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Abstract
Pancreatic cancer is a dismal disease with high incidence and poor survival rates. 
With the aim to improve overall survival of pancreatic cancer patients, new 
therapeutic approaches are urgently needed. Protein kinases are key regulatory 
players in basically all stages of development, maintaining physiologic functions 
but also being involved in pathogenic processes. c-Jun N-terminal kinases (JNK) 
and p38 kinases, representatives of the mitogen-activated protein kinases, as well 
as the casein kinase 1 (CK1) family of protein kinases are important mediators of 
adequate response to cellular stress following inflammatory and metabolic 
stressors, DNA damage, and others. In their physiologic roles, they are 
responsible for the regulation of cell cycle progression, cell proliferation and 
differentiation, and apoptosis. Dysregulation of the underlying pathways 
consequently has been identified in various cancer types, including pancreatic 
cancer. Pharmacological targeting of those pathways has been the field of interest 
for several years. While success in earlier studies was limited due to lacking 
specificity and off-target effects, more recent improvements in small molecule 
inhibitor design against stress-activated protein kinases and their use in 
combination therapies have shown promising in vitro results. Consequently, 
targeting of JNK, p38, and CK1 protein kinase family members may actually be of 
particular interest in the field of precision medicine in patients with highly 
deregulated kinase pathways related to these kinases. However, further studies 
are warranted, especially involving in vivo investigation and clinical trials, in 
order to advance inhibition of stress-activated kinases to the field of translational 
medicine.

Key Words: Pancreatic cancer; Stress-activated protein kinases; Mitogen-activated protein 
kinases; c-Jun N-terminal kinases; Casein kinase 1; Small molecule inhibitor
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Core Tip: Since pancreatic cancer patients are generally confronted with poor 
prognosis, optimized therapeutic strategies are urgently needed. To establish new 
treatment options, efforts in drug development have increasingly focused on targeting 
protein kinases. In the cellular response to various stress signals, c-Jun N-terminal 
kinases (JNK) and p38 kinases as well as members of the casein kinase 1 (CK1) family 
are of special interest. Concentrating on pancreatic carcinoma in this review, we 
summarize the key roles of JNK, p38, and CK1 and provide an overview of recent 
achievements in the development of small molecule kinase inhibitors against these 
kinases.
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INTRODUCTION
Pancreatic cancer is a severe disease, with overall 5-year survival rates less than 10% 
and only very little improvement over the last decades[1]. It is currently the fourth 
most common cause of cancer-related deaths, and it is expected by 2030 that pancreatic 
cancer will have surpassed colon and breast/prostate cancer to move up to second 
rank of cancer-related deaths[2]. Contributing to the immense challenge of treating 
pancreatic cancer, dysregulation of multiple signaling pathways can frequently be 
detected. With the genetic hallmark mutation of KRAS in over 90% of all pancreatic 
cancer patients, the high relevance of kinase-driven pathways is underlined[3].

So far, classic chemotherapeutic agents have only shown moderate success in 
prolonging overall survival of patients suffering from pancreatic ductal adenocar-
cinoma (PDAC). However, more and more personalized therapy concepts are 
becoming promising options, especially the use of small molecule inhibitors 
specifically targeting newly identified drug targets, such as deregulated protein 
kinases. Of special interest are kinases activated in cellular stress situations, like 
mitogen-activated protein kinases (MAPKs) and members of the casein kinase 1 (CK1) 
family, which phosphorylate signal integration molecules like p53 and β-catenin 
finally resulting in activation of processes leading to cell cycle arrest or apoptosis.

MAPKs
MAPKs are key players in transducing extracellular stimuli into intracellular signaling 
cascades and therefore represent interesting drug targets. Multiple isoforms have been 
identified, which can be clustered into six groups of MAPKs. The most prominent of 
those are the extracellular-regulated kinases 1 and 2 (ERK1/2), the c-Jun N-terminal 
kinases 1, 2, and 3 (JNK1/2/3), and the p38 kinases α, β, γ, and δ[4,5]. As a response to 
various stimuli such as growth factors, cytokines, and environmental stress, MAPK-
triggered phosphorylation of their target transcription factors (TFs) marks the 
endpoint of an intracellular kinase cascade. This cascade consists of ligands binding to 
their cell membrane receptors, recruitment of GTPase (e.g., RAS) to the plasma 
membrane, and activation of MAPK kinase kinases (MKKKs or MAPKKKs, e.g., RAF) 
as well as MAPK kinases (MKKs or MAPKKs, e.g., MEK1/2)[5-7]. ERK1/2 belong to 
the best-studied kinases among MAPKs. Their relevance for pancreatic cancer has 
been well documented, especially as ERKs exert their functions downstream of mutant 
KRAS[8,9]. JNK and p38 can be grouped together as stress-activated protein kinases 
(SAPKs), as their pathways are regularly activated by environmental stressors, like 
nutrient deprivation, inflammatory cytokines, or ultraviolet irradiation[5,10].

CK1
A remarkable association with tumorigenesis and tumor progression has also been 
demonstrated for the CK1 family of protein kinases. Being among the first kinases 
described in history, involvement of CK1 isoforms in several essential signal 
transduction pathways has been reported within the last decades. As a key cascade in 
developmental processes, the (canonical) Wnt/β-catenin signaling pathway can also be 
involved in promoting cell proliferation through activation of oncogenes like c-myc 
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and cyclin D1[11,12]. All human CK1 isoforms were identified to fulfill negative as 
well as positive regulatory functions in canonical Wnt signaling, thereby either acting 
as tumor suppressors or contributing to Wnt-induced oncogenic processes[13-15]. 
CK1δ and ε might furthermore promote canonical instead of non-canonical Wnt 
signaling, consequently resulting in reduced JNK-mediated Wnt signaling and 
apoptosis[16,17]. In addition, apoptosis mediated by Fas can also be down-regulated 
by CK1δ- and ε-mediated stabilization of Bid[18]. Apart from signaling associated with 
proliferation, differentiation, and apoptosis, CK1 is also involved in further 
mechanisms of the cellular stress response, including functions in immune response 
and inflammation, regulation of microtubule dynamic processes, autophagy, and 
DNA damage-related signal transduction[19-21]. Especially well documented is the 
regulatory function of CK1 isoforms in p53-mediated signal transduction with CK1δ 
even forming an autoregulatory feedback loop with p53[19].

Cancer itself already forms a stressful environment on the tumor cells, induced by 
hypoxia and nutrient deprivation as well as metabolic and replication stress. 
Additionally, cancer cells face genotoxic stress exerted by chemo- and radiotherapies. 
In this regard, pancreatic cancer is no exception since tumors of the pancreas are 
known for their dense stroma with impaired vasculature and the association with 
metabolic stressors, like diabetic conditions. This review aims to elucidate the role of 
the stress-activated kinases: JNK and p38 but also CK1 in the pathogenesis of 
pancreatic cancer and their potential as therapeutic targets.

SAPKS: JNK AND P38
The first description of JNK as a 54 kDa protein kinase activated upon peritoneal 
cycloheximide injection into rats dates back to 1990[22]. So far, three different JNK 
isoforms have been identified in the human genome, including JNK1 (MAPK8), JNK2 
(MAPK9), and JNK3 (MAPK10), whereas expression of JNK3 is mainly restricted to 
brain, heart, and testes[23]. Alternative splicing results in generation of at least 10 
different JNK isoforms with molecular weights ranging from 46 kDa to 55 kDa[24]. 
Activation of JNKs is dependent on phosphorylation of threonine and tyrosine 
residues by upstream kinases. For JNK1, phosphorylation of Thr180 and Tyr182 within its 
kinase subdomain VIII has been demonstrated to be essential[25]. In the activation 
process of JNK1, the upstream kinases MKK4 and MKK7 both fulfill non-redundant 
functions, with MKK4 preferably phosphorylating Tyr residues while MKK7 favors 
Thr residues. Phosphorylation of Thr180 is sufficient for JNK1 activation, however, dual 
phosphorylation by both kinases is required for full JNK activation[26,27]. Further 
upstream of the signaling cascade, a large variety of at least 14 MKKKs can activate 
MKK4 and MKK7[23,28].

Merging the influence of multiple upstream kinases into fewer effector kinases 
enables the cells to respond to a variety of stimuli, like growth factors and cytokines, 
reactive oxygen species, physical interactions with other cells and the extracellular 
matrix, as well as cellular stressors[29]. The variety of different stimuli requires 
multiple cell membrane receptors engaging into the JNK pathway. These include G-
protein coupled receptors, Wnt-receptors, transforming growth factor-β receptors, and 
tumor necrosis factor-α (TNF-α) receptors[30]. Signal transfer within the SAPK 
pathway is generally orchestrated by docking motifs for upstream kinases and 
downstream substrates, as well as scaffold proteins. Those scaffold proteins express 
docking sites for MKKKs, MKKs, and MAPKs and play an important role in the 
correct stimulus response through the kinase cascade[29,31].

Even more diverse than the upstream mediators are the possible JNK substrates. As 
all MAPKs, JNK is a proline-targeted serine/threonine kinase, thus preferably 
phosphorylating Ser-Pro as well as Thr-Pro motifs[4,32]. So far, the list of JNK 
substrates includes more than 100 targets, among them TFs like c-Jun, p53, c-myc, and 
β-catenin, microtubule-associated proteins, components of focal-adhesion-complex 
and cell-to-cell-adhesion, as well as apoptosis-regulating proteins like Bcl-2 and Bax
[30]. Figure 1 shows an overview of MAPK-related cellular functions.

The first p38 MAPK was discovered in 1994, and today four isoforms (p38α, β, γ, 
and δ, corresponding to MAPK14, 11, 12 and 13) are known[33,34]. While p38α is 
ubiquitously expressed, the other isoforms show differential tissue distribution, with 
p38β being mainly expressed in the brain, p38γ in skeletal muscle, and p38δ in 
endocrine glands[35]. Dual phosphorylation of Thr180 and Tyr182 in a Thr-Gly-Tyr motif 
are required for full p38 kinase activation[36]. MKK3 and MKK6 specifically activate 
p38, but while MKK6 can activate all isoforms, MKK3 is unable to phosphorylate p38β
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Figure 1 Signal integration mediated by stress-activated protein kinases. The stress-activated protein kinases (SAPKs) c-Jun N-terminal kinase (JNK) 
and p38 as well as the protein kinases of the casein kinase 1 (CK1) family are activated in response to endogenous and exogenous stress stimuli. Therefore, JNK 
and p38 are either activated directly or through upstream signaling cascades [mitogen-associated protein kinase kinase kinases (MKKKs), mitogen-associated protein 
kinase kinases (MKKs)] and subsequently exercise their functions through intracellular signal integrating effectors such as the transcription factors JNK, p53, c-myc, 
or β-catenin. In response to certain stress stimuli, the kinases of the CK1 family also take key functions in regulatory effects mediated via p53 or through various 
signal transduction pathways like the Wnt/β-catenin, Hedgehog (Hh), or Hippo pathway. Finally, cellular stress response including regulation of proliferation, 
differentiation, migration, cell cycle progression, survival, and apoptosis is initiated by modulation of gene expression. MAP: Microtubule-associated protein; MMP: 
matrix metalloproteinase; MT: Microtubule; ROS: Reactive oxygen species.

[37,38]. MKK4 can also contribute to p38 activation[39,40]. Multiple MKKKs contribute 
to the activation of MKK3 and MKK6, among which some are shared with the JNK 
pathway. By engaging specific MKKKs in response to defined stimuli, cells are 
enabled to elicit the correct stress response[35]. In T cells, a kinase cascade-
independent pathway of p38α activation has also been described[41]. Similar to JNK, 
there are many p38-specific substrates, ranging from TFs to other protein kinases and 
apoptosis-regulating proteins[35].

Relevant SAPK-related pathways in cancer
The involvement of JNK and p38 in the pathogenesis of cancer has been studied 
extensively. Their role has been debated controversially since both can exhibit pro- as 
well as anti-tumorigenic functions[42,43]. For both kinases, the cellular effects 
provoked by JNK and p38 depend on the type, strength, and duration of the stimulus
[44,45]. However, the influence of SAPKs on cancer development and progression is 
apparent as major cancer characteristics like cell proliferation, migration, and 
apoptosis are influenced by p38 and JNK. Pathways associated with these character-
istics will now be discussed in general and specifically in pancreatic cancer.

A primary example of differential regulation in SAPK-related pathways is the 
interaction of JNKs and c-Jun. In non-stimulated cells, JNK2 activity leads to 
degradation of c-Jun, while after stimulation, JNK1 phosphorylates and stabilizes c-
Jun. Consequently, knockdown of JNK1 decreased fibroblast proliferation through 
reduced activity of Activator protein-1 (AP-1), a TF of which phospho-c-Jun is a vital 
component[46,47]. Phosphorylation of c-Jun has also been identified as a critical step in 
RAS-induced tumorigenesis. Oncogenic RAS uses the same phosphorylation sites as 
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JNK on c-Jun and promotes transformation of rat embryonic fibroblasts, while c-Junnull 
cells are resistant to RAS-induced transformation[48,49]. However, the role of JNK in 
this process is under dispute. In TP53-/- mouse embryonic fibroblasts, dual knockout of 
JNK1 and 2 reduced KRASG12D-induced transformation and suppressed in vivo growth. 
Furthermore, KRASG12D-induced lung tumor formation in mice was similarly reduced 
by JNK knockout[50]. This effect was in part attributed to JNK2, as only JNK2- but not 
JNK1-deprived mouse embryonic fibroblasts resisted RAS-induced transformation, 
although increased levels of AP-1 and phospho-c-Jun were observed[51]. However, 
not all transforming effects of RAS seem to be controlled by JNK, and in contrast to the 
before-mentioned studies, loss of JNK in RAS mutant cells may also contribute to 
enhanced tumorigenesis through apoptosis regulation[52]. A possible explanation for 
these findings is JNK-controlled cell cycle progression, as fibroblasts with knockdown 
of JNK2 show faster G1/S progression, while their JNK1-deprived counterparts show 
an opposing phenotype[46].

Besides proliferation, pro- and anti-apoptotic signals are also mediated by JNK in 
dependency of the stimulus. JNK regulates the expression of Bcl-2 family members 
and thereby influences apoptosis mediated via the mitochondrial pathway[44]. In 
TNF-mediated apoptosis, at early time-points, JNK activation triggers pro-survival 
pathways, while functioning JNK signaling is required for TNF-mediated apoptosis 
under persistent stimulation[53]. In murine cancer models, JNK1 was shown to 
promote chemically induced liver cancer, a finding that was also confirmed in human 
hepatocellular carcinoma[54,55]. On the other hand, knockdown of JNK1 rendered 
mice more susceptible to chemically induced skin tumors, while knockdown of JNK2 
exerted an opposite effect[56].

The influence of p38 on oncogenesis is generally thought to be tumor suppressive, 
but protumorigenic functions like promotion of invasiveness has also been reported
[44]. p38α controls proliferation through regulation of cell cycle progression at the 
G1/S and G2/M phases[57]. p38 can inhibit G1/S progression, e.g., through downreg-
ulation of cyclin D1[40,58] or by phosphorylation of p53 and retinoblastoma protein
[59-61]. Alternatively, p38 can also promote cell cycle progression through the 
induction of cyclin A or interference with the retinoblastoma protein pathway[62,63]. 
p38-mediated phosphorylation of p53 also activates the G2/M checkpoint in response 
to DNA double-strand breaks. Ironically, this also offers a survival benefit for tumor 
cells and increases therapy resistance, as DNA damaging drugs become less effective 
with functional p38 signaling[64-66]. Other tumor-promoting roles include formation 
of a pro-invasive phenotype through induction of matrix metalloproteinases and 
tumor cell dormancy, enabling metastatic relapse[42].

p38-related implication for involvement of the SAPK pathway in pancreatic cancer
The influence of the SAPK pathway on pancreatic cancer has been studied on patient 
samples as well as genetically engineered cell lines and mouse models, while patient 
cohorts are especially helpful to study population risk factors. Handra-Luca et al[67] 
offered an immunohistochemical analysis of the MAPK pathway in 99 surgically 
resected pancreatic cancer specimens. While high immunoreactivity for ERK1/2 was 
consistently associated with a worse prognosis, high expression levels of p38 could be 
associated with shorter recurrence-free survival in patients without adjuvant 
treatment. Strong staining for MKK4 was associated with increased proliferation[67]. 
Contrarily hereto, phosphorylated p38 with activated downstream TFs was identified 
as a favorable biomarker after surgical resection and associated with reduced number 
of lymph node metastases. Labeling of phospho-p38 showed no changes through the 
different cancer stages. Furthermore, pharmacologically inhibiting p38 in vitro and in 
vivo resulted in enhanced JNK signaling and enhanced cell growth[68]. Phospho-p38 
was reported to increase during tumor progression, which is consistent with reports 
claiming that p38 has tumor suppressive functions during early carcinogenesis but 
switches towards a tumor promoting phenotype later on[69]. In our own previous 
work, we were able to dissect the isoform-specific functions of p38 in pancreatic cancer 
by genetically targeting p38 isoforms α and β. We confirmed an in vivo tumor 
suppressive phenotype of p38α but also showed a pro-invasive function. Additionally, 
we showed a tumor suppressive role of p38β, opposing p38α[70]. Interestingly, 
oncogenic KRAS induced activation of p38 and phenotypically increased invasion[71,
72].

JNK-related implication for involvement of the SAPK pathway in pancreatic cancer
Increased phospho-JNK staining was observed in pancreatic cancer tissues compared 
to normal controls[73] and increased phospho-JNK1 staining was determined as an 
independent predictor of peritoneal spread[74]. Furthermore, serum auto-antibodies 
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against JNK2 were identified as potential biomarker in pancreatic cancer patients[75]. 
By isoform-specific knockdown of JNK1 and 2 in MiaPaCa-2 and Panc-1 cells, a tumor 
promoting role could be attributed to JNK1, while JNK2 seems to exert suppressive 
functions in pancreatic cancer[76]. Upstream kinases of JNK have also been studied in 
pancreatic cancer, but their distinct role in tumor formation and progression remains 
elusive. MEKK1, as a representative of JNK-activating MKKKs, was shown to 
contribute to pancreatic cancer cell survival. However, unlike in other cancer cell lines, 
JNK signaling was not affected by knockout of MEKK1 in the PDAC cell line Panc-1
[77]. MKK4, a direct upstream kinase of JNK, was expressed in the majority of resected 
specimens, while expression levels were reduced in matched metastatic samples. As 
further hints for a potential tumor suppressive role, patients with loss of MKK4 were 
associated with shorter survival, and pancreatic cancer cell lines frequently showed 
loss-of-heterozygosity for MKK4[78,79]. However, ectopic expression of MKK4 
stimulated proliferation and migration of ASPC-1 and BxPC3 cells[80].

Both kinases also act in pancreatic cancer outside neoplastic cells. Ptf1aCre/+; KrasG12D/+; 
JNK1−/− mice showed significantly smaller tumors than their JNK1+/- counterparts. 
Tumors induced by transplantation of murine PDAC cells were larger in wild-type 
mice than in JNK1-/- mice lacking JNK signaling in stromal and immune cells. 
Interestingly, mice heterozygous for JNK1 showed less infiltrating CD8+ T cells, 
possibly due to JNK-mediated downregulation of chemokine secretion of tumor-
associated fibroblasts[81]. On the other hand, alternative activation of p38 through the 
T cell receptor in CD4+ T cells resulted in more aggressive disease through secretion of 
pro-inflammatory cytokines like interleukin-17 and TNF-α[82].

SAPK inhibitors and their role for the treatment of pancreatic cancer
Due to the involvement of SAPKs within a variety of cellular processes and diseases, 
multiple researchers and the pharmaceutical industry have focused on identifying 
pharmacological inhibitors.

Generally, JNK small molecule inhibitors can be grouped into adenosine tripho-
sphate (ATP)-competitive and non-ATP-competitive inhibitors. ATP-competitive 
inhibitors represent the majority of compounds, and most of them act as pan-JNK 
inhibitors, as the ATP-binding pocket is highly conserved among all three isoforms
[83]. Non-ATP-competitive inhibitors target the interaction of JNK with upstream and 
downstream targets as well as scaffolding proteins. p38 inhibitors can also be grouped 
by their way of action. Similar to JNK inhibitors, many p38 inhibitors act as ATP-
competitive inhibitors, either binding to the active (type 1 inhibitors) or inactive 
conformation of p38 (type 2 inhibitors)[84]. So far, p38 as well as JNK have been 
targeted in therapeutic intention for multiple pathologic conditions, like neurodegen-
erative diseases (e.g., Alzheimer’s and Parkinson’s disease) and inflammatory diseases 
(e.g., rheumatoid arthritis and inflammatory bowel disease)[85-87]. Consequently, 
pharmacological inhibition of both kinases has also been tested in order to explore 
new therapeutic strategies for the treatment of neoplastic diseases. Table 1 summarizes 
selective SAPK inhibitors studied in the context of cancer.

Strikingly, most studies report an antitumor effect of pharmacological SAPK 
inhibition. However, it needs to be noted that all inhibitors were pan-JNK inhibitors 
and p38α or pan-p38 inhibitors, respectively. As mentioned above, we previously 
reported on marked isoform-specific differences. By using genetic pathway disruption, 
isoform-specific tumor suppressive functions of JNK2 and p38β were detected and 
consequently, targeting of these isoforms might increase the risk of failure in clinical 
studies[76]. This effect could not be observed in our study, as pharmacological 
inhibition of JNK also reduced cell growth in various cell lines. Up to now, clinical 
studies using p38 inhibitors failed or only showed moderate success. Only one JNK 
inhibitor (CC-401) has been clinically evaluated for the treatment of cancer 
(NCT00126893), but this study has been discontinued[88,89].

In an early study, Ding et al[90] showed that the p38 inhibitor SB203580 [half 
maximal inhibitory concentration (IC50) = 34 nmol/L] increases the number of Panc-1 
cells in S phase as well as their proliferation. Decreased p38 activity was confirmed by 
detection of reduced levels of phospho-activating transcription factor. However, the 
same study also revealed increased phosphorylation levels of ERK1/2 and JNK[90]. 
Increased activation of ERK1/2, possibly as a compensation mechanism or off-target 
effect under SB203580 treatment, has also been shown in other reports[91,92]. 
Therefore, it remains unclear if the observed increased proliferation is a consequence 
of the loss of p38-dependent tumor suppressive actions or rather of increased ERK1/2 
signaling. More recently, off-target effects of SB203580 and the closely related 
compound SB202190 were also described by Shanware and colleagues[93], reporting 
on cellular effects interestingly caused by off-target inhibition of CK1. Similar to the 



Traub B et al. Stress-activated kinases as therapeutic targets

WJG https://www.wjgnet.com 4969 August 14, 2021 Volume 27 Issue 30

Table 1 Small molecule inhibitors of stress-activated protein kinases tested for treatment effects on pancreatic carcinoma cells in vitro 
and in vivo

Inhibitor IC50 (µmol/L) Observed effects in cell culture and in vivo data Ref.
JNK inhibitor II(SP600125) 0.040 (JNK1); 0.040 

(JNK2); 0.090 (JNK3)
Antitumor effects in cancer cell lines of thyroid, stomach, lung, colon, pancreas, and brain [104,

185-189]

JNK inhibitor XVI(JNK-
IN-8)

0.005 (JNK1); 0.019 
(JNK2); 0.980 (JNK3)

Covalent binding to JNK inactivates kinase function; Sensitizes pancreatic cancer cells and 
triple negative breast cancer cells to 5-FU/FOLFOX and triple negative breast cancer cells 
to lapatinib treatment

[190-
192]

Bentamapimod(AS602801) 0.080 (JNK1); 0.090 
(JNK2); 0.230 (JNK3)

Cytotoxic effects observed on cancer stem cells derived from pancreatic cancer, non-small 
cell lung cancer, ovarian cancer, and glioblastoma

[103,
193]

SB203580 0.034 (p38) Synergistic effects observed in combination with cisplatin in vitro and in vivo; Inhibition of 
gemcitabine-induced apoptosis in combination therapy (tested on PK-1 and PCI-43 PDAC 
cell lines); IC50(p38) = 0.08-0.20 µmol/L in vivo)

[194-
198]

SB202190 0.050 (p38α); 0.100 
(p38β2); 0.600 (CK1)

Inhibition of gemcitabine-induced apoptosis in combination therapy (tested on PK-1 and 
PCI-43 PDAC cell lines); Inhibits resistance of colon cancer cell lines towards irinotecan

[93,197,
199,200]

SB239063 0.044 (p38α and β) Dose-dependent growth inhibition observed in three pancreatic cancer cell lines [68,201]

CK1: Casein kinase 1; EC50: Half maximal effective concentration; 5-FU: 5-fluorouracil; IC50: Half maximal inhibitory concentration; JNK1/2/3: c-Jun N-
terminal kinases 1, 2, and 3.

above mentioned studies, Zhong et al[68] reported on the growth enhancing effects not 
only for SB203580 but also for SB202190 and SB239063 on three different pancreatic 
cancer cell lines. Interestingly, while environmental stressors (hypoxia and reduced 
serum levels) led to reduced proliferation in PDAC cell lines, p38 inhibition abolished 
these effects. Again, increased phospho-JNK levels after p38 inhibition were reported, 
and JNK inhibition through SP600125 abolished the effects of p38 inhibition in vitro. 
The pan-JNK inhibitor SP600125 (IC50(JNK1) = 40 nmol/L; IC50(JNK2) = 40 nmol/L; IC50(JNK3) = 
90 nmol/L) also reduced the in vivo growth of cell lines with high phospho-p38 Levels
[68]. The crosstalk of p38 and JNK has been described in various contexts previously. 
Although there is evidence for a synergistic role of both SAPKs in activation of 
downstream targets[94], an opposing function of both has also been well documented
[95-97]. Possible regulation mechanisms of JNK through p38 include upstream MKKKs 
(MLK3, TAK1) as well as nuclear factor-κB[44]. Consequently, targeting single MAPKs 
is highly challenging. An alternative approach to using inhibitors could be selectively 
activating pathways of interest. The small molecule triptonide was shown to 
selectively activate the MEKK4-MKK4-p38 pathway without significantly altering 
phosphorylation levels of JNK and ERK1/2. This resulted in dose-dependent growth 
reduction of six pancreatic cancer cell lines as well as in vivo xenografts by inducing 
G2/M arrest and reduced expression of cyclin-dependent kinase 3[98].

In contrast to those studies showing an overall growth restraining effect of p38 in 
pancreatic cancer, Yang et al[99] performed a screen of p38α expression in various 
cancer samples of The Cancer Genome Atlas database and identified an overex-
pression of p38α in PDAC samples. The same study also reported enhanced phospho-
p38 labeling in PDAC tissues compared to adjacent normal tissue and mostly 
attributed phospho-p38 labeling to cancer cells. When treating Pan02 cells with 
SB203580 or the p38α- and β-specific inhibitor LY2228820, Yang et al[99] reported 
growth-restricting effects. However, it needs to be noted that the used inhibitor 
concentrations were relatively high and potential off-target effects cannot be excluded. 
Finally, in order to address the issue of lacking sensitivity, possible binding pockets in 
p38, enabling the design of more selective inhibitor compounds in future, were 
identified by in silico modeling[99].

Previous studies indirectly suggested a growth-promoting effect of JNKs on 
pancreatic cancer. Takahashi et al[73] observed growth inhibition in vitro and in vivo 
after treatment with SP600125. This was associated with G1 arrest and downregulation 
of cyclin D1 in vitro. In genetically-engineered mouse models (Ptf1acre/+, LSL-KrasG12D/+, 
and Tgfbr2flox/flox) SP600125 reduced neoangiogenesis and expression levels of CD44 in 
PDAC cells[73]. Together with CD133, CD44 is considered as a potential marker for 
cancer stem cells (CSCs) or CSC-like cells (CSCLCs)[100,101]. Increased levels of 
phospho-JNK was also shown in CSCLCs of pancreatic cancer and other human 
malignancies[102]. Inhibition of JNK by the pan-JNK inhibitors SP600125 or AS602801 
as well as genetic targeting of JNK1 and 2 via small interfering RNA-mediated 
knockdown reduced levels of CD133+ cells in an isolated subpopulation of pancreatic 
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cancer-derived CSCLCs and abolished their self-renewal capacity in vitro and in vivo
[102,103]. Besides growth suppression and interference with CSCs, induction of 
cellular differentiation can be another mechanism of JNK inhibition-mediated tumor 
suppression[104].

In clinical practice, SAPK inhibition will rather be used for combination therapy 
approaches instead of single-agent therapy. Therefore, the interference of SAPK 
inhibitors with standard of care chemotherapeutics is highly relevant. In addition to 
single treatment of CSCLCs, the group of Suzuki et al[105] also investigated the effects 
of JNK inhibition in combination with gemcitabine and 5-fluorouracil (5-FU). While 
CSCLCs expectedly were more resistant to these agents, pretreatment with SP600125 
had a synergistic effect in combination with gemcitabine and 5-FU in a reactive oxygen 
species-based way of action[105]. The observed synergistic effect can furthermore be 
explained by JNK-mediated effects on multidrug resistance. Multidrug resistance is 
not only a hallmark of CSCs but of cancer cells in general, and multidrug transporters 
like P-glycoprotein reduce intracellular drug levels[106]. In this context, high JNK 
levels were shown to decrease P-glycoprotein levels in pancreatic and gastric cancer, 
thereby increasing intracellular drug concentrations as well as drug sensitivity[107].

The interplay of the p38 pathway and gemcitabine treatment has been well studied 
in pancreatic cancer cells. Apoptosis mediated through gemcitabine was consistently 
associated with p38 activation as well as caspase-dependent cleavage of poly (ADP-
ribose) polymerase and heat shock protein 27 phosphorylation. Inhibition of p38 by 
SB203580 reversed these effects. Similarly, inhibition of MAPK-activated protein 
kinase 2, a downstream target of p38, abolished gemcitabine-mediated apoptosis in 
pancreatic cancer. However, combination of p38 inhibitors with mitomycin C showed 
synergistic effects[108].

PROTEIN KINASE CK1 FAMILY
In 1954 for the first time, an enzyme was isolated from liver tissue, which was able to 
phosphorylate the milk protein casein[109]. Fifteen years later, two distinct protein 
kinases with the ability to phosphorylate casein (at least in vitro) were described and 
termed casein kinase 1 (CK1) and casein kinase 2 (CK2), meanwhile renamed protein 
kinases CK1 and CK2[110]. Despite their common nomenclature and the ability to 
phosphorylate casein, protein kinases CK1 and CK2 are highly different with respect 
to their classification and cellular functions. While CK2 belongs to the CMGC 
[containing cyclin-dependent kinase, MAPK, glycogen synthase kinase 3 (GSK3), and 
cdc2-like kinase families] group of the human kinome, CK1 forms an independent 
family of protein kinases[111].

In the human genome, six CK1 isoforms are encoded (α, γ1, γ2, γ3, δ, and ε), and 
several splice variants can originate from post-transcriptional processing. While all 
CK1 isoforms are highly conserved within the kinase domain, the sequences of the N- 
and C-terminal noncatalytic domains can be quite variable[20,112]. Although the 
protein kinases of the CK1 family are generally considered to be constitutively active, 
several regulatory mechanisms have been described. Expression and/or activity levels 
of CK1 isoforms can be enhanced by insulin or cellular stress executed by viral 
transformation, topoisomerase inhibitor treatment, or γ-irradiation. Regulation of 
enzymatic activity is also possible on the protein level, e.g., by modulation of 
subcellular localization, interaction with other proteins, or (auto-)phosphorylation in 
particular targeting the C-terminal regulatory domain but also the kinase domain[20,
112].

Most CK1 isoforms are localized in the cytosol. Only the CK1αL variant possessing a 
second nuclear localization signal in the L-exon can be localized to the nucleus[113]. 
Due to C-terminal palmitoylation, CK1γ can be associated with the plasma membrane
[114-116]. By modulation of subcellular localization, CK1 isoforms can be brought in 
proximity with different substrate pools. Substrate recognition motifs for CK1 can 
generally be found on most cellular proteins and, to date, more than 150 substrates 
being phosphorylated by CK1 isoforms at least in vitro have been reported[20]. 
Thereby, CK1 shows strong preferences for acidic or phospho-primed substrates 
presenting the canonical consensus sequence (phospho-Ser/phospho-Thr-X-X-(X)-
Ser/Thr). In addition, several alternative noncanonical motifs targeted by CK1 have 
been described[117,118].

The broad range of substrates phosphorylated by CK1 gives a hint of the numerous 
cellular processes potentially regulated by CK1 family members. These processes 
involve cell proliferation and differentiation, DNA processing and repair, as well as 
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cytoskeleton maintenance just to name few of them. In particular, essential signal 
transduction pathways involving CK1-mediated regulation include Wnt and 
Hedgehog (Hh) signaling as well as regulation of circadian rhythm[20]. Consequently, 
deregulation or dysfunction of CK1 isoforms involved in regulation of these signaling 
pathways can result in deregulated signal transduction and subsequent development 
of pathological states.

Relevant CK1-related pathways in cancer
CK1 isoforms have been implicated in several signaling pathways such as the 
canonical and noncanonical Wnt as well as Hh and Hippo signaling pathways, which 
play an important role in tissue development, growth, and homeostasis[119-122]. 
Aberrant signaling as well as mutations of key regulator proteins of these pathways 
can lead to various cancer entities[123-127]. The connection between CK1 and cancer 
has been strengthened through the discovery of their targets such as β-catenin, p53, 
and mouse double minute homologue 2 and 4, which hold important roles as key 
regulators in signaling pathways and are generally thought to be involved in cancer 
development (Figure 1)[128,129]. Considering the reported CK1-mediated phos-
phorylation of numerous substrates essential for signal transduction, it is not 
surprising that CK1-specific mutations resulting in altered expression levels or enzyme 
activity are likely to be accompanied by dramatic changes affecting CK1-regulated 
signal transduction pathways.

As one of the best characterized CK1-regulated processes, the Wnt signaling 
pathway has an important regulatory role in cell proliferation, differentiation, and cell 
polarity[120,130-133]. Altered expression levels of key regulators within the pathway 
are associated to oncogenesis, both through increased expression of positive regulators 
and decreased expression of negative regulators[134-137]. Several studies showed that 
all CK1 isoforms are implicated in the Wnt signaling pathway and either exert positive 
or negative regulatory functions, respectively[14]. Acting as positive regulators of the 
canonical Wnt signaling pathway, CK1γ, δ, and ε were found to initiate the 
transcription of proto-oncogenes like cyclin D1 and c-myc resulting in increased cell 
proliferation and cell survival[13,138,139]. For instance, mutations within the C-
terminal region of CK1δ were shown to alter its physiological role, increase the 
oncogenic potential, and promote colonic adenoma development[140]. Additionally, 
CK1 isoforms exhibit oncogenic characteristics associated to the inhibition of apoptotic 
processes. This assumption is supported by the findings that CK1δ and CK1ε 
contribute to the switching mechanism between the canonical and the non-canonical 
Wnt/Rac1/JNK pathway, where they may favor the canonical Wnt pathway to the 
detriment of JNK-mediated apoptosis[17,141]. In many Wnt-driven cancers, CK1α 
protein expression is suppressed, leading to an activation of proliferative processes via 
the Wnt pathway. In addition, the absence of CK1α leads to a critical involvement of 
p53 in controlling invasiveness, which was shown in a model for colon cancer[15].

The importance of CK1 isoforms within various signaling pathways is strengthened 
by reports linking CK1 to phosphorylation of components in Hh signaling pathway. 
Although the activity of the Hh signaling pathway is reduced in adulthood, it is 
critical for embryonic development, organogenesis, and maintenance of healthy adult 
cells[119]. In the adult organism, Hh signaling contributes to the regulation of 
epithelial maintenance and tissue regeneration; consequently mutations and dysregu-
lation of components of this signaling pathway promote tumorigenesis and cancer 
development[142-145]. As seen in Wnt signaling, CK1 isoforms appear to have 
contrasting effects on Hh signaling. Acting as a negative regulator, CK1 promotes 
proteolysis of GLI TF and prevents target gene transcription[146-148]. In order to fulfill 
its positive function, CK1α and G-protein coupled receptor kinase 2 phosphorylate the 
positive Hh regulator Smoothened homologue precursor, thereby inducing its active 
conformation[149].

The major functions of the Hippo pathway have been defined to correct organ 
maturation through restriction of organ size by regulating cell proliferation and 
apoptosis[150]. As such, dysregulated Hippo signaling can trigger tumorigenesis and 
cancer. CK1 isoforms have been proposed to regulate Hippo signaling through 
phosphorylation of a phosphodegron signal in Yes-associated protein after receiving 
priming phosphorylation by large tumor suppressors 1 and 2. As a result, the phospho
-degron signal mediates recruitment of βTrCP ubiquitin ligase causing Yes-associated 
protein degradation and inhibition of cell growth and differentiation[150]. 
Additionally, a more recent publication proposed an interaction between the Wnt and 
the Hippo pathways mediated through CK1ε. In this context, the Hippo upstream 
kinase MST1 inhibits the Wnt signaling pathway by directly binding CK1ε and thereby 
suppressing phosphorylation of Disheveled[151].
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Implication for CK1 involvement in pancreatic cancer
In a recent study analyzing messenger RNA-based gene expression data of the Interna-
tional Cancer Genome Consortium Pancreatic Cancer Australia cohort, high 
expression levels of CK1δ detected in patients with pancreatic cancer were correlated 
with poor survival. Increased expression of CK1δ could be found in patients with 
metastatic pancreatic carcinoma, and CK1δ expression was furthermore strongly 
correlated with the tumor grade[152]. This observation is in line with previous studies 
reporting upregulation of CK1 isoforms in PDAC in general[153,154] and describing 
increased expression of CK1δ and CK1ε in a patient cohort with higher-graded PDAC
[155]. Cell line-specific elevated expression levels of CK1δ and/or CK1ε were also 
detected in various tumor cell lines[152,155]. Independent of the detected protein 
levels, CK1δ- and CK1ε-specific kinase activities in extracts obtained from various 
pancreatic cancer cell lines (MiaPaCa-2, BxPC3, PancTu-1, and Colo357) significantly 
differed from each other by up to six orders of magnitude[156].

In general, due to the involvement of CK1 isoforms in various pathways related to 
tumorigenesis, altered expression and/or activity levels of CK1 isoforms can be 
associated with increased oncogenic potential. Using the breast cancer cell line MCF7, 
a regulatory function of CK1ε has been identified in the Akt pathway[157]. This is of 
particular interest because Akt is frequently upregulated in PDAC[158,159]. In detail, 
CK1ε is able to inhibit protein phosphatase 2B, consequently resulting in increased Akt 
phosphorylation levels and enhanced Akt kinase activity. Inhibition of CK1ε in MCF7 
cells by the small molecule inhibitor IC261 has been demonstrated to reduce Akt 
phosphorylation as well as Akt-mediated phosphorylation of GSK3β[157]. Quite 
similar findings could be made using PDAC cells. Also in this case, phosphorylation of 
Akt was reduced in response to treatment with IC261[160]. However, these results 
were only based on observations made in preliminary experiments, and effects were 
obtained by using extremely high concentrations of the rather unspecific early-stage 
inhibitor IC261.

Apart from altered expression and/or activity levels, mutations in the coding 
sequence for CK1 isoforms can also be associated with increased oncogenic functions 
of the resulting CK1 mutant proteins. Several mutations in CSNK1D, the gene coding 
for human protein kinase CK1δ, identified in different types of cancer (e.g., colorectal 
carcinoma, lung squamous cell carcinoma, bladder urothelial carcinoma, and 
pancreatic carcinoma) were analyzed for their enzyme kinetic parameters and their 
sensitivity towards the treatment with several CK1-specific small molecule inhibitors. 
Among the tested mutants, hyperactive (e.g., R127L and R127Q) as well as nearly 
inactive (e.g., E247K and L252P) variants could be characterized. Especially, the 
hyperactive CK1δ mutant R127Q showed enhanced sensitivity towards the treatment 
with various CK1-specific inhibitors. The two tested CK1δ mutants exclusively 
detected in PDAC (Q399* and H414Y) only showed slightly reduced kinase activity 
when compared to wild-type CK1δ[161]. The online analysis tool cBioPortal for Cancer 
Genomics lists even more mutations detected in PDAC and affecting CK1 isoforms, 
among them frameshift deletions as well as nonsense and missense mutations[162-
165]. However, these mutations have so far not been investigated for their oncogenic 
potential.

Unfortunately, no detailed information on the role of CK1 isoforms in formation of 
metastasis from primary tumors located in the pancreas has been available so far. In 
general, the zinc-finger TF Snail is phosphorylated by CK1ε and GSK3β in a 
hierarchical manner. Snail can promote epithelial-mesenchymal transition by 
repressing expression of E-cadherin but is degraded by the proteasome upon 
phosphorylation by CK1ε and GSK3β. Pharmacological inhibition (using the inhibitor 
IC261) or RNA interference-mediated downregulation of CK1δ inhibits phospho-
rylation of Snail and promotes cell migration[166]. In addition, reduced proliferation 
and invasion could be linked with CK1ε-mediated inhibition of Wnt/β-catenin 
signaling and downregulation of Wnt3a, β-catenin, proliferating cell nuclear antigen, 
and matrix metalloproteinase 9 in colorectal cancer cells[167].

Inhibitors of CK1 and their role for the treatment of pancreatic cancer
Results obtained from numerous studies conducted within the last 10-15 years charac-
terized the protein kinases of the CK1 family as well-established drug targets. While 
early-stage small molecule inhibitors (e.g., IC261[168]) only demonstrated low target 
selectivity, several recent-stage CK1-specific inhibitors with enhanced selectivity and 
improved potency in the nanomolar range are available to date (Table 2)[20,112,169]. 
So far, none of these inhibitors advanced to the stage of clinical trials, and the use of 
these compounds was limited to biochemical and cell culture-based testing or animal 



Traub B et al. Stress-activated kinases as therapeutic targets

WJG https://www.wjgnet.com 4973 August 14, 2021 Volume 27 Issue 30

Table 2 Casein kinase 1-specific small molecule inhibitors tested for treatment effects on pancreatic carcinoma cells in vitro and in vivo

Inhibitor IC50 CK1 (µmol/L) Observed effects in cell culture and in vivo data Ref.
IC261 1.000 ± 0.30 (CK1δ) Reduced growth of ASPC-1, BxPC3, Capan-1, Colo357, MiaPaCa-2, Panc-1, Panc89, and PancTu-1 at 1.25 

µmol/L concentration of IC261; Subcutaneous xenograft model using PancTu-2: reduced tumor size with 
IC261 or gemcitabine (no synergism with gemcitabine), downregulation of anti-apoptotic 
genes/upregulation of cell cycle- and cell death-associated regulators; Notable off target effects (affecting the 
cytoskeleton and ion channels)

[155,
168,
182-
184,
202]

compound 
11b

0.004 ± 0.001 
(CK1δ); 0.025 ± 
0.004 (CK1ε); 0.010 
(p38α)

Cytotoxic effects observed on Colo357 (EC50 = 3.5 ± 0.3 µmol/L) and Panc89 (1.5 ± 0.4 µmol/L) [174]

compound 
3c

1.600 (CK1δ/ε) In a panel of cell lines only effective against Panc-1 (EC50 = 9.3 ± 0.0 µmol/L); Cytotoxic effects observed on 
A549 (lung carcinoma) and Hek293 (normal cells) significantly higher EC50 values

[175]

compound 
2

0.070 ± 0.01 
(CK1δkd); 0.520 ± 
0.05 (CK1ε)

Cytotoxic effects observed on BxPC3 (EC50 = 0.11 ± 0.01 µmol/L), Colo357 (0.13 ± 0.02 µmol/L), MiaPaCa 
(0.26 ± 0.02 µmol/L), PancTu-1 (0.70 ± 0.02 µmol/L), and Panc-1 (0.35 ± 0.08 µmol/L); Cell line-specific effects 
observed in screening against a panel of 82 tumor cell lines

[178]

IWP-4 1.020 ± 0.13 
(CK1δ); 7.070 ± 
2.01 (CK1ε)

Cytotoxic effects observed on A818-6 (EC50 = 0.93 ± 0.07 µmol/L), MiaPaCa-2 (0.23 ± 0.01 µmol/L), Panc-1 
(0.23 ± 0.02 µmol/L), Panc89 (0.58 ± 0.12 µmol/L), and Capan (0.23 ± 0.01 µmol/L); Inhibition of Wnt 
signaling (Wnt3A overexpression, autocrine/paracrine) with IC50 = 0.71 ± 0.38 µmol/L; Inhibition of Wnt 
signaling (Wnt3A-conditioned medium, autocrine/paracrine) with EC50 = 1.47 ± 0.55 µmol/L

SR-3029 0.044 (CK1δ); 0.260 
(CK1ε)

Cytotoxic effects observed on Panc-1 (EC50 = 0.023 µmol/L), MiaPaCa2 (0.370 µmol/L), and BxPC3 (0.131 
µmol/L); Mouse pharmacokinetic studies with promising results for animal model use of SR-3029; 
Orthotopic xenograft model using Panc-1, reduced tumor size using SR-3029 and/or gemcitabine (synergism 
with gemcitabine due to upregulation of dCK)

[152,
180]

CK1: Casein kinase 1; EC50: Half maximal effective concentration; IC50: Half maximal inhibitory concentration.

models.
Quite recently, we characterized optimized 4,5-diarylimidazoles as highly effective 

ATP-competitive inhibitors of CK1δ. Substituted isoxazoles were originally designed 
as inhibitors of p38α MAPK, but they share the same pharmacophore moiety that is 
necessary to inhibit CK1δ[93,170-172]. Substituting the isoxazole scaffold with an 
imidazole scaffold resulted in the generation of highly potent dual-specific inhibitors 
of p38α MAPK and CK1δ[173]. By further optimizing these imidazole-based 
compounds, CK1 isoform-specific inhibitors with IC50 values in the low nanomolar 
range like compounds 11b [IC50(CK1δ) = 4 nmol/L], 12a (19 nmol/L), and 16b (8 nmol/L) 
could be developed, which represent the most potent CK1δ-specific inhibitors 
described so far. Because IC50 values determined for the highly related isoform CK1ε 
are increased by six to 12 orders of magnitude (with 25, 227, and 81 nmol/L for 11b, 
12a, and 16b, respectively), these compounds can also be considered to be selective for 
CK1δ. Compound 11b even demonstrated superior selectivity towards CK1δ among a 
panel of more than 321 protein kinases. However, full selectivity with respect to side-
effects on p38α MAPK could still not be achieved for this set of compounds, but IC50 

values determined for p38α are three-fold higher compared to CK1δ. Finally, 11b 
demonstrated significant effects on pancreatic cancer cell lines, with half maximal 
effective concentration (EC50) values in the low micromolar range [EC50(Colo357) = 3.5 
µmol/L, EC50(Panc89) = 1.5 µmol/L)[174].

Apart from isoxazole- and imidazole-derived molecules, the quinazoline-based 
inhibitors (N-(1H-pyrazol-3-yl)quinazolin-4-amines) 3c and 3d have been shown to 
inhibit CK1δ and ε (IC50(CK1δ/ε) = 1.6 and 1.4 µmol/L, respectively). In a panel of human 
cancer cell lines, compound 3c even demonstrated selective cytotoxicity against the 
PDAC cell line Panc-1, with an EC50 value of 9.3 µmol/L [for all others no EC50 value 
could be determined (> 100 µmol/L), except for A549 with 29.7 and HEK293 with 71.1 
µmol/L]. Compound 3d also demonstrated effects on Panc-1 cells but only with an 
extremely high EC50 value of 69.4 µmol/L. However, the mechanism of selectivity of 
the tested quinazoline-based inhibitor remains to be determined[175].

Within the last decade, several benzimidazole-based inhibitors have demonstrated 
significant inhibition of CK1δ variants and superior isoform selectivity over CK1δ. The 
series of compounds described by Leban et al[176] originates from piperidinyl-
thiazoles originally designed to inhibit nuclear factor-κB[176]. Following modification, 
these compounds also demonstrated significant inhibition of CK1 family members. 
Most significant inhibition of CK1δ kinase domain (CK1δkd) with superior isoform 
selectivity over CK1ε could be determined for compound 5 (IC50(CK1δkd) = 29 nmol/L, 
IC50(CK1ε) = 199 nmol/L). Compound 5 also induced apoptosis in various tumor cell lines 
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with cell line-specific effects and only moderate levels of apoptosis in Colo357 
pancreatic cancer cells (tested at 4 µmol/L concentration)[177]. As reported by Richter 
and colleagues[178], the highly related but structurally slightly different compound 1 
showed three-fold stronger inhibition of CK1δkd (IC50 = 10 nmol/L). By further 
improving the physicochemical properties of this difluoro-dioxolo-benzoimidazole 
derivative, inhibitor potency in vitro could be maintained for modified compound 2 
(IC50(CK1δkd) = 0.07 µmol/L, IC50(CK1ε) = 0.52 µmol/L) while significantly increasing the 
effects observed on a panel of cancer cell lines. In comparison to compound 1, the 
effects on cell viability were significantly increased for cell lines treated with 
compound 2, among them the pancreatic cancer cell lines BxPC3, Colo357, MiaPaCa, 
PancTu-1, and Panc-1 (see Table 2 for EC50 data)[178].

Being structurally related to benzimidazole-based inhibitors, compounds derived 
from inhibitors of Wnt production (IWP) have recently been described as CK1-specific 
inhibitors. IWP-2 and IWP-4 as well as the further optimized compound 19 displayed 
rather potent inhibition of CK1δkd in vitro (IC50(CK1δ) = 0.32, 1.02, and 0.09 µmol/L for 
IWP-2, IWP-4, and compound 19) and also demonstrated significant effects on the 
proliferation of pancreatic cancer cell lines as determined for IWP-4-treated A818-6 
(EC50 = 0.93 µmol/L), MiaPaCa (0.23 µmol/L), Panc-1 (0.23 µmol/L), and Panc89 (0.58 
µmol/L) cells[179].

As a benzimidazole-based inhibitor containing a purine scaffold compound SR-3029 
has been described as highly potent and selective inhibitor of CK1δ (IC50(CK1δ) = 44 
nmol/L, IC50(CK1ε) = 260 nmol/L)[180]. SR-3029 shows improved cellular activity on the 
human melanoma cell line A375 (EC50 = 86 nmol/L) and the triple-negative breast 
cancer cell line MDA-MB-231[181]. These results suggested favorable cell penetration 
for SR-3029, and mouse pharmacokinetic properties indicated that SR-3029 actually 
was sufficient for use in xenograft studies[180].

Recently, SR-3029 has been tested for its effects on the proliferation of PDAC cell 
lines Panc-1, MiaPaCa-2, and BxPC3, thereby obtaining EC50 values in the 
submicromolar range (23, 370, and 131 nmol/L, respectively). Furthermore, synergistic 
effects have been detected for the treatment of MiaPaCa-2 and Panc-1 cells with a 
combination of SR-3029 and gemcitabine, the standard of care used in treatment of 
locally advanced and metastatic PDAC. Same effects could be observed after silencing 
of CK1δ by small interfering RNA. The mechanism of synergy could be explained by 
upregulation of deoxycytidine kinase subsequent to inhibition of CK1δ by SR-3029, 
resulting in enhanced metabolism and anti-proliferative effects of gemcitabine. Anti-
proliferative effects of SR-3029 and synergy with gemcitabine could also be observed 
in vivo by using an orthotopic xenotransplantation mouse model. Tumors obtained 
from injection of Panc-1 cells into the pancreas were significantly smaller after 
treatment with SR-3029 or gemcitabine, and tumor size was even more reduced after 
combination therapy[152].

In a previous xenotransplantation study, the early-stage CK1-specific inhibitor 
IC261 had already demonstrated therapeutic potential. Tumor cell growth of a panel of 
established pancreatic cancer cell lines (ASPC-1, BxPC3, Capan-1, Colo357, MiaPaCa-2, 
Panc-1, Panc89, and PancTu-1) was significantly reduced by treatment with 1.25 
µmol/L IC261 in vitro, and the size of tumors obtained after subcutaneous injection of 
PancTu-2 cells was significantly smaller after treatment with IC261. In the tumor 
tissue, downregulation of several anti-apoptotic genes (e.g., Bcl-2 family members) and 
upregulation of cell cycle- and cell death-associated regulators (e.g., p21, ataxia-
telangiectasia mutated kinase, checkpoint kinase 1) could be observed following 
treatment with IC261 or gemcitabine[155]. However, and in contrast to the above 
mentioned recent study by Vena and colleagues[152], IC261 failed to sensitize 
gemcitabine-resistant PancTu-1 cells to treatment with gemcitabine, and no synergistic 
or additive action in combination with gemcitabine could be demonstrated for IC261. 
This failure can be due to the unspecific effects meanwhile described for IC261. Apart 
from its specific action on CK1 family members, IC261 is able to bind tubulin with an 
affinity similar to the spindle poison colchicine. IC261 can therefore be considered as a 
microtubule polymerization inhibitor by directly exerting its effects on microtubules 
independent of CK1 blockage[182,183]. Moreover, within the concentration range 
necessary to block CK1 kinase activity, IC261 is also able to block voltage-gated 
sodium channels, and consequently, well-characterized recent-stage CK1-specific 
inhibitor compounds like SR-3029 should be used for targeting CK1 isoforms instead 
of using the unspecific early-stage inhibitor IC261[184].
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CONCLUSION
In recent years, there has been a lot of evidence for the involvement of stress-activated 
kinases like JNK and p38 but also CK1 in the pathogenesis of pancreatic cancer. 
Furthermore, remarkable progress has been made in designing specific small molecule 
inhibitors to effectively target these kinases in vitro and in vivo and to reduce off-target 
effects. Interestingly, due to similarities in protein structure, some inhibitor 
compounds even demonstrate dual inhibition of p38 and CK1 isoforms. However, 
further mechanisms and benefits from dual kinase inhibition have not been studied in 
detail. Furthermore, conclusive results from using specific inhibitors in clinical trials 
remain to be obtained, and knowledge on the interplay of these inhibitors with 
standard of care chemotherapeutics needs to be acquired in future studies.
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