients are at high risk of venous thrombosis as a result of hypercoagulable 
state and the levels of NETs in the peripheral blood are positively related to cancer 
progression. A comparison between 60 newly diagnosed CRC patients and 20 healthy 
controls revealed that neutrophils in CRC patients can release more NETs, and this 
tendency parallels increased TAT levels and fibrin formation, which is indicative of a 
hypercoagulable state[79]. Thus, a vicious cycle can be established between activated 
platelets and neutrophils. Additionally, in vitro studies show that NETs can convert 
endothelial cells to a procoagulant phenotype[80]. Another study observed that NETs 
were concentrated in the centre of CRC tissues and reduced gradually towards ad-
jacent normal tissues, and this characteristic could help surgeons determine a better 
surgical area through pathological examination of the tumour margins. Furthermore, 
tissue factor, a stimulus of coagulation and a pro-angiogenic factor, was discovered in 
NETs from the primary tumour and metastatic lymph nodes[81]. Altogether, the 
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Table 1 Role of neutrophil extracellular traps in gastric cancer

Ref. Cell lines Model (in vitro, in 
vivo, human) Conclusion

Yang et al[64], 
2015

- Human NETs contribute to the hypercoagulable state in GC patients with stage III/IV

Kanamaru et al
[68], 2018

MKN45, NUGC-4, 
OCUM-1

In vitro, in vivo NETs on peritoneal surface assist the clustering and growth of GC tumor cells 
disseminated in abdomen

Tao et al[74], 2018 BGC-823 In vitro, in vivo NET formation is inhibited by Sal B and DHT I at the earlier stage

Kumagai et al
[72], 2020

MKN45, NUGC-4, 
OCUM-1

In vitro, human NETs formation is enhanced under surgical stress and can effectively trap circulating 
tumor cells

Li et al[78], 2020 BGC-823, SGC7901, 
MKN28

In vitro, human NETs destruction promotes the apoptosis and inhibits the invasion of gastric cancer 
cells by regulating the expression of Bcl-2, Bax and NF-κB

Zhang et al[94], 
2020

- Human NETs have novel diagnostic, therapeutic predictive, and prognostic value in GC 
patients

NETs: Neutrophil extracellular traps; GC: Gastric cancer.

Table 2 Role of neutrophil extracellular traps in colorectal cancer

Ref. Cell lines Model (in vitro, 
in vivo, human) Conclusion

Arelaki et al
[81], 2016

Caco-2 In vitro, human NETs concentration is gradually reduced from the tumor mass to the distal margin

Tohme et al
[83], 2016

MC38 In vitro, human Surgical stress and intratumoral hypoxia induce NETs formation and NETs can trigger 
HMGB1 release and activate TLR9-dependent pathways to promote adhesion, 
proliferation, migration, and invasion in CRC

Richardson et al
[84], 2017

- Human NET production in the later postoperative period appears to coincide with surgical 
recovery

Arelaki et al
[88], 2018

Human PolyP is present in human colon cancer and increase NETosis

Rayes et al[82], 
2019

MC38, H59 In vitro, in vivo, 
human

Circulating NET levels are elevated in advanced CRC and blocking NETosis 
significantly inhibits spontaneous metastasis to the lung and liver

Yazdani et al
[89], 2019

MC38, HCT116, Hepa 1-6, 
Huh7

In vitro, in vivo, 
human

NETs facilitate the growth of stressed cancer cells by altering their bioenergetics

Zhang et al[80], 
2019

HUVECs In vitro, human NETs are involved in the progression of CRC and act as potential agonists in CRC-
related hypercoagulability

Rayes et al
[113], 2020

HT-29, MC38, A549 In vitro, in vivo, 
human

NET-associated CEACAM1 acts as a putative therapeutic target to prevent the 
metastatic progression of colon carcinoma

Shang et al[92], 
2020

DKs-8, DKO-1, PMN In vitro, in vivo, 
human

Exosomes may transfer mutant KRAS to recipient cells and trigger increases in IL-8 
production, neutrophil recruitment and formation of NETs, eventually leading to the 
deterioration of CRC

Xia et al[105], 
2020

MC38, HepG2 In vitro, in vivo AAV-mediated DNase I liver gene transfer is a safe and effective modality to inhibit 
metastasis and represents a novel therapeutic strategy for CRC

Yang et al[91], 
2020

HT29, MC38 In vitro, in vivo, 
human

A novel positive feedback between elevated tumorous IL-8 and NETs can promote 
CRC liver metastasis

Yang et al[93], 
2020

HCT116, MDA-MB-231, 
MCF-7, 4T1, HEK293T, 
HeLa, E0771

In vitro, in vivo, 
human

CCDC25 mediates NET-dependent metastasis and is suggested to be a therapeutic 
target for the prevention of cancer metastasis

NETs: Neutrophil extracellular traps; CRC: Colorectal cancer; AAV: Adeno-associated virus.

presence of NETs contributes to thrombosis in CRC.
By analysing large-scale human data, Rayes et al[82] demonstrated that NETs can 

not only bind tumour cells but also promote metastasis. In addition, established 
preclinical models of gastrointestinal cancer revealed that tumours induce neutrophils 
to extrude NETs into the extracellular environment in the absence of surgical stress. 
Furthermore, NET formation could promote CRC metastasis after surgical stress[83,
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84]. In a cohort study, increased postoperative NET formation was associated with 
disease-free survival in patients undergoing hepatic surgical resection, and the mouse 
model of surgical stress has obtained similar results. Further studies demonstrated that 
the hypoxic environment in solid tumours provides a favourable condition for 
NETosis and that NETs could in turn promote CRC progression by releasing HMGB1
[85], a DNA-binding protein that participates in the activation of TLR9[86]. Addi-
tionally, the protumourigenic effects of NETs are abolished by DNase and PAD4 
inhibition[83]. Another clinical trial suggested that increased preoperative NETosis is 
related to an increased hospital stay and complications of CRC patients who undergo 
colorectal resection, suggesting a promising therapeutic benefit of surgery focused on 
the relationship between CRC and NETs[84].

In malignant and premalignant colon tissues, CD68+ polyP-expressing cells and 
NETosis were detected, suggesting a possible interaction between them in the tumour 
microenvironment. Further investigation indicates that polyP[87], which is secreted by 
activated platelets and could induce inflammation and thrombosis in CRC, may pro-
mote the formation of NETs[88]. A PAD4-KO mouse model, which is genetically 
incapable of NETosis, showed that inhibition of NETs halted CRC growth through its 
negative regulation of mitochondrial biogenesis-associated genes. Further studies 
show that CRC cells subjected to hypoxia have upregulated expression of HMGB1
[85], which acts as an inducer of NETosis, and NE released from NETs could assist 
tumour proliferation as a result of inducing mitochondrial biogenesis by activating the 
TLR4-p38-PGC1α pathway in CRC[89].

In CRC, IL8 has been reported to participate in growth, angiogenesis and metastasis
[90]. High expression of IL8 also implicates adverse survival in patients. A recent 
study explains a promotional role of IL8 in the formation of NETs. In vitro adhesion 
system, CRC cells such as HT29 and MC38 cells are more prone to be entrapped into 
NETs than neutrophil monolayers, giving the chance for disseminated CRC cells to 
form micrometastases in the liver; this process can be enhanced by overexpression of 
IL8[91]. Another study focuses on exosomes secreted by CRC cells. The authors 
showed that exosomes derived from KRAS mutant cells could transfer mutant KRAS 
to receptors and upregulate IL8 Levels, eventually activating neutrophils to form NETs 
and leading to enhanced proliferation and invasion of cancer cells[92].

The aforementioned studies have highlighted an interaction between CRC cells and 
NETs, suggesting that NET formation is enhanced in tumours and that the increase in 
NETs can promote the progression and metastasis of CRC. Although several pathways 
have been described, the detailed mechanisms of how NETs interact with and boost 
the metastasis of CRC remain elusive. Most recently, a remarkable discovery not only 
precisely illustrates the underlying mechanism between CRC cells and NETs but also 
partially explains why CRC cells have a tendency to disseminate into the liver. Yang et 
al[93] investigated several metastatic lesions in the clinic and discovered the most 
abundant NET infiltration in liver metastases and the formation of NETs began before 
the appearance of the metastases. According to a pull-down assay, CCDC25, a po-
tential cell-surface DNA receptor, was identified on the cytoplasmic membrane of 
cancer cells. Furthermore, amino acids 21-25 at the extracellular N-terminus of 
CCDC25 were found to be the binding site of NET-DNA. Further immunoprecip-
itation assays indicated that the intracellular C-terminus of CCDC25 binds integrin-
linked kinase and that this interaction can be stimulated by NET-DNA, eventually 
inducing liver metastases of CRC cells via initiating the β-parvin-RACI-CDC42 cas-
cade.

NETS AS POTENTIAL BIOMARKERS AND THERAPEUTIC TARGETS
An increasing number of investigations have suggested a protumourigenic role of 
NETs in providing a microenvironment favouring interactions and promoting cancer 
proliferation, thrombosis and metastasis in GI cancers. This has led to the question of 
whether NETs can act as potential biomarkers and therapeutic targets.

Zhang et al[94] compared the levels of NETs in different patient populations, su-
ggesting that NETs, as a diagnostic biomarker, have better value than carcinoem-
bryonic antigen (CEA) and carbohydrate antigen 19-9 in GC. Additionally, NET for-
mation is associated with tumour stage, poor overall survival and poor recurrence-free 
survival. Moreover, tumour-infiltrating NETs has been demonstrated to be an in-
dependent prognostic biomarker according to the assessment of clinical outcomes of 
cancer patients[95-97]. Considering the potential diagnostic significance of NETs, 
conventional histological staining is ineffective for their detection in tissue. To solve 
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this problem, a protocol has been created to detect NETs in paraffin-embedded tissue
[98]. Additionally, machine learning is described as a useful tool to quantitate NETosis
[99]. Citrullinated histone H3, a central marker of NETs, is elevated in blood and 
regarded as a potential diagnostic and prognostic serum marker to predict the risk of 
venous thromboembolism and mortality in patients with advanced cancer[100-102]. A 
CitH3DNA binding assay has also been developed to quantify NET formation[103].

Taking into account the confirmed role of NETs in promoting the progression and 
metastasis of GI cancer cells, disruption of NETosis can be a possible new therapeutic 
strategy and the identification of NETosis inhibitors is of high interest. DNase I can 
degrade the DNA backbone of NETs and abrogate the protumourigenic ability of 
NETs in several aforementioned animal models. Moreover, DNase I has been safely 
used in cystic fibrosis and SLE patients[104], implying that DNase I can act as a 
promising candidate for the treatment of GI cancer patients. In a mouse model of CRC 
liver metastasis, an adeno-associated virus gene therapy vector was created to spe-
cifically express DNase I in the liver, inducing an inhibition of liver metastasis[105]. 
However, it is worth noting that everything is a double-edged sword. Inappropriate 
use of DNase I may lead to a systemic inflammatory response in patients[106]. Owing 
to the critical role of NE and PAD4 in the process of NETosis, NE inhibitors or PAD4-
inhibitors are also commonly used to prevent the release of NETs. Nanoparticle-
mediated delivery of NE inhibitors has been suggested as a feasible approach to 
decrease NETosis[107]. In addition, NOX inhibitors[108], MPO inhibitors[109] and 
RAF inhibitors[110] have been reported to arrest the inception of NETosis. Recently, a 
group of tetrahydroisoquinolines was found to be a novel class of NET formation 
inhibitors, but their underlying mechanism remains to be determined[111]. A drug 
screening of 126 compounds shows that appropriate use of anthracyclines (drugs used 
for cancer treatment) together with dexrazoxane could be a promising therapeutic 
candidate for suppressing NETosis without cytotoxicity against healthy neutrophils
[112]. NET-associated CEA cell adhesion molecule 1 (CEACAM1) was identified by 
Rayes et al[113] Knockdown of CEACAM1 on NETs abrogates the adhesion between 
NETs and colon cancer cells, thus indicating a potential therapeutic therapy or pre-
venting liver metastases. A novel study revealed that PKCα, a lamin kinase that 
mediates the phosphorylation of lamin B, contributes to the formation of NETs; hence, 
blocking PKCα provides a new perspective towards treating NET-associated cancer 
progression[114]. Since the application of 5-fluorouracil (5FU) has been shown to 
trigger the formation of NETs in the blood of cancer patients, Amph-PVP self-as-
sembled nanoparticles are proposed as an efficient delivery system for 5FU to avoid 
the generation of NETs, partially improving the anticancer effect and reducing the risk 
of long-term metastasis[115]. The previously mentioned studies mainly focus on the 
inhibition of NETosis or the proteins assembled in NETs. Unusually, Cao and King
[116] proposed that NETs per se can be utilized as an anti-tumour drug delivery 
vehicle. By re-engineering neutrophils, supercharged eGFP-TRAIL, an apoptosis-
inducing chimeric protein, is expressed on NETs to entrap and kill tumour cells.

CONCLUSION
NETs, initially identified as a host defense system designed to trap and kill bacteria, 
have now been suggested to play an important tumorigenic role in many cancers. 
Accumulating evidence has shown that NETs are involved in GI cancers, including GC 
and CRC. As mentioned above, NET infiltration in primary tumour tissues implies a 
poor outcome in GI cancer patients, indicating that a rapid intraoperative histopatho-
logical examination of NETs in the resected tissue margins may help determine the 
range of surgical resection. Moreover, several cytokines and genetic mutations trigger 
the formation of NETs and NETs per se can promote the progression of cancer 
partially by initiating downstream signalling pathways. On the other hand, the fact 
that NETs can entrap disseminated cancer cells, combined with the situation that an 
abundance of NET infiltration in the liver is formed before metastases can be detected, 
increases the likelihood of liver metastasis and explains the high incidence of liver 
metastasis in patients with GI cancer.

Further studies are needed to elucidate the detailed underlying mechanism of the 
interaction between NETs and GI cancer. Clarifying the roles of NETs in cancer could 
open a new door in the design and development of therapeutic approaches. Trans-
forming inhibitors of NETs into drugs that can be safely used in GI cancer patients or 
utilizing NETosis as a drug delivery system may evolve into promising anti-tumour 
therapies.
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