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Abstract
Colorectal cancer remains a leading cause of morbidity and mortality in the 
United States. Advances in artificial intelligence (AI), specifically computer aided 
detection and computer-aided diagnosis offer promising methods of increasing 
adenoma detection rates with the goal of removing more pre-cancerous polyps. 
Conversely, these methods also may allow for smaller non-cancerous lesions to be 
diagnosed in vivo and left in place, decreasing the risks that come with unnece-
ssary polypectomies. This review will provide an overview of current advances in 
the use of AI in colonoscopy to aid in polyp detection and characterization as well 
as areas of developing research.

Key Words: Colonoscopy; Artificial intelligence; Computer-aided detection; Detection; 
Characterization; Computer-aided diagnosis
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Core Tip: The rapidly evolving field of artificial intelligence (AI) has found many 
applications in the field of colonoscopy. Specifically, we describe the technologies that 
have been developed to detect and characterize colonic polyps with the goal of real-
time analysis as well as minimizing the risks of avoidable polypectomies. Additionally, 
we discuss some of the future directions of AI in this area including advancements in 
robotic technology.
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INTRODUCTION
Colorectal cancer (CRC) is the third most common cancer and the second leading 
cause of cancer related death in men and women in the United States. The incidence of 
CRC has been declining for over 30 years due in part to screening colonoscopies that 
detect and remove pre-cancerous polyps[1].

The adenoma detection rate (ADR) is a metric used by endoscopists representing 
the percentage of time at least one adenoma is detected on screening colonoscopies[2]. 
Adenoma detection rates differ widely among endoscopists, between 7% to 52%, with 
higher ADRs associated with a decreased risk of CRC. It is now recommended that 
endoscopists target an ADR target ≥ 25%[3]. Artificial intelligence (AI), specifically 
computer-aided detection (CADe) software is being studied to detect polyps during 
colonoscopy with the goal of increasing adenoma detection rates[2,4,5].

Broadly, artificial intelligence (AI) relates to the ability of a computer program to 
obtain outside data (e.g., images) and to subsequently take independent actions 
towards a particular goal (e.g., pattern identification). Machine learning is a form of AI 
that relies on the analysis of large datasets in order to make predictions that can be 
used for decision making. Deep learning, a subtype of machine learning, uses an 
artificial neural network comprised of layers of interconnected “computing units” that 
mimic biological neural connections and allow for complex “understanding” of input 
data. This neural network allows the computer program to learn independently from 
unstructured input data. Many times a deep learning program can process a large 
number of photos, independently identify patterns among them, and then use that 
information to make predictions about new images. This powerful technology that has 
been used to train machines in image and sound recognition is now being applied in 
the medical field in the form of computer-aided diagnosis and detection, which applies 
AI and computer vision technologies to the diagnosis of various pathologies. The 
technology is rapidly expanding in areas like colonoscopy where there is significant 
room to mitigate human error in visual diagnosis.

Many polyps detected and resected during colonoscopies are diminutive polyps (≤ 5 
mm), and a significant number of these are non-neoplastic. Polypectomy increases the 
risk of complications during colonoscopy, including the risk for bleeding and 
perforation[6]. Computer-aided diagnosis (CAD) technology has been studied to 
characterize the histology of polyps in vivo.

The American Society for Gastrointestinal Endoscopy’s Preservation and 
Incorporation of Valuable Endoscopic Innovations (PIVI) initiative has provided 
guidelines that aim to reduce the cost and need for pathological assessments in 
addition to reducing the risks associated with polypectomy. The PIVI’s first guideline 
is known as “resect and discard”, which entails resecting the diminutive polyp and 
discarding if the CAD technology used to characterize the polyp has a similar 
surveillance interval compared to the traditional pathology assessment (≥ 90%). The 
PIVI’s second guideline allows the endoscopist to leave hyperplastic diminutive 
polyps in place in the rectosigmoid area if the CAD technology has a NPV ≥ 90% for 
characterizing adenoma histology[7].

COLORECTAL POLYP DETECTION
The first study to use CADe to detect colorectal polyps was published in 2003[8-11]. 
Karkanis et al[8] used wavelet transformation technology to detect polyps with a 
sensitivity of 93.6% and specificity of 99.3%. Years later, deep learning networks were 
applied to CADe, which has paved the way for in vivo and real-time analysis studies.

Urban et al[2] was the first to use CADe for polyp detection in real-time. The study 
assessed 9 standard colonoscopy videos. At the time of the colonoscopies, 28 polyps 
were identified and removed. Using CADe, an additional 17 polyps were detected, 
compared to only an additional 8 that were identified by an expert endoscopist[2,9]. 
Klare et al[12] then applied CADe in real time and in vivo to 55 colonoscopies. The 
ADR of the CADe was similar to the endoscopists’ (29.1% and 30.9%, respectively). 
However, the CADe was inferior in detecting flat and small polyps.

https://www.wjgnet.com/1007-9327/full/v27/i29/4802.htm
https://dx.doi.org/10.3748/wjg.v27.i29.4802
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More recently, there have been randomized control trials (RCTs) performed in real-
time using colorectal polyp detection technology. Wang et al[4] included 1058 patients 
in a non-blinded study, 536 were randomized to colonoscopy and 522 were 
randomized to colonoscopy with CADe. The ADR was statistically superior in the 
colonoscopy with the CADe group compared to the control group (29.1% vs 20.3%). 
Moreover, CADe was better at detecting diminutive adenomas, but there was no 
difference in detection rate for polyps larger than 5 mm. Notably, the CADe did not 
miss any polyps, but had 39 false positives alarms for polyps[5]. Wang et al[4] then 
performed a double blinded RCT in which patients were randomized to a colonoscopy 
with sham system (n = 478) or a colonoscopy with CADe (n = 484) group. Results 
showed the ADR was 34% in the CADe group, which was superior to the control 
group, 28%. Gong et al[13] randomized 704 patients in a partially blinded RCT to 
CADe assisted colonoscopy or control standard colonoscopy. Similarly, the ADR was 
significantly better in the CADe group than the control group (16% compared to 8%, 
respectively). Repici et al[14] performed a similar nonblinded RCT and found an ADR 
of 54.8% in the colonoscopy with CADe group, which was significantly better than the 
ADR for the control group (40.4%). The CADe was also able to detect more adenomas 
that were < 10 mm in size compared to the control group. The authors also found that 
there was no significant difference in withdrawal time (excluding biopsy time) of the 
endoscope between the two groups. Liu et al[15] randomized 1026 patients to CADe or 
control groups. The ADR was significantly better in the CADe group (39%) than the 
control group (23%). The CADe did not miss any polyps and there were only 36 false 
positive alarms. It was also noted that the withdrawal times between groups were 
similar (CADe 6.16 minutes compared to control 6.11 min).

Su et al[16] created an automatic quality control system (AQCS) to improve aspects 
of colonoscopy using a deep learning model. They randomized 659 patients and found 
that the AQCS group had a superior ADR than the control group (28.9% vs 16.5%). 
However, they found the AQCS had a longer withdrawal time (excluding biopsy time) 
compared to the control group (7.03 ± 1.01 min vs 5.68 ± 1.26 min).

Recent meta-analyses have concluded that CADe was accurate at detecting 
adenomas[17,18]. Barua et al[17] included 5 RCTs (with a total of 4311 patients) and 
concluded the ADR was significantly better using CADe with colonoscopy (29.6%) 
than colonoscopy alone (19.3%), with a false positive alarm mean of 11.2%. Lui et al[18] 
analyzed 6 studies that used CADe and found the accuracy of CADe was 90% with 
sensitivity and specificity of 95% and 88% respectively. In both studies, colonoscopy 
with CADe improved detection of diminutive adenomas[17,18].

A significant limitation of CADe technology is the potential to have high false 
positive alarm rates. Even though Wang et al[5] and Liu et al[15] had low rates, Hassan 
et al[19] reported a total of 1092 false positive alarms, which averaged 27.3 per 
colonoscopy. Also, many of the studies assessing CADe had control groups with low 
ADRs between 8%-23%[5,13,15,16], which is below the recommended target ADR of ≥ 
25%[3].

Table 1 summarizes the key recent studies in colorectal polyp detection.

POLYP CHARACTERIZATION
Going beyond merely identifying polyps, AI has been applied to provide real-time in 
vivo diagnoses of neoplastic vs non-neoplastic lesions. A number of different 
modalities for this have been described over the years.

White light endoscopy
Traditional white light (WL) endoscopy is the most familiar modality used by 
endoscopists today. High-definition white light (HDWL) endoscopy is the most recent 
improvement in this area. Recent randomized controlled trials have demonstrated that 
HDWL is non-inferior to other modalities, specifically narrow band imaging (NBI) and 
chromoendoscopy[20-22]. In 2016, Rex et al[20] found that there was no statistically 
significant difference in the number of serrated lesions detected in 804 patients 
randomized to undergo either WL or NBI endoscopy. The same year, Klare et al[21] 
published the results of a trial that randomized 380 patients to either HDWL or NBI. 
They also found no statistically significant advantage of one modality over the other in 
distinguishing between neoplastic and non-neoplastic polyps. Yang et al[22] 
randomized 210 patients with ulcerative colitis to undergo colon cancer screening with 
HDWL or chromoendoscopy and found no significant difference in dysplasia 
detection rates between the two modalities (5.6% for HDWL vs 3.9% for chromoen-
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Table 1 Colorectal polyp detection

Ref. Study design Algorithm type Dataset Results

Sensitivity: 93.6% Karkanis et 
al[8]

Retrospective CADe (Wavelet Decomposition) 180 images

Specificity: 99.3%

Accuracy: 96.4%Urban et al
[2]

Retrospective CADe (DCNN) 8461 images &20 colonoscopy 
videos

False Positive: 7%

Klare et al
[12]

ProspectiveIn 
vivo

CADe 55 colonoscopies ADR of: CAD 29.1% and 
Endoscopist 30.9%

Wang et al
[5]

Non-blinded 
RCT

CADe using Shanghai Wision Al Co. Ltd. (DCNN) Randomized 522 patients to CADe 
and 536 to control group

ADR of CAD 29.1% vs 
control 20.3%

Wang et al
[4]

Double blinded 
RCT

CADe using EndoScreener (DCNN) Randomized 484 patients to CAD 
and 478 to sham system

ADR of CAD 34% vs 
control 28%

Gong et al
[13]

Partially blinded 
RCT

CADe using ENDOANGEL (DCNN) Randomized 355 patients to CAD 
and 349 to control

ADR of CAD 16% vs 
control 8%

Repici et al
[14] 

Partially-blinded 
RCT

CADe using GI-Genius (CNN) Randomized 341 patients to CAD 
and 344 to control

ADR of CAD 54.8% vs 
control 40.4%

Liu et al[15] Non-blinded 
RCT

CADe using Henan Xuanweitang Medical Information 
Technology Co. Ltd (convolutional 3D network)

Randomized 508 patients to CAD 
and 518 control

ADR of CAD 39% vs 
control 23%

Su et al[16] Partially blinded 
RCT

Automatic quality control system (ACQS)(DCNN) Randomized 308 patients to AQCS 
and 315 to control

ADR of AQCS 28.9% vs 
control 16.5% 

CADe: Computer-aided detection; CAD: Computer-aided diagnosis; DCNN: Deep convolutional neural network; ADR: Adenoma detection rate.

doscopy).
In 2017, Komeda et al[23] designed and tested a CAD system based on a convolu-

tional neural network to augment WL endoscopy. It functioned as an AI system that 
trained with previously collected colonoscopy images to assist endoscopists in 
detecting and diagnosing colon polyps during WL endoscopy. After training on 1200 
images, their CAD-neural network system correctly differentiated between adenoma-
tous and non-adenomatous polyps in 70% of newly presented cases[23].

This strategy of applying AI to the detection and classification of colorectal lesions 
using WL endoscopy has continued to be an area of active study. Researchers have 
shown that CAD, using both convolutional neural networks and deep learning 
models, promises to identify suspicious lesions and accurately classify them[24-26]. 
Zheng et al[24] developed a convoluted neural network (CNN) to be used with WL 
endoscopy. They trained their AI system with over 600 polyp-containing images from 
independent public databases and found that their diagnostic model had a sensitivity 
of 68.3% and a precision of 79.3% when applied to 196 new polyp-containing images
[24]. However, they found significant variation in model performance depending on 
which image database was used to train the CNN, and they also only trained and 
tested their CNN on still images[24]. Going beyond polyp identification, Yang et al[26] 
developed a deep learning (DL) model to assist in classification of colorectal lesions 
during WL endoscopy. They trained their model on 3828 images and validated it on a 
set of 240 new images. When classifying lesions as neoplastic vs non-neoplastic, their 
model had a sensitivity of 95.4% and specificity of 30.1%[26]. Their model was also 
able to classify advanced lesions (high grade dysplasia and stages T1-T4 CRC vs non-
advanced (tubular adenomas and non-neoplastic lesions) with a sensitivity of 80.0% 
and specificity of 91.3%[26].

A recent prospective crossover study conducted by Wang et al[25] compared 
traditional WL colonoscopy to CAD-assisted colonoscopy in 369 patients. Patients 
requiring colonoscopy underwent either traditional WL colonoscopy or CAD-assisted 
colonoscopy immediately followed by the other, such that each study participant 
underwent both methods. They found that the adenoma miss rate was 40% for those 
undergoing traditional colonoscopy first vs 14% in those undergoing CAD-assisted 
colonoscopy first[25]. Polyp detection followed a similar trend with a miss rate of 46% 
in those undergoing traditional colonoscopy first vs 13% in those undergoing CAD-
assisted colonoscopy first[25]. Interestingly, of the adenomas missed, participants 
undergoing CAD-assisted colonoscopy were less likely to have polyps under 5mm and 
under 10 mm missed, suggesting that CAD is particularly helpful in identifying 
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smaller lesions[25].
The key studies for polyp characterization using white light endoscopy are 

summarized in Table 2.

Narrow band imaging
Narrow band imaging (NBI) is used to enhance visualization of vascular patterns in 
the epithelium of lesions to aid in the classification of polyps[27-29]. However, training 
and experience is needed to operate NBI; therefore, studies have applied computer-
aided diagnosis to NBI[27,29-34].

Tischendorf et al[29] was the first to apply CAD to magnified NBI. The CAD 
evaluated 209 polyps and assessed for three vessel features on each NBI image, then a 
support vector machine was used to classify the polyp as neoplastic or non-neoplastic. 
It had an accuracy of 85.3%, sensitivity of 90% and specificity of 70.2%. When 
compared to the consensus of the investigators (accuracy 91.9%, sensitivity 93.8%, and 
specificity 85.7%), the CAD was inferior. Gross et al[27] performed a similar study with 
434 polyps, but assessed for nine vessel features. The CAD had an accuracy of 93.1%, 
sensitivity of 95%, specificity of 90.3%, and NPV of 92.4%, which was comparable to 
the results of the expert endoscopists and superior to the novice endoscopists.

Years later, Byrne et al[30] and Chen et al[31] improved CAD by creating deep 
learning models to analyze NBI images and categorize polyp histology. Both studies 
only included diminutive polyps (≤ 5 mm). Chen et al[31]’s deep learning model 
assessed still NBI images of 284 polyps and classified polyps with an accuracy of 
90.1%, sensitivity of 96.3%, specificity of 78.1%, PPV of 89.6%, and NPV of 91.5%. The 
authors also studied the diagnosis time, which was statistically faster for the deep 
learning model than both expert and novice investigators[31]. Byrne et al[30]’s deep 
learning model assessed 125 endoscopy NBI video segments of polyps. Of the 
classified polyps, the accuracy was 94% with sensitivity 98%, specificity 83%, PPV 
90%, and NPV 97%. However, the model was not able to classify 15% of polyps due to 
a lack of confidence. All of the CAD with NBI studies named above with the exception 
of Tischendorf’s initial study met the PIVI criteria for resect and discard or diagnose 
and leave in situ[7,27,30,31].

Few prospective studies have been performed with CAD using NBI imaging to 
classify polyp histology. Kominami et al[32] evaluated 118 polyps with NBI. The CAD 
had an accuracy of 94.9%, sensitivity of 95.9%, specificity of 93.3%, PPV of 95.9%, and 
NPV 93.3%. The authors used this data to investigate colonoscopy surveillance interval 
which did not change in 38 of the 41 patients when using the CAD results to classify 
polyps. Mori et al[33] also performed a study assessing CAD when used with NBI on 
466 diminutive polyps. The NPV for rectosigmoid neoplastic polyps ranged from 
95.2% to 96.5% depending on the worst or best case scenario respectively.

Most recently, Song et al[35] created a CAD using a deep learning model and tested 
it in vivo by sending still NBI images during the colonoscopy to a computer. The CAD 
then categorized the histology in real time. The polyps were classified as serrated, 
benign adenoma, or deep submucosal cancer with an accuracy of 82.4%, which was 
superior to trainees (63.8%), but inferior to expert endoscopists (87.3%). The accuracy 
of trainee endoscopists improved with the addition of CAD to 82.7% showing that 
CAD can increase the accuracy in this group.

Table 3 provides a summary of the key recent studies of polyp characterization 
using narrow band imaging.

Laser-induced fluorescence spectroscopy
Another strategy currently under investigation to optically diagnose lesions during 
endoscopy is laser-induced fluorescence spectroscopy. This diagnostic method relies 
on low-power laser radiation to induce fluorescence in tissues that can differentiate 
normal from neoplastic lesions[36]. In recent years, CAD systems have been developed 
to analyze the fluorescent spectra produced when tissues are exposed to a laser. These 
CAD systems take advantage of the differences between the fluorescence of normal 
and pathological tissue to predict the likelihood that a lesion is abnormal.

Kuiper et al[37] and Rath et al[38] studied a laser-induced fluorescence spectroscopy 
system designed to be used in real-time to help clinicians make decisions regarding 
biopsy and resection of concerning lesions. However, it is important to note that the 
accuracy of the algorithm used by Kuiper et al[37] was 73.4% and the NPV only 74.4%, 
falling short of the performance thresholds of the American Society for Gastro-
intestinal Endoscopy’s PIVI initiative for diminutive lesions. The pilot study 
conducted by Rath et al[38] was more promising, with an overall accuracy of 84.7%, 
sensitivity of 81.8%, specificity of 85.2%, and NPV of 96.1%. A 2017 randomized 
controlled trial by Min et al[39] was further able to demonstrate that use of linked color 
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Table 2 White light endoscopy

Ref. Study design Algorithm type Dataset Results

Komeda et 
al[23]

Diagnostic model 
development

CAD-neural network combination to 
assist WL endoscopy

1200 training images then 
tested on 10 new images

Cross-validation accuracy: 0.751

Accuracy: 79.3%Zheng et al
[24]

Diagnostic model 
development

WL endoscopy using YOLO (CNN) 196 WL images from an 
independent public database

Sensitivity: 68.3%

Wang et al
[25]

Prospective 
crossover study

Traditional WL endoscopy vs CAD 
colonoscopy

369 patients from a single 
hospital in China

Adenoma miss rate of 13.9% in the CAD 
group vs 40% in the traditional group, P < 
0.0001

Mean model accuracy: 79.2% for advanced 
CRC, early CRC/HGD, TA, and non-
neoplastic

Yang et al
[26]

Diagnostic model 
development

Validation of a deep learning model 
called “ResNet-152” to classify colorectal 
lesions

3828 WL colonoscopy 
images from 1339 patients

AUC: 0.818

CAD: Computer-aided diagnosis; WL: White light; CNN: Convoluted neural network.

imaging technology (which enhances the colors produced by laser endoscopic 
modalities) improved overall polyp detection rate when compared to traditional white 
light endoscopy (polyp detection rate 73% for WL and 91% with linked color imaging).

The recent key studies of laser-induced fluorescence spectroscopy are summarized 
in Table 4.

Autofluorescence endoscopy
Autofluorescence imaging (AFI) is a form of image enhanced endoscopy that differen-
tiates tissues based on their various abilities to capture and reflect fluorescent light
[40]. Similar to laser-induced fluorescence spectroscopy, this method takes advantage 
of endogenous reflective properties of various tissues (fluorophores), but instead of 
using a laser emitting an exact wavelength of light, AFI uses incoherent light sources. 
This technology aims to visually highlight tumors, which have more heterogeneous 
fluorescence on their surface compared to normal colonic mucosa. This image-
enhancement displays normally fluorescing mucosa as green and abnormally 
fluorescing mucosa as red/purple.

In a 2019 study of 802 patients randomized to undergo either AFI endoscopy or 
white light endoscopy, Takeuchi et al[41] found that using AFI during endoscopy 
increased the number of flat neoplasms detected overall compared to WL, especially in 
the ascending colon. However, the overall detection rate of advanced neoplasms was 
not significantly improved with AF compared to WL[41]. In a meta-analysis of 11 
studies, Wanders et al[42] calculated that the sensitivity and specificity of autofluor-
escence imaging for the optical diagnosis of colonic lesions were 86.7% and 65.9% 
respectively. This led the authors to conclude that AFI is not as reliable as other 
methods for visual diagnosis of colonic neoplasms. This was further confirmed in a 
2018 meta-analysis by Imperatore et al[43] which found no significant difference 
between the dysplasia detection rates between AFI and WL (OR = 1.42, 95%CI: 0.74-
4.11) when combining the results of two randomized controlled trials representing 92 
patients undergoing surveillance colonoscopy.

More recently, researchers have developed CAD systems that can further charac-
terize the images obtained during AFI endoscopy using software that can calculate the 
green to red light ratios of various tissues encountered during colonoscopy[44-47]. 
Such developments may help differentiate lesions from normal mucosa in cases where 
the green to red variation is less obvious, improving on the results of the studies 
looking at the use of AFI without the use of CAD.

Arita et al[44] created a color-contrast index (CCI) for AFI. Their CCI was developed 
from 54 colorectal lesions found in 43 patients who underwent either WL or AFI 
endoscopy. They found that as the CCI increased (i.e., greater contrast between the 
lesion and the adjacent normal tissue), so did the malignant potential of the assessed 
lesion (i.e., carcinomas had higher CCIs on average compared to adenomas)[44]. 
Aihara et al[45] expanded on this idea by using color-analysis software to calculate 
red/green ratios (RGR) for 102 Lesions in 32 patients undergoing AFI endoscopy. In 
their study, they were able to differentiate neoplastic from non-neoplastic lesions with 
sensitivity of 94.2%, specificity of 88.9%, PPV of 95.6%, and NPV of 85.2%[45]. In a 
similar study, Inomata et al[46] also calculated RGRs to distinguish between non-
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Table 3 Narrow band imaging

Ref. Study design Algorithm type Dataset Results

Accuracy: 85.3% 

Sensitivity: 90% 

Tischendorf et al[29] Prospective Ex vivo CAD – NBI (support vector machine) 209 polyp images

Specificity: 70.2%

Accuracy: 93.1%

Sensitivity: 95% 

Specificity: 90.3%

Gross et al[27] Prospective Ex vivo CAD – NBI (support vector machine) 434 polyp images

NPV: 92.4%

Accuracy: 90.1%

Sensitivity: 96.3%

Specificity: 78.1%

PPV: 89.6%

Chen et al[31] Retrospective CAD – NBI (DCNN) 284 polyp images

NPV: 91.5%

Accuracy: 94% 

Sensitivity: 98%

Specificity: 83% 

PPV: 90%

Byrne et al[30] Retrospective CAD—NBI (DCNN) 125 polyp videos

NPV: 97%

Accuracy: 94.9% 

Sensitivity: 95.9% 

Specificity: 93.3% 

PPV: 95.9%

Kominami et al[32] Prospective CAD –NBI (support vector machine) 118 polyps

NPV: 93.3%

Mori et al[33] Prospective CAD – NBI (support vector machine) 466 polyps NPV: 95.2% to 96.5%

Song et al[35] Prospective In vivo CAD –NBI (DCNN) 363 polyps Accuracy: 82.4%

CAD: Computer-aided diagnosis; NBI: Narrow band imaging; DCNN: Deep convolutional neural network.

neoplastic lesions, adenomas plus superficial cancers, and deep cancers. They were 
able to characterize hyperplastic polyps and neoplastic lesions, with sensitivity of 
83.9%, specificity of 82.6%, PPV of 53.1%, and NPV of 95.6%[46]. Additionally, they 
were able to differentiate between adenomas plus superficial cancers and deep 
submucosal cancers with a sensitivity of 80.0%, specificity of 84.4%, PPV of 29.6%, and 
NPV of 98.1%[46].

In 2019, Horiuchi et al[47] developed software to calculate real-time RGR ratios with 
the specific goal of identifying diminutive neoplastic rectosigmoid polyps (≤ 5 mm). 
Using their CAD-assisted AFI endoscopy, they identified 429 diminutive polyps (258 
rectosigmoid) in 95 patients. The endoscopists then confirmed whether the lesions 
identified with the CAD-assisted AFI were actually diminutive neoplastic polyps with 
trimodal imaging endoscopy (TME) combining findings of WL, AFI, and NBI. The 
CAD-assisted AFI software was able to identify diminutive neoplastic polyps with a 
sensitivity of 80.0%, specificity of 95.3%, PPV of 85.2%, and NPV of 93.4%[47].

Table 5 contains a summary of the key recent studies involving autofluorescence 
endoscopy.

Magnifying chromoendoscopy
In the technique of magnifying chromoendoscopy, suspected colonic lesions are 
washed with proteinases and colored with an indigo carmine or crystal violet solution 
in order to allow better visualization of the surface under magnification up to 150 
times[48]. In a systematic review, Brown et al[49] showed that chromoendoscopy 
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Table 4 Laser-induced fluorescence spectroscopy

Ref. Study design Algorithm type Dataset Results

Accuracy: 73.4%Kuiper et 
al[37]

Diagnostic model 
development

Diagnostic performance of WavSTAT 87 patients

NPV: 74.4%

Accuracy: 84.7%

Sensitivity: 81.8%

Specificity: 85.2%

Rath et al
[38]

Diagnostic model 
development

Diagnostic performance of WavSTAT for 
predicting polyp histology

27 patients

NPV: 96.1%

Min et al
[39]

Randomized 
controlled trial

Linked color imaging with laser 
endoscopic system vs WL

141 patients from 3 
hospitals in China

Polyp detection rate of 91% in the LCI group, 
73% in the WL group, P < 0.0001

WL: White light.

Table 5 Autofluorescence endoscopy

Ref. Study design Algorithm type Dataset Results

Sensitivity: 
95.3%

Arita et al[44] Diagnostic model 
development

Calculation of a color-contrast index 
(CCI) for AFI

43 patients who underwent both WL and AF 
endoscopy

Specificity: 
63.6%

Sensitivity: 
94.2%

Specificity: 
88.9%

PPV: 95.6%

Aihara et al[45] Diagnostic model 
development

CAD-assisted AF 32 patients undergoing colonoscopy in a 
Japanese hospital

NPV: 85.2%

Accuracy: 
82.8%

Sensitivity: 
83.9%

Specificity: 
82.6%

PPV: 53.1%

Inomata et al
[46]

Diagnostic model 
development

CAD-assisted AF 88 patients

NPV: 95.6%

Accuracy: 
91.5%

Sensitivity: 
80.0%

Specificity: 
95.3%

PPV: 85.2%

Horiuchi et al
[47]

Diagnostic model 
development

CAD-assisted AF 95 patients undergoing colonoscopy

NPV: 93.4%

AFI: Autofluorescence imaging; WL: White light; CAD: Computer-aided diagnosis; AF: Autofluorescence.

significantly increased both the number of patients with polyps (OR = 1.87, 95%CI: 
1.51-2.3) and neoplasms detected (OR = 1.53, 95%CI: 1.31-1.79). Kudo et al[48] 
demonstrated that certain pit patterns on magnifying chromoendoscopy are associated 
with malignancy, showing sensitivity of 97.8%, specificity of 91.4%, and accuracy of 
97.1%. Kanao et al[50] demonstrated that magnifying chromoendoscopy can be used to 
differentiate severely irregular lesions from those with only mild irregularities, a key 
distinction as 56.1% of the former are associated with deep submucosal invasive 
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adenomas vs only 6.7% of the latter.
Several automated computer-based systems have been developed for analysis of pit 

patterns. The system developed by Takemura et al[51] was able to accurately diagnose 
132 out of 134 (98.5%) of images captured with magnifying chromoendoscopy 
demonstrating that artificial intelligence aided systems can reliably predict histological 
changes compared to endoscopists. Häfner et al[52] used texture analysis of magnified 
chromoendoscopic images to achieve accuracy as high as 99.59%. Recent work by Qi et 
al[53] further showed that artificial intelligence can be used to quantify colonic crypts 
and provide objective measures of area, density, eccentricity, solidity, straightness, and 
parallelism which in turn can be used to reduce variability compared to human 
observation.

Recent studies on the use of magnifying chromoendoscopy in polyp character-
ization are summarized in Table 6.

Endocytoscopy
The technique of endocytoscopy uses a contact light microscope attached to a 
colonoscope to provide endoscopic images with ultra-magnification up to 520 times. 
The addition of staining allows for real-time histological diagnoses to be made. Studies 
have shown that the accuracy of this technique is comparable to traditional biopsy
[54]. However, a major limitation is the need for expert experience in order to make 
real-time diagnoses. CAD has been developed in response to this shortcoming.

In 2015, Mori et al[54] described the use of an endocytoscopic imaging computer-
aided diagnostic system. In this study, 39 non-neoplastic and 176 neoplastic small 
colorectal polyps less than 10 mm in size were analyzed by artificial intelligence 
software and compared to the results of both expert and trainee endoscopists. They 
showed comparable sensitivity (92% vs 92.7%) and accuracy (89.2% vs 92.3%) of the 
computer-aided diagnostic system compared to experts[54]. Moreover, the artificial 
intelligence program performed significantly better than trainee endoscopists who 
only had sensitivity of 81.8% and accuracy of 80.4%[54]. Takeda et al[55] described the 
development of a CAD system that used 5543 endocytoscopic images for machine 
learning. Following this, 188 images of a mix of adenomas and invasive cancers were 
analyzed by the CAD system and compared to pathological diagnoses with 89.4% 
sensitivity, 98.9% specificity, 98.8% accuracy, 98.8% PPV, and 90.1% NPV[55]. 
Moreover, the system used a support vector machine to calculate the probability of 
results being classified accurately. The study specifically looked at high-confidence 
diagnoses described as those having a ≥ 90 % probability of being correct. Out of 188 
images analyzed, 134 fell into this category with 98.1% sensitivity, 100% specificity, 
99.3% accuracy, 100% PPV, and 98.8% NPV[55].

In 2018, Mori et al[33] showed the efficacy of real-time endocytoscopy with CAD in 
detecting diminutive polyps ≤ 5 mm in size. 466 polyps were assessed with 98.1% 
pathologic prediction rate, 93.8% sensitivity, 90.3% specificity, and 94.1% PPV. 
Moreover, they were able to demonstrate overall negative predictive value of 96.4% 
which is significantly above the threshold for a “diagnose-and-leave” treatment 
strategy. However, the study only demonstrated 65.8% NPV for lesions proximal to 
the recto-sigmoid area[33].

In 2020, Kudo et al[56] performed a study to evaluate the efficacy of an AI system 
that uses endocytoscopic images to look at cell nuclei, crypt structure, and 
microvessels. It was able to identify malignant lesions with 96.9% sensitivity, 100% 
specificity, 98% accuracy, 100% PPV, and 94.6% NPV. Compared to expert 
endoscopists with 92.8% sensitivity, 94.3% specificity, and 93.9% accuracy as well as 
trainee endoscopists with 70.8% sensitivity, 65.7% specificity, and 69% accuracy, this 
CAD system significantly outperformed both groups[56].

Table 7 summarizes the key recent studies in endocytoscopy.

Confocal endomicroscopy
Anatomic variation can hinder accurate traditional endoscopic biopsy. Confocal 
endomicroscopy produces high resolution magnification of the mucosal layer of the 
gastrointestinal tract using laser illumination with simultaneous detection of light 
reflected from the tissue through a narrow pinhole. By filtering out light that is 
scattered from angles outside of layers corresponding to mucosa in question, this 
technique allows for high spatial resolution and real-time endoscopic evaluation of 
targeted areas of tissue. Compared to normal colonic mucosa with well-organized 
crypt structures, malignancy causes irregularities and interruptions[57].

André et al[58] designed software that used probe-based confocal laser endomic-
roscopy to automatically classify colonic polyps. 135 images with both neoplastic and 
nonneoplastic polyps were analyzed by the automated software with 92.5% sensitivity, 
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Table 6 Magnifying chromoendoscopy

Ref. Study design Algorithm type Dataset Results

Takemura et 
al[51]

Partially blinded 
retrospective study

CAD using HuPAS 134 pit pattern images Accuracy: 98.5% 

Häfner et al
[52]

Partially blinded 
retrospective study

CAD using Dual-Tree 
Complex Wavelet 
Transform

484 RGB pit pattern images Accuracy: 99.59% 

Qi et al[53] Diagnostic model 
development

CAD using automated 
imaged analysis

79 colon samples (14 normal, 44 normal 
tissue adjacent to cancer, 21 malignant)

Automated segmentation achieved 
precision ratio of 0.69 and match ratio of 
0.73

CAD: Computer-aided diagnosis.

83.3% specificity, and 89.6% accuracy which was not significantly different compared 
to diagnosis by two expert endoscopists with 91.4% sensitivity, 85.7% specificity, and 
89.6% accuracy. Ştefănescu et al[59] retrospectively analyzed 1035 endomicroscopic 
images processing them through a CAD system that allowed for feature identification 
via fractal analysis of glandular structures showing that homogeneity and feature 
number were significantly different in malignancy. In turn, this was used to design an 
artificial intelligence program with a diagnosis error rate of 15.5%[59].

One problem with early probe-based confocal endomicroscopic images is the need 
for high-level magnification which leads to a long learning-time for automated image 
interpretation. Taunk et al[60] showed the efficacy of a CAD algorithm that utilized a 
lower magnification method with a wider field-of-view necessitating less images. The 
algorithm demonstrated similar sensitivity, specificity, and accuracy compared to 
expert endoscopists (95% vs 98%, 94% vs 95%, and 94% vs 96% respectively) and 
significantly better performance than less experienced endoscopists who only had 
sensitivity of 60%, specificity of 85%, and accuracy of 73%[60].

The recent key studies on confocal endomicroscopy are summarized in Table 8.

FUTURE DIRECTIONS
Automated polyp detection and characterization
Many studies have been performed using AI to detect or classify the histology of 
colorectal polyps; however, little research has been done on simultaneous detection 
and classification of colorectal polyps using AI. Mori et al[33] combined previously 
studied CADe and CAD systems to develop AI technology that is able to detect then 
characterize the colorectal polyps[61,62]. White-light imaging was used to detect 
polyps with an accuracy of 94%[61,62]. Then, classification of the polyps was then 
performed using magnified NBI with a NPV of 95.2%[33,61]. Ozawa et al[34] created a 
deep convolutional neural network (DCNN) that detected polyps using white light or 
NBI with a sensitivity of 92% and a PPV of 86%. The DCNN then classified the polyps 
using either white light with an accuracy of 83% and NPV of 90% or NBI with an 
accuracy of 81% and NPV of 91%. Further research is needed in concurrent automated 
detection and characterization of colorectal polyps.

Robotics
Much of the work in robotics has centered around the use of self-propelling colono-
scopes and less on polyp detection. Recent studies on the use of robotics in 
colonoscopy are summarized in Table 9.

Eickhoff et al[63] demonstrated the first use of a novel computer-assisted 
colonoscope in 2007 that would change shape at 16 different segments depending on 
insertion depth in an effort to decrease discomfort from colonoscope looping. While it 
required an endoscopist to steer the scope, the device used CAD to change shape as it 
was advanced. The device was able to intubate the cecum in 100% of patients with no 
complications at discharge, 48 h, and 30 d[63].

In 2016, Pullens et al[64] demonstrated the utility of colonoscopy with robotic 
steering and automated lumen centralization (RS-ALC). In a study of 18 endoscopists 
including 8 experts and 10 novices, the addition of RS-ALC significantly improved the 
time to intubate the cecum in novices (8 min 56 s compared to baseline 11 min 47 s 
without RS-ALC) as well as polyp detection rate (88.1% vs 78.6%)[64]. However, 
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Table 7 Endocytoscopy

Ref. Study design Algorithm type Dataset Results

Accuracy: 89.2%

Sensitivity: 92%

Mori et al
[54]

Pilot study CAD using EC-CAD 176 colorectal polyps from 152 patients

Specificity 79.5%

Overall

Accuracy: 94% 

Sensitivity: 89.4% 

Specificity: 98.9%

PPV: 98.8%

NPV: 90.1%

High-confidence 
diagnosis

Accuracy: 99.3% 

Sensitivity: 98.1% 

Specificity: 100%

PPV: 100%

Takeda et al
[55]

Retrospective study CAD using EC-CAD 5543 endocytoscopy images for machine 
learning. 200 test images

NPV: 98.8%

Accuracy: 98.1% 

Sensitivity 93.8% 

Specificity 90.3%

PPV 94.1% 

Mori et al
[33]

Single-group, open-label, 
prospective study

Real-time CAD during 
colonoscopy

466 diminutive polyps from 325 patients

NPV 89.8% 

Accuracy: 98% 

Sensitivity 96.9%

Specificity 100%

PPV 100%

Kudo et al
[56]

Retrospective study CAD using EndoBRAIN 100 polyps from 89 patients

NPV 94.6% 

CAD: Computer-aided diagnosis.

similar results were not seen with expert endoscopists whose time to intubate the 
cecum actually increased (13 min 1 s compared to baseline 2 min 9 s without RS-ALC) 
and polyp detection rate decreased (69% vs 80.9%)[64]. Slawinski et al[65] demons-
trated the use of an in vivo autonomously controlled highly compliant magnetic 
flexible endoscope with diagnostic and therapeutic capability using an actuating 
permanent magnet in animal studies. They were able to conduct autonomous 
endoscopic retroflexion with 100% success in 30 attempts without perforation or 
trauma in pigs. However, diagnostic capability was worse than traditional endoscopy 
with an average detection miss rate of 21.7% and completion time of 575 s (compared 
to 5% and 257 s). When looking at lesion targeting alone, the robotic program took on 
average 251 s to identify lesions compared to only 32 s with traditional endoscopy[65].

In 2020, Formosa et al[66] showed the use of a sensor-enabled treaded robotic 
colonoscope with multiple degrees of freedom which was notable for containing all 
the functions of a traditional endoscope including direct visualization, channels for 
insufflation and irrigation as well as a tool port for endoscopy. It also had inertial 
measurement technology in addition to a magnetometer, motor encoders, and motor 
current sensors for future autonomous use. Ex-vivo porcine results showed locomotion 
ability up to 40 mm/s[66].
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Table 8 Confocal endomicroscopy

Ref. Study design Algorithm type Dataset Results

Accuracy: 89.6%

Sensitivity 92.5% 

Andréet al
[58]

Diagnostic model 
development

CAD using content based 
image retrieval (CBIR) 
approach

135 polyps from 71 patients

Specificity 83.3% 

Ştefănescu et 
al[59]

Diagnostic model 
development

CAD using NAVICAD and a 
two layer CNN

1035 endomicroscopy images including 725 for 
training, 155 for validation, and 155 for testing.

Testing decision accuracy error 
rate of 15.48% (24 out of 155 
images)

Accuracy: 94.2% 

Sensitivity 94.8% 

Taunk et al
[60]

Feasibility study CAD using expectation-
maximization algorithm

189 endomicroscopy images from 26 patient

Specificity 93.5% 

CAD: Computer-aided diagnosis; CNN: Convoluted neural network.

Table 9 Robotics

Ref. Study design Algorithm type Dataset Results

Eickhoff 
et al[63]

Prospective, 
nonrandomized, 
unblinded feasibility study

CAD using 
NeoGuide 
Endoscopy System

10 patients 100% cecal intubation rate. Median time to 
cecum 20.5 min. 0 complications or adverse 
effects reported at discharge, 48 h, and 30 d 

Novice

Accuracy: 88.1%

Time to cecum:  8 min 56 s 

Experts 

Accuracy: 69%

Pullens et 
al[64]

Randomized control trial 
with crossover design

CAD using 
automated lumen 
centralization

8 expert endoscopists and 10 endoscopy-
naïve novices performing endoscopy on a 
validated colon model with 21 polyps

Time to cecum: 13 min 1 s 

CAD: Computer-aided diagnosis.

CONCLUSION
Traditional colonoscopy has been shown to reduce colon cancer incidence by more 
than 80%[67]. The application of artificial intelligence, computer-aided detection, and 
computer-aided diagnosis to this field provides possibilities for improving an already 
powerful tool. Namely, the possibility of combining these technologies for real-time 
endoscopic detection and analysis of lesions overall makes the procedure less operator 
dependent. With the ability to identify smaller diminutive lesions as non-cancerous, 
these techniques also offer time and resource savings. Given the widespread use of 
colonoscopy as a screening test and an aging world population, this potentially 
translates to billions of dollars in cost reductions and even the possibility of extending 
screening intervals. Multiple modalities have shown to increase adenoma detection 
rates and have negative predictive values > 90%, meeting the goals of the ASGE’s PIVI 
initiatives.

However, multiple challenges remain including a lack of large multicenter clinical 
trials and comparison of computer-aided detection and diagnosis modalities. 
Additionally, more widespread regulatory approval on government and payer levels 
is needed. There is still much room for clinical research following software 
development and more prospective studies evaluating the real-life application of these 
technologies in the endoscopy suite. Nonetheless, continued development of CADe, 
CAD and AI in colonoscopy offers patients the possibility of living longer and 
healthier lives.
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