
World Journal of
Gastroenterology

ISSN 1007-9327 (print)
ISSN 2219-2840 (online)

World J Gastroenterol  2021 July 7; 27(25): 3693-3950

Published by Baishideng Publishing Group Inc



WJG https://www.wjgnet.com I July 7, 2021 Volume 27 Issue 25

World Journal of 

GastroenterologyW J G
Contents Weekly Volume 27 Number 25 July 7, 2021

OPINION REVIEW

Approach to medical therapy in perianal Crohn’s disease3693

Vasudevan A, Bruining DH, Loftus EV Jr, Faubion W, Ehman EC, Raffals L

REVIEW

Incorporating mucosal-associated invariant T cells into the pathogenesis of chronic liver disease3705

Czaja AJ

Artificial intelligence in small intestinal diseases: Application and prospects3734

Yang Y, Li YX, Yao RQ, Du XH, Ren C

Impact of the COVID-19 pandemic on inflammatory bowel disease patients: A review of the current 
evidence

3748

Kumric M, Ticinovic Kurir T, Martinovic D, Zivkovic PM, Bozic J

Management of hepatitis B virus infection in patients with inflammatory bowel disease under 
immunosuppressive treatment

3762

Axiaris G, Zampeli E, Michopoulos S, Bamias G

MINIREVIEWS

Worldwide management of hepatocellular carcinoma during the COVID-19 pandemic3780

Inchingolo R, Acquafredda F, Tedeschi M, Laera L, Surico G, Surgo A, Fiorentino A, Spiliopoulos S, de’Angelis N, Memeo 
R

Human immune repertoire in hepatitis B virus infection3790

Zhan Q, Xu JH, Yu YY, Lo KK E, Felicianna, El-Nezami H, Zeng Z

Emerging applications of radiomics in rectal cancer: State of the art and future perspectives3802

Hou M, Sun JH

Advances in paediatric nonalcoholic fatty liver disease: Role of lipidomics3815

Di Sessa A, Riccio S, Pirozzi E, Verde M, Passaro AP, Umano GR, Guarino S, Miraglia del Giudice E, Marzuillo P

Autoimmune pancreatitis and pancreatic cancer: Epidemiological aspects and immunological 
considerations

3825

Poddighe D

Gut microbiota in obesity3837

Liu BN, Liu XT, Liang ZH, Wang JH



WJG https://www.wjgnet.com II July 7, 2021 Volume 27 Issue 25

World Journal of Gastroenterology
Contents

Weekly Volume 27 Number 25 July 7, 2021

ORIGINAL ARTICLE

Basic Study

Zinc oxide nanoparticles reduce the chemoresistance of gastric cancer by inhibiting autophagy3851

Miao YH, Mao LP, Cai XJ, Mo XY, Zhu QQ, Yang FT, Wang MH

PPARGC1A rs8192678 G>A polymorphism affects the severity of hepatic histological features and 
nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease 

3863

Zhang RN, Shen F, Pan Q, Cao HX, Chen GY, Fan JG

Retrospective Cohort Study

Does endoscopic intervention prevent subsequent gastrointestinal bleeding in patients with left ventricular 
assist devices? A retrospective study

3877

Palchaudhuri S, Dhawan I, Parsikia A, Birati EY, Wald J, Siddique SM, Fisher LR

Retrospective Study

Diverse expression patterns of mucin 2 in colorectal cancer indicates its mechanism related to the intestinal 
mucosal barrier

3888

Gan GL, Wu HT, Chen WJ, Li CL, Ye QQ, Zheng YF, Liu J

Clinical characteristics of patients in their forties who underwent surgical resection for colorectal cancer in 
Korea

3901

Lee CS, Baek SJ, Kwak JM, Kim J, Kim SH

Observational Study

Effect of gastric microbiota on quadruple Helicobacter pylori eradication therapy containing bismuth3913

Niu ZY, Li SZ, Shi YY, Xue Y

META-ANALYSIS

Endoscopic submucosal dissection vs endoscopic mucosal resection for colorectal polyps: A meta-analysis 
and meta-regression with single arm analysis

3925

Lim XC, Nistala KRY, Ng CH, Lin SY, Tan DJH, Ho KY, Chong CS, Muthiah M

CASE REPORT

Gastric schwannoma treated by endoscopic full-thickness resection and endoscopic purse-string suture: A 
case report

3940

Lu ZY, Zhao DY

LETTER TO THE EDITOR

Gastrointestinal cytomegalovirus disease secondary to measles in an immunocompetent infant3948

Hung CM, Lee PH, Lee HM, Chiu CC



WJG https://www.wjgnet.com III July 7, 2021 Volume 27 Issue 25

World Journal of Gastroenterology
Contents

Weekly Volume 27 Number 25 July 7, 2021

ABOUT COVER

Editorial Board Member of World Journal of Gastroenterology, Paola De Nardi, MD, FASCRS, Doctor, Surgeon, 
Surgical Oncologist, Division of Gastrointestinal Surgery, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 
Milan 20132, Italy. denardi.paola@hsr.it

AIMS AND SCOPE

The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers 
from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical 
research articles and communicate their research findings online. WJG mainly publishes articles reporting research 
results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics 
including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal 
oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING

The WJG is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as 
SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2021 
edition of Journal Citation Report® cites the 2020 impact factor (IF) for WJG as 5.742; Journal Citation Indicator: 0.79; 
IF without journal self cites: 5.590; 5-year IF: 5.044; Ranking: 28 among 92 journals in gastroenterology and 
hepatology; and Quartile category: Q2. The WJG’s CiteScore for 2020 is 6.9 and Scopus CiteScore rank 2020: 
Gastroenterology is 19/136.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ying-Yi Yuan; Production Department Director: Xiang Li; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Gastroenterology https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1007-9327 (print) ISSN 2219-2840 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

October 1, 1995 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Weekly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Andrzej S Tarnawski, Subrata Ghosh https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

http://www.wjgnet.com/1007-9327/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

July 7, 2021 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2021 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
http://www.wjgnet.com/1007-9327/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJG https://www.wjgnet.com 3802 July 7, 2021 Volume 27 Issue 25

World Journal of 

GastroenterologyW J G
Submit a Manuscript: https://www.f6publishing.com World J Gastroenterol 2021 July 7; 27(25): 3802-3814

DOI: 10.3748/wjg.v27.i25.3802 ISSN 1007-9327 (print) ISSN 2219-2840 (online)

MINIREVIEWS

Emerging applications of radiomics in rectal cancer: State of the art 
and future perspectives

Min Hou, Ji-Hong Sun

ORCID number: Min Hou 0000-
0002-2445-140X; Ji-Hong Sun 0000-
0001-5362-2450.

Author contributions: Hou M wrote 
and revised the manuscript for 
important intellectual content; Sun 
JH made critical revisions related 
to important intellectual content of 
the manuscript; both authors 
approved the final version of the 
article.

Supported by The National Natural 
Science Foundation of China, No. 
81871403; and the Key Research 
and Development Program of 
Zhejiang Province, No. 
2019C03014.

Conflict-of-interest statement: The 
authors declare no conflict of 
interests related to this manuscript.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt

Min Hou, Ji-Hong Sun, Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang 
University School of Medicine, Hangzhou 310016, Zhejiang Province, China

Corresponding author: Ji-Hong Sun, MD, PhD, Attending Doctor, Professor, Department of 
Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East 
Qingchun Road, Hangzhou 310016, Zhejiang Province, China. sunjihong@zju.edu.cn

Abstract
Rectal cancer (RC) is the third most commonly diagnosed cancer and has a high 
risk of mortality, although overall survival rates have improved. Preoperative 
assessments and predictions, including risk stratification, responses to therapy, 
long-term clinical outcomes, and gene mutation status, are crucial to guide the 
optimization of personalized treatment strategies. Radiomics is a novel approach 
that enables the evaluation of the heterogeneity and biological behavior of tumors 
by quantitative extraction of features from medical imaging. As these extracted 
features cannot be captured by visual inspection, the field holds significant 
promise. Recent studies have proved the rapid development of radiomics and 
validated its diagnostic and predictive efficacy. Nonetheless, existing radiomics 
research on RC is highly heterogeneous due to challenges in workflow stan-
dardization and limitations of objective cohort conditions. Here, we present a 
summary of existing research based on computed tomography and magnetic 
resonance imaging. We highlight the most salient issues in the field of radiomics 
and analyze the most urgent problems that require resolution. Our review 
provides a cutting-edge view of the use of radiomics to detect and evaluate RC, 
and will benefit researchers dedicated to using this state-of-the-art technology in 
the era of precision medicine.

Key Words: Computed tomography; Magnetic resonance imaging; Radiomics; Rectal 
cancer; Clinical applications; Overall survival
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Core Tip: Radiomics has exhibited significant potential for risk stratification of rectal 
cancer and has yielded excellent performance in response assessment of neoadjuvant 
radiochemotherapy. While the past 3 years has witnessed an exponential growth of the 
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field, research on radiomics remains in its infancy and is constantly evolving. More 
rigorous analyses are emerging, and improvements in bias reduction techniques 
accompanied with multicentric studies will hopefully enable more robust and general-
izable models. Here, we review recent updates on the use of radiomics based on 
computed tomography and magnetic resonance imaging in the detection and evaluation 
of rectal cancer.
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INTRODUCTION
Colorectal cancer (CRC) is ranked third among the most common cancers worldwide 
and accounts for nearly one-tenth of cancer-related deaths globally[1,2]. Rectal cancer 
(RC) comprises 27%-58% of all CRCs[3]. The development of treatment strategies and 
the revision of multidisciplinary treatment approaches such as local excision, total 
mesorectal excision (TME), and neo-adjuvant radiochemotherapy (nCRT) have 
decreased local recurrence and distant metastasis rates in recent decades[4,5]. How-
ever, accurate pretreatment tumor staging by imaging remains essential for precise 
decision-making[6].

Traditional medical imaging is routinely used in initial diagnosis of RC and has 
played a critical role as a non-invasive tool during follow-up[7]. According to the 2018 
European Society of Medical Oncology (ESMO) Guidelines, high-resolution magnetic 
resonance imaging (MRI) is the standard staging modality for RC and has exhibited 
superior performance for tumor staging when compared with digital rectal exami-
nation, computed tomography (CT), and endoscopic ultrasound[8]. CT is mainly used 
for local lesions due to its inherent traits of low soft-tissue contrast, which limits the 
accurate approximation of T stage. Even in T4 lesions with gross invasion of adjacent 
organs, false-positive cases may occur. Therefore, CT is typically employed primarily 
for the detection of metastases. CT has faster acquisition time and is more practical 
than MRI, as it is more widely available[9]. However, both CT and MRI have restricted 
resolution in clinical applications.

Radiomics has emerged with consistently developing methodology and promising 
results[10-12]. Radiomics is a method that enables quantitative extraction of radiomics 
features that cannot be captured by visual inspection from available radiological 
images[13]. In the past few years, an increasing number of studies have evaluated 
abdominal radiomics models in different oncological scenarios and reported impre-
ssive performance for evaluating tumor biological behaviors, prognosis, and 
prediction of therapeutic responses[14-16]. Radiomics has been validated as a novel 
approach for improved characterization of tumor subtypes and the lesion microenvir-
onment[17,18]. By making use of the medical images and clinical data, radiomics 
models have the potential to provide more detailed information to tailor individu-
alized treatment scheme and patient management[19-21].

The purpose of this review is to describe and summarize the recent advances in 
clinical applications of radiomics based on CT and MRI, to highlight the potential role 
of radiomics in disease evaluation and clinical decision-making of RC, and to discuss 
the current limitations and possible optimization directions in the future.

RADIOMICS WORKFLOW AND METHODOLOGICAL ADVANCES IN RC
The concept of radiomics was first developed by Lambin et al[22] in 2012. Radiomics is 
defined as a research method that includes quantitative data extraction from mul-
timodality medical images, analysis, and modeling of high-dimensional medical image 
features to explore relationships with clinical outcomes[11,13]. Related research can be 
divided into five stages: Data acquisition and analysis, medical imaging segmentation, 
feature extraction and selection, clinical target-oriented modeling, and research quality 
evaluation. The workflow is presented in Figure 1.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Workflow of radiomics applied in rectal cancer. US: Ultrasonography; CT: Computed tomography; MRI: Magnetic resonance imaging; PET: 
Positron emission tomography; ROI: Region of interest; EMVI: Extramural venous invasion; PNI: Perineural invasion.

Data acquisition and analysis
The radiomics workflow begins with the determination of the region of interest (ROI), 
which depends on the specific clinical problem that requires resolution. Data used in 
radiomics studies may be retrospective or prospective and single-center or multi-
center. ROIs are determined by specific targeted research; therefore, researchers 
should first define the clinical problems to solve. Here, we consider RC as an example, 
whereby primary tumors are analyzed and related to existing treatment outcomes 
such as survival or recurrence. The analysis of lesions and normal tissues may affect 
the treatment strategies. Via the establishment of a large image database, a large body 
of imaging data is stored to generate an integrated medical and health care network. 
Radiologists should be cognizant that imaging protocols may not always be stan-
dardized, and variability exists among medical images and institutions. In this regard, 
the recommendations of the Image Biomarker Standardization Initiative may help to 
reduce the variability in image pre-processing prior to analysis[23].

ROI segmentation and delineation 
Normalizing the original image is essential because data results may be affected by 
different machines or different parameters during collection. The process of ROI 
segmentation in radiomics can be performed either manually, semi-automatically, or 
automatically with software. Each approach has advantages and disadvantages. 
Manual segmentation is more precise in some occasions (e.g., delineating the RC bed 
after nCRT) but has lower repeatability. Automatic segmentation depends on 
algorithms, which are efficient and may help to eliminate subjective errors[24]. To 
date, a mature automatic segmentation algorithm for RC is lacking. According to our 
PubMed search results, most radiomics studies on RC applied manual segmentation in 
which the segmentation is performed by radiologists to annotate the location and 
precise boundary of the ROI. Itk-snap software (www.itksnap.org) is used extensively 
for segmentation. Figure 2 shows the segmentation of a rectal tumor using Itk-snap 
software. Given that subjective bias may occur, segmentation may be inconsistent. At 
present, several steps are enacted to minimize bias, including the involvement of 
different medical professionals, multiple segmentation in different respiratory cycles, 
and adding noise to segmentation[25].

http://www.itksnap.org
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Figure 2 Segmentation of a rectal tumor with Itk-snap software. A: Example of tumor segmentation using Itk-snap software (www.itksnap.org) on axial 
plain magnetic resonance image; B-D: Axial (B), reconstructed coronal (C), and sagittal (D) contrast-enhanced magnetic resonance images in the venous phase in a 
72-year-old man with rectal cancer.

Feature extraction and selection
Following the evaluation of the consistency of feature calculations across researchers, 
the initial selection of high-level feature sets is performed, and feature values that are 
sensitive to subjective factors are ultimately retained. Parmar et al[26] used the  “IRR” 
(evaluator reliability) package in R software to evaluate the consistency of features 
extracted from ROIs, whereby features with a consistency coefficient less than 0.8 
would be deleted.

The key to radiomics is the extraction of high throughput features that are difficult 
to depict by observers using mathematical algorithms from ROI segmentation directly. 
These features of essential value can either be directly extracted from original medical 
images or after applying a transformation or filter method. The process can be 
performed using different tools (e.g., PyRadiomics, Texrad, MaZda, and others) which 
are readily available as open-source software. Image filtration enhances the edge 
qualities and removes interference by noise, thus permitting the collection of more 
information on spatial locations of features. At present, the main extraction methods 
are improved based on the method published by Aerts et al[27] in 2014, according to 
which radiomics features are divided into machine-learning-based features and deep 
learning features. There are several commonly used subgroups of the former, such as 
shape features (describing the geometric attributes of the ROIs), histogram-based 
features (capturing the first-order statistical characteristics of rectal lesions), and 
texture features (describing the granular textural pattern of the ROIs). Commonly used 
engineered features according to “order” are presented in Table 1. Recently, a set of 
169 standardized radiomics features was published, which enabled the verification 
and calibration of different radiomics software[23].

Given that the size of the data sample is relatively small compared with features, 
this may result in over-fitting and it may be time-consuming to include all features in 
the classification. Feature selection is a necessary step to obtain features that are closely 
related to the target results in radiomics analyses. Typically, features extracted by 
radiomics are high-dimensional in a dataset, and a large proportion of features may 
not be useful for the task; hence, unstable features should be excluded to retain the 
most important features and prevent over-fitting. The main methods applied in feature 
selection can be divided into univariate or multivariate, based on whether the 
association among features can be considered to contribute towards a specific 
outcome. In machine-learning, the most commonly used feature selection algorithms 
include least absolute shrink and selection operator regression, minimum redundancy 
maximum correlation, recursive feature elimination, and principal component analysis
[28].

http://www.itksnap.org
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Table 1 Commonly-used radiomics feature categories according to “order”

“Order” Paraphrase Categories Description

Mean Average intensity of the pixels

Skewness Asymmetry of histogram

Kurtosis Magnitude of pixel distribution

First-order Based on an intensity histogram of pixel values, 
providing no information on neighboring interactions 
or the spatial distribution

Entropy Irregularity of the structure

Grey level co-occurrence 
matrix (GLCM)

Frequency of specific gray values along a distance or 
direction

Grey level run Length 
Matrix (GLRLM)

Length of consecutive pixels or voxels with the same 
grey values in a specific direction

Second-
order

Considers the spatial relationship between 2 pixels

Grey level size zone 
matrix (GLSZM)

Length of consecutive pixels or voxels with the same 
grey values in all directions

Neighboring gray tone 
difference matrix 
(NGTDM)

Describes the sum and average grey levels of 
discretized voxels in planes

Superior-
order

Describes the neighborhood gray difference matrices 
and the relationship between 3 or more pixels

Gray level dependence 
matrix (GLDM)

Describes the coarseness of overall texture by 
evaluating the grey levels between a voxel and the 
neighborhood in 3 dimensions

In reference to “order”, it is defined as the number of stages required to obtain the quantitative information in a model.

Clinical target-oriented modeling 
Radiomics feature analysis and modeling involve the establishment of a prediction 
model based on selected imaging characteristics. The model generally encompasses 
clinical, biological, and occasionally genetic information. Commonly used models 
include logistic regression, support vector machine (SVM), and random forest[13]. In 
radiomics analysis, machine-learning algorithms are typically required to establish a 
classification or prediction model to obtain reliable results instead of relying solely on 
single factor analysis. The Cox proportional risk model is usually employed as a 
survival analysis model. Each modeling method has its own limitations. For example, 
feature independence, feature discretization, and network configuration dependence 
should be considered in logistic regression, Bayesian networks, and deep learning, 
respectively.

In the process of model-building, researchers can employ different software tools. R 
language contains software packages for data-mining and modeling. Clinicians and 
radiologists can operate various components via a graphical interface, compare 
different modeling algorithms, and identify the most effective way to resolve clinical 
issues. SPSS modeler is a commercial data-mining software tool with functions 
encompassing almost all data-mining procedures. This software possesses a graphical 
operation interface and automatic modeling function, which permits management of 
large amounts of data and provision of steady data-mining models. Other software for 
modeling, data-mining, and analysis, such as Weka (based on JAVA) and B11 (used in 
combination with Mazda), may also be employed. These software tools contain 
various modeling algorithms, including artificial neural network, k-nearest neighbor, 
K-means, hierarchical clustering, and similarity-based clustering methods.

Evaluation of research quality
For a high-quality radiomics study, it is essential to try different types of modeling 
methods and to choose the best algorithms. Moreover, all the models should be 
validated internally and externally (multicenter validation would be better if permit-
ted)[29]. Validation is an indispensable part of complete radiomics analysis, because 
the value of the unverified evaluation model is limited. Except for validation of the 
model, quality assessment should also be conducted to ensure reproducibility in a 
radiomics study. A prediction model is appropriate for clinical decision-making only 
when a standardized evaluation of its performance is accomplished.

Radiomics based on deep learning
Deep learning is defined as a deep neural network structure based on a broad 
spectrum of algorithms, and the frameworks permit machines to learn highly complex 
mathematical models for data representation and can subsequently be used to perform 
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accurate data analysis. Radiomics algorithms based on deep learning have developed 
substantially in recent years[30,31]. Three types of deep learning models are com-
monly used in medical imaging: Convolutional neural networks (CNNs), generative 
adversarial networks, and sparse auto encoders. Deep learning-based radiomics 
performs learning procedures via convolutional operations and CNN structures. 
Compared with traditional radiomics, convolution operation has strong feature 
extraction abilities. The neural network structure can flexibly extract different task-
related features by changing the convolution kernel and modifying the structure, 
thereby enabling a more targeted approach. Different features can be obtained by 
adaptively changing the convolution kernel. For example, convolution and Laplacian 
kernels can extract high-frequency features, while the Gaussian kernel can propose 
low-frequency features. For this reason, the deep learning approach exhibits superior 
feature extraction by extracting and selecting supplementary high-dimensional 
features through an automatic-learning neural network, and this enables more 
comprehensive mining of image information. To date, there are six radiomics studies 
conducted based on deep learning structure in RC. More novel neural network 
structures are warranted in this field.

RADIOMICS APPLICATIONS IN RC
We searched PubMed (December 17, 2020) for 83 radiomics studies on RC using the 
terms (“rectal cancer” AND “radiomics”), and identified 78 clinical target-oriented 
published works. The volume of radiomics-based articles on RC published in medical 
journals since 2018 has witnessed a steep rise, indicating a trend of growing interest in 
artificial intelligence-based approaches in the field.

The literature search revealed an exponential growth in RC radiomics studies in the 
past 3 years. Of the 78 studies, most (61 out of 78) were based on MRI, eight employed 
CT modality, and nine were based on positron emission tomography/CT or 
ultrasound images. As of December 2020, most existing studies were performed in a 
single center with a retrospective cohort, while only seven studies were multi-center. 
Validation of radiomics models in independent cohorts was performed in all of the 
studies. However, few studies included external validation cohorts (n = 7). The 
number of included RC patients ranged widely from 13 to 700. In addition, almost a 
half of current studies focus on locally advanced RC (LARC) (38 out of 78) or tumor 
response to nCRT. We suggest that this is mainly because LARC is a major sticking 
point in the management of RC. Figure 3 shows the distribution of current focus of 
attention. Here, we discuss recent advances in radiomics applied to CT and MRI for 
the evaluation of RC.

Response assessment of pre-operative therapy and long-term prognosis prediction 
in LARC
LARC is of significant concern due to the potential for deterioration. Over the past 
decade, both disease-free survival and overall survival of LARC have been prolonged, 
owing to the growing practice of multi-disciplinary treatment and routinization of 
management, including TME, nCRT, and immunotherapy[3,32]. However, patients 
tend to present heterogeneous long-term outcomes in clinical practice due to 
individual responses to preoperative therapy such as short-course preoperative 
radiotherapy and nCRT[32,33]. Thus, those who are sensitive to chemoradiotherapy 
may achieve a clinical complete response and employ a watch-and-wait strategy, 
whereas patients who are resistant to nCRT need more radical measures[34]. Tailoring 
treatment schemes to a particular patient based on individual probability for achieving 
a good response is thus essential. The current pre-treatment response prediction 
approach to nCRT remains indecisive and fails to adequately estimate a patient’s 
response to a specific therapy. Traditional medical imaging methods including CT, 
quantified MRI, and functional imaging have limitations in response prediction. In 
contrast, radiomics with high-dimensional feature extraction applied in RC may 
facilitate the a priori evaluation of treatment efficacy and selection of optimal therapy.

Almost 60% of the current research focuses on tumor response assessment to 
preoperative therapies or prediction of long-term prognosis (n = 49), mainly in LARC 
(38 out of 49). Most studies to date have evaluated T2-weighted imaging (T2WI) and 
diffusion weighted MRI. Heterogeneous results have been reported in different 
prediction models, referring to entropy, energy, and kurtosis. Two well-conducted 
studies reported that none of the T2WI radiomics features were significant predictors 
of response[35,36]. SVM, RF, and Naïve Bayesian network based on T2WI yielded 
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Figure 3 Distribution of the current focus in the industry. Currently 58% of research focuses on tumor response assessment to preoperative neo-adjuvant 
radiochemotherapy (nCRT) therapies or prediction of the long-term prognosis, of which most studies are about prediction of tumor response after nCRT. RC: Rectal 
cancer; nCRT: Neo-adjuvant radiochemotherapy.

promising results for complete response (CR) prediction [area under the receiver 
operating characteristic curve (AUC): 0.71-0.87][35,37,38]. In contrast, apparent 
diffusion coefficient and intravoxel incoherent motion (IVIM) histogram features did 
not exhibit predictive value for CR[39]. Similar discrepancies were identified in gray-
level co-occurrence matrix (GLCM) dissimilarities for preoperative evaluation of 
neoadjuvant chemoradiotherapy responses. In this regard, Liu et al[39] proposed that 
GLCM IVIM parameters independently predicted CR in multivariate analysis. Both 
the random forest model of Yang et al[40] and logistic regression model of van 
Griethuysen et al[41] may assist in distinguishing non-insensitive responders to 
chemoradiotherapy.

Assessment of tumor vascular/perineural invasion (extramural venous 
invasion/perineural invasion)
Extramural venous invasion (EMVI), which presents in one-third of all patients with 
RC, is a major factor for higher risk of recurrence and an independent indicator of 
poorer prognosis[42]. MRI is more suitable to identify the patients with obvious blood 
vessel invasion beyond the muscularis propria[43]. The verdict of conventional MRI 
may be affected by surrounding inflammation, edema, and fibrosis caused by nCRT, 
let alone heterogeneity with image quality, methods, and diagnostic accuracy[44,45]. 
To obtain more accurate preoperative risk stratification, Yu et al[46] constructed and 
validated several radiomics models and compared them with quantitative models. All 
radiomics models outperformed quantitative models for predictive performance in 
identifying EMVI. Notably, the team compared these models with a perfusion 
parameter-based model from dynamic contrast-enhanced-MRI and demonstrated that 
the latter had a weaker predictive value.

The positive perineural invasion (PNI) status at resection can independently predict 
the local recurrence of RC or progression, indicating that the tumor may be of a more 
aggressive phenotype. According to the latest ESMO guidelines, PNI is a key factor for 
determining whether patients with stage II RC would potentially benefit from nCRT 
and postoperative adjuvant chemotherapy[8]. Unlike EMVI, PNI can only be 
confirmed in post-resection pathological tests, whereas conventional MRI is 
inoperative for assessing PNI status, as it is unable to visualize peripheral nerves[47]. 
Therefore, developing a radiomics prediction model to preoperatively identify PNI 
and to assist in the selection of patients for adjuvant therapy is crucial. Chen et al[48] 
developed a MRI-based radiomics predictive model, which yielded favorable 
performance for individualized PNI prediction in patients with RC. However, this was 
a single-center retrospective study based only on T2WI sequences. Future studies 
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should explore this issue further with heterogeneous and multi-sequence data.

Prediction of synchronous/metachronous liver metastasis
Approximately 15%-20% of patients with RC have liver metastases at the time of 
diagnosis, which is defined as synchronous liver metastasis (SLM)[49]. At present, 
only two studies have explored the use of a radiomics nomogram for predicting SLM 
derived from primary RC lesions[50,51]. Shu et al[50] extracted a total of 328 radiomics 
features from the T2WI images and developed a radiomics model composing T-stage 
and radiomics signatures. Quantified analysis revealed that the Rad score of patients 
with primary CRC and liver metastasis was significantly higher than that of patients 
without liver metastasis. Receiver operating characteristic curves based on all 194 
patients with RC were plotted for a radiomics nomogram, and the AUC was 0.932. Liu 
et al[51] subsequently constructed a novel radiomics nomogram and improved the 
AUC to 0.944, with a sensitivity of 95.83% and specificity of 88.89%, indicating that the 
radiomics model exhibited good predictive performance for the diagnosis of SLM in 
patients with RC and may assist physicians in clinical decision-making. The hetero-
geneity of primary tumors often determines tumor relapse and progression; in 
contrast, the biological behavior of tumor metastasis and recurrence is closely related 
to the pathological heterogeneity of the primary tumor. In addition, the radiomics 
features derived from the primary tumor itself are often more stable in patients with 
RC. Therefore, radiomics studies examining the prediction of liver metastasis based on 
primary RC lesions are warranted.

Metachronous liver metastasis (MLM) is defined as the absence of evidence of 
metastatic disease at initial diagnosis but the presence of liver metastasis after baseline 
staging and treatment[52,53]. MLM is thought to evolve from occult and micro 
metastases[54]. Approximately 26.5% of patients with RC develop MLM within 5 years 
of follow-up[55]. Based on machine-learning algorithms and imaging sequences, 
noninvasive radiomics models constructed on baseline rectal MRI presented good 
potential for MLM prediction in patients with RC. The most optimal model employed 
a logistic regression algorithm, incorporating both T2WI and venous phase radiomics 
features[56]. To date, reports on MLM prediction based on primary rectal tumors are 
lacking.

Assessment of genetic mutational status
With the development of targeted therapies such as epidermal growth factor receptor 
(EGFR)-targeted monoclonal antibody treatment, genetic profiling for mutations is 
recommended when metastases are diagnosed in patients with RC[8,57]. Previous 
studies have demonstrated that the mutation statuses of rat sarcoma viral oncogene 
homolog and v-raf murine sarcoma viral oncogene homolog B1 are critical biomarkers 
in the prognosis of RC, especially for patients with suspected or proven metastases
[58]. Kirsten rat sarcoma (KRAS) mutations, which occur in approximately 27%-43% of 
patients with RC, have been identified as a critical factor, as they indicate a lack of 
response to EGFR-targeted therapy[59]. Pathologic tests are the current gold standard 
of genotyping diagnosis in clinical practice, although results can only be obtained after 
invasive procedures and may not always be available or reliable. Thus, personalized 
treatment strategies are warranted to develop a non-invasive and more feasible, 
timely, and cost-effective surrogate biomarker to evaluate mutation status. With the 
advent of artificial intelligence (AI) approaches, non-invasive prediction of genetic 
status and efficacy of CRT using radiomics analysis has become a highlight in the field.

We identified a limited number of studies that used modality-based radiomics 
models to predict KRAS mutation status or microsatellite instability in RC[60], or to 
evaluate the relative diagnostic potential of radiomics features for predicting 
mutational status[59,61-64]. Relationships between radiomics features extracted from 
CT or multiparametric MRI and KRAS mutations have been confirmed in several 
studies. Meng et al[60] and Xu et al[61] reported that radiomics features based on MRI 
predicted KRAS mutations. Oh et al[62] reported that MR-based texture analysis differ-
entiated KRAS mutation status with an accuracy of 81.7%. Furthermore, Cui et al[63] 
used a two-center cohort to predict KRAS mutations in RC and observed that the 
model obtained with the SVM classifier exhibited the best predictive value. Notably, 
most of these MRI-derived radiomics models demonstrated moderate predictive 
ability for KRAS mutations. Further, they were underscored by small sample sizes and 
lack of independent/external validation. As such, further research is warranted.
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FUTURE CHALLENGES AND OPPORTUNITIES
Extant literature has highlighted the potential of radiomics analysis for prediction of 
nCRT response and prognosis, tumor risk stratification, and evaluation of gene 
mutation status. Nevertheless, some limitations of radiomics applied for RC should be 
acknowledged. Current issues arise due to the reliance of results on high-quality data 
sets, which may bias comparisons of efficacy among radiomics studies due to 
differences in scanning parameters, feature extraction, software, and vendors/mo-
dalities. Hence, there is an urgent need to establish unified data acquisition and 
processing standards. In addition, radiomics is sensitive to accurate ROI segmentation 
in the acquisition process. Currently, the process is predominantly conducted 
manually by radiologists or physicians. Manual segmentation is laborious, and the 
results may be affected by the observer’s subjectivity. The use of semi-automatic or 
fully automatic methods for segmentation may resolve these issues and should be 
pursued in future studies. In this regard, accurate and automatic labeling procedures 
should be developed and promoted to address current technical limitations, and there 
is still a long way to go. In addition, most existing radiomics studies are retrospective 
in nature and lack independent external validation across races or populations from 
various geographical sources, which may limit the reliability and applicability of 
results. Therefore, further multi-center and prospective studies with standardized 
acquisition, segmentation, and imaging postprocessing are required to ensure the 
generalizability and validation of radiomics findings. With regard to mechanistic 
investigations of biological substrates and their relationships with pathological 
underpinnings, AI algorithms with improved accuracy and interpretability will 
facilitate broader translation and clinical adoption. Moreover, radiogenomics for RC is 
burgeoning, which will bridge the gap between AI-aided prognostics and precision 
medicine.

As we have discussed above, radiomics models based on deep learning have proven 
superior. Nevertheless, several issues remain to be optimized; although more 
parameters exist in the whole connection layer, the gradient of the input end can easily 
dissipate during network training. A possible solution is to reduce the complexity of 
the model by reducing network parameters and optimizing the gradient flow, such as 
VGg, concept, residual network, and dense net.

CONCLUSION
Radiomics is an emerging quantitative technique that has witnessed exponential 
growth in application of RC management. In this review, we discuss the current utility 
of radiomics in RC research and describe its potential applications for precision 
diagnostics and cancer treatment. Thus far, radiomics has shown promise in the 
diagnosis, treatment evaluation, and prediction of prognosis in RC. Nevertheless, 
further multi-center and prospective validation studies are required to validate its 
clinical utility, especially in prognosis-related targets. The purpose of this review is to 
help radiologists, endoscopists, and oncologists better understand and harness 
radiomics for tailoring personalized treatments and to encourage their collaboration 
with AI scientists to promote the translation of research into clinical practice.
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