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Abstract
Tremendous advances in artificial intelligence (AI) in medical image analysis have 
been achieved in recent years. The integration of AI is expected to cause a 
revolution in various areas of medicine, including gastrointestinal (GI) pathology. 
Currently, deep learning algorithms have shown promising benefits in areas of 
diagnostic histopathology, such as tumor identification, classification, prognosis 
prediction, and biomarker/genetic alteration prediction. While AI cannot 
substitute pathologists, carefully constructed AI applications may increase 
workforce productivity and diagnostic accuracy in pathology practice. Regardless 
of these promising advances, unlike the areas of radiology or cardiology imaging, 
no histopathology-based AI application has been approved by a regulatory 
authority or for public reimbursement. Thus, implying that there are still some 
obstacles to be overcome before AI applications can be safely and effectively 
implemented in real-life pathology practice. The challenges have been identified 
at different stages of the development process, such as needs identification, data 
curation, model development, validation, regulation, modification of daily 
workflow, and cost-effectiveness balance. The aim of this review is to present 
challenges in the process of AI development, validation, and regulation that 
should be overcome for its implementation in real-life GI pathology practice.

Key Words: Artificial intelligence; Deep learning; Digital image analysis; Digital 
pathology; Clinical implementation; Gastrointestinal cancer
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Core Tip: The advances in artificial intelligence (AI) will revolutionize medical 
practice, as well as other areas of medicine. Deep learning algorithms have shown 
promising benefits in various areas of diagnostic histopathology. Despite this, AI 
technology is not widely used as a medical device and is not approved by a regulatory 
authority. Thus, implying that certain improvements in the development process are 
still necessary for the implementation of AI in the real-life histopathology-practice. 
This paper aims to provide a review of recent AI developments in gastrointestinal 
pathology and the challenges in their implementation.

Citation: Yoshida H, Kiyuna T. Requirements for implementation of artificial intelligence in the 
practice of gastrointestinal pathology. World J Gastroenterol 2021; 27(21): 2818-2833
URL: https://www.wjgnet.com/1007-9327/full/v27/i21/2818.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i21.2818

INTRODUCTION
The integration of artificial intelligence (AI) will cause a revolution in various areas of 
medicine[1], including gastrointestinal (GI) pathology, in the next decade. Advances in 
slide scanner technology have made it possible to quickly digitalize histological slides 
at high resolution, which could be used in clinical practice, research, and education 
[2-4]. The drastic increase in computing capacity and improvement in information 
technology (IT) infrastructure has allowed rapid and efficient processing of large-sized 
data such as whole slide images (WSIs). In recent years, there has been an increase in 
computer applications utilizing AI to analyze images[5].

AI is an umbrella terminology for the different strategies a computer can employ to 
think and learn like a human. Pathological AI models have progressed from expert 
systems to conventional machine learning (ML) and deep learning (DL)[6]. Both expert 
systems and conventional ML use expert knowledge and expert-defined rules about 
objects. On the contrary, DL directly extracts features from the raw data and leverages 
multiple hidden layers of data for the output[7] (Figure 1). Compared to conventional 
ML, DL is simpler to conduct, performs with high-precision, and is cost-effective[5,8]. 
Its implementation enhances the reproducibility of the subjective visual assessment by 
human pathologists and integrates multiple parameters for precision medicine[9,10]. 
Currently, DL algorithms have shown promising benefits in different facets of 
diagnostic histopathology, such as tumor identification, classification, prognosis 
prediction, and biomarker/genetic alteration prediction[5,11]. In addition, various AI 
applications have been developed for GI pathology[12-14].

AI applications using DL algorithms have demonstrated various benefits in the field 
of GI pathology. Recent reviews (gastric and colorectal) provide an overview of the 
rapid and extensive progress in the field[5,11-14]. In 2017, the Philips IntelliSite 
(Philips Electronics, Amsterdam, The Netherlands) whole-slide scanner was approved 
by the Food and Drug Administration (FDA) in the United States. The implementation 
of AI in pathology is also promoted by various startups such as DeepLens[15] and 
PathAI[16]. Some institutions have agreed to digitize their pathology workflow[17,18]. 
Although these advances are promising, unlike in the field of radiology or cardiology 
imaging[19], no histopathology-related AI application has been approved by a 
regulatory authority or for public reimbursement. This indicates that there are still 
many obstacles to be resolved before the introduction of AI applications in real-life 
histopathology practice (Figure 2).

In this review, we aim to present and summarize challenges in the process of 
development, validation, and regulation that should be overcome for the implemen-
tation of AI in real-life GI pathology practice. The complete and comprehensive review 
of the literature on GI pathology-related AI applications is beyond the scope of this 
paper and is well described elsewhere[12-14]. Here, we focused on how we can adopt 
these recent advancements in our daily practice.

https://www.wjgnet.com/1007-9327/full/v27/i21/2818.htm
https://dx.doi.org/10.3748/wjg.v27.i21.2818
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Figure 1 General workflow of construction of artificial intelligence model in pathology. Stained slides are converted to digital input images by a slide 
scanner. Both (a) hand-crafted feature engineering and (b) deep learning approach generate outputs of classification, which are applied to various clinically relevant 
predictions.

AI-APPLICATIONS IN GI PATHOLOGY
AI applications in tumor pathology, including GI cancers[4,5] have been developed for 
tumor diagnosis, subtyping, grading, staging, prognosis prediction, and identification 
of biomarkers and genetic alterations. In the current decade, the implementation of DL 
technologies has dramatically improved the accuracy of digital image analysis[5]. DL 
is one of the ML methods that are particularly effective for digital image analysis[6]. 
DL is based on the use of convolutional neural networks (CNNs), consisting of 
millions of artificial neurons, assembled in several layers that are capable of translating 
its input data (pixel value matrix for an image) into a more abstract representation 
(Figure 1). The various layers of mathematical computation are fed into a dataset of 
digitized images annotated with a specific label (e.g., carcinoma or benign lesion); 
ultimately, the CNN learns how to categorize images according to their respective 
labels. They automatically identify the most distinctive and common characteristics of 
each type of object. CNNs outperform hand-crafted or conventional ML techniques 
(using support vector machines or random forests), by a substantial margin, in image 
classification[8,20]. In GI pathology, the prediction targets also include tumor classi-
fication, the clinical outcome of the patient, and genetic alterations within the tumor 
(Tables 1 and 2).

In addition, a variety of ML methods have been developed. The strengths and 
weaknesses of typical ML methods are summarized in Table 3. All of the current ML 
methods have their advantages and disadvantages, and it is necessary to select an 
appropriate method according to the purpose of image analysis. DL-based methods 
are most commonly used in current image analysis of GI pathology; however, they 
have limitations of requiring substantial data sets and insufficient interpretability. In 
the future, the development of new ML methods that can compensate for the 
disadvantages of current ML methods will further accelerate the development of AI-
models.

Histopathological AI-applications in gastric cancer
Several attempts have been made to classify pathological images of gastric cancer 
using AI (Table 1). Before we go into details of AI research review, it should be noted 
that the comparison of performances should not rely only on accuracy; we should pay 
attention to the task difficulty in the research framework, i.e., (1) dataset size (results 
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Table 1 Artificial intelligence applications in gastric cancer pathology

Ref. Task No. of cases/data set Machine learning 
method Performance

Bollschweiler 
et al[79]

Prognosis prediction 135 cases ANN Accuracy (93%)

Duraipandian 
et al[80]

Tumor classification 700 slides GastricNet Accuracy (100%)

Cosatto et al[65] Tumor classification > 12000 WSIs MIL AUC (0.96)

Sharma et al[21] Tumor classification 454 cases CNN Accuracy (69% for cancer 
classification), accuracy (81% for 
necrosis detection)

Jiang et al[81] Prognosis prediction 786 cases SVM classifier AUCs (up to 0.83)

Qu et al[82] Tumor classification 9720 images DL AUCs (up to 0.97)

Yoshida et al[23] Tumor classification 3062 gastric biopsy specimens ML Overall concordance rate (55.6%)

Kather et al[34] Prediction of microsatellite instability 1147 cases (gastric and 
colorectal cancer)

Deep residual learning AUC (0.81 for gastric cancer; 0.84 
for colorectal cancer)

Garcia et al[30] Tumor classification 3257 images CNN Accuracy (96.9%)

León et al[83] Tumor classification 40 images CNN Accuracy (up to 89.7%)

Fu et al[32] Prediction of genomic alterations, 
gene expression profiling, and 
immune infiltration

> 1000 cases (gastric, colorectal, 
esophageal, and liver cancers)

Neural networks. AUC (0.9) for BRAF mutations 
prediction in thyroid cancers

Liang et al[84] Tumor classification 1900 images DL Accuracy (91.1%)

Sun et al[85] Tumor classification 500 images DL Accuracy (91.6%)

Tomita et al[24] Tumor classification 502 cases (esophageal 
adenocarcinoma and Barret 
esophagus)

Attention-based deep 
learning

Accuracy (83%)

Wang et al[86] Tumor classification 608 images Recalibrated multi-
instance deep learning

Accuracy (86.5%)

Iizuka et al[22] Tumor classification 1746 biopsy WSIs CNN, RNN AUCs (up to 0.98), accuracy (95.6%)

Kather et al[33] Prediction of genetic alterations and 
gene expression signatures

> 1000 cases (gastric, colorectal, 
and pancreatic cancer)

Neural networks AUC (up to 0.8)

ANN: Artificial neural network; GastricNet: The deep learning framework; WSIs: Whole slide images; MIL: Multi-instance learning; AUC: Area under the 
curve; CNN: Convolutional neural networks; SVM: Support vector machine; DL: Deep learning; ML: Machine learning; RNN: Recurrent neural networks.

for small sample size are less reliable), (2) resolution of detection (tissue level or region 
level), (3) number of categories to be classified, (4) multi-site validation (sources of 
training and test dataset are from the same site or not), and (5) constraints on target 
lesion (e.g., adenocarcinoma only, or any lesions except lymphoma). Sharma and 
colleagues documented the detection of gastric cancer in histopathological images 
using two DL-based methods: one analyzed the morphological features of the whole 
image, while the other investigated the focal features of the image independently. 
These models showed an average accuracy of up to 89.7%[21]. Iizuka et al[22] reported 
an AI algorithm, based on CNNs and recurrent neural networks, to classify gastric 
biopsy images into gastric adenocarcinoma, adenoma, and non-neoplastic tissue. 
Within three independent test datasets, the algorithm demonstrated an area under the 
curve (AUC) of 0.97 for the classification of gastric adenocarcinoma. Yoshida et al[23], 
using gastric biopsy specimens, contrasted the classification outcomes of experienced 
pathologists with those of the NEC Corporation-built ML-based program "e-
Pathologist". While the total concordance rate between them was only 55.6 percent 
(1702/3062), the concordance rate was as high as 90.6 percent (1033/1140) for the 
biopsy specimens negative for a neoplastic lesion. Tomita et al[24] attempted to 
automate the identification of pre-neoplastic/neoplastic lesions in Barrett esophagus 
or gastric adenomas/adenocarcinomas.

The above tumor classification studies have shown that AI can be used for 
histopathological image analysis. However, other obstacles are hindering its use in 
real-life practice. For example, although the workload of pathologists can be 
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Table 2 Artificial intelligence applications in colorectal cancer pathology

Ref. Task No. of cases/data set Machine learning 
method Performance

Xu et al[38] Tumor classification: 6 classes 
(NL/ADC/MC/SC/PC/CCTA)

717 patches AlexNet Accuracy (97.5%)

Awan et al[87] Tumor classification: Normal/Low-grade 
cancer/High-grade cancer

454 cases Neural networks Accuracy (97%, for 2-
class; 91%, for 3-class)

Haj-Hassan et al[37] Tumor classification: 3 classes 
(NL/AD/ADC)

30 multispectral image 
patches

CNN Accuracy (99.2%)

Kainz et al[88] Tumor classification: Benign/Malignant 165 images CNN (LeNet-5) Accuracy (95%-98%)

Korbar et al[36] Tumor classification: 6 classes 
(NL/HP/SSP/TSA/TA/TVA-VA)

697 cases ResNet Accuracy (93.0%)

Yoshida et al[35] Tumor classification 1328 colorectal biopsy 
WSIs

ML Accuracy (90.1%, 
adenoma)

Alom et al[89] Tumor microenvironment analysis: 
Classification, Segmentation and Detection

21135 patches DCRN/R2U-Net Accuracy (91.1%, 
classification)

Bychkov et al[42] Prediction of colorectal cancer outcome (5-
yr disease-specific survival).

420 cases Recurrent neural 
networks

HR of 2.3, AUC (0.69)

Weis et al[90] Evaluation of tumor budding 401 cases CNN Correlation R (0.86)

Ponzio et al[91] Tumor classification: 3 classes 
(NL/AD/ADC)

27 WSIs (13500 patches) VGG16 Accuracy (96 %)

Kather et al[34] Tumor classification: 2 classes (NL/Tumor) 94 WSIs ResNet18 AUC (> 0.99)

Kather et al[34] Prediction of microsatellite instability 360 TCGA- DX (93408 
patches), 378 TCGA- KR 
(60894 patches)

ResNet18 AUC: TCGA-DX—(0.77, 
TCGA-DX; 0.84, TCGA-
KR)

Kather et al[26] Tumor microenvironment analysis: 
classification of 9 cell types

86 WSIs (100000) VGG19 Accuracy (94%-99%)

Kather et al[26] Prognosis predictions 1296 WSIs VGG19 Accuracy (94%-99%)

Kather et al[26] Prognosis prediction 934 cases Deep learning 
(comparison of 5 
networks)

HR for overall survival of 
1.99 (training set) and 
1.63 (test set)

Geessink et al[29] Prognosis prediction, quantification of 
intratumoral stroma

129 cases Neural networks HRs of 2.04 for disease-
free survival

Sena et al[40] Tumor classification: 4 classes 
(NL/HP/AD/ADC)

393 WSIs (12,565 
patches)

CNN Accuracy (80%)

Shapcott et al[92] Tumor microenvironment analysis: 
detection and classification

853 patches and 142 
TCGA images

CNN with a grid-based 
attention network

Accuracy (84%, training 
set; 65%, test set)

Sirinukunwattana et al[31] Prediction of consensus molecular subtypes 
of colorectal cancer

1206 cases Neural networks with 
domain-adversarial 
learning

AUC (0.84 and 0.95 in the 
two validation sets)

Swiderska-Chadaj et al[93] Tumor Microenvironment Analysis: 
Detection of immune cell, CD3+, CD8+

28 WSIs FCN/LSM/U-Net Sensitivity (74.0%)

Yoon et al[39] Tumor classification: 2 classes (NL/Tumor) 57 WSIs (10280 patches) VGG Accuracy (93.5%)

Echle et al[46] Prediction of microsatellite instability 8836 cases ShuffleNet Deep 
learning

AUC (0.92 in 
development cohort; 0.96 
in validation cohort)

Iizuka et al[22] Tumor classification: 3 classes 
(NL/AD/ADC)

4036 WSIs CNN/RNN AUCs (0.96, ADC; 0.99, 
AD)

Skrede et al[28] Prognosis predictions 2022 cases Neural networks with 
multiple instance 
learning

HR (3.04 after adjusting 
for established prognostic 
markers)

NL: Normal mucosa; ADC: Adenocarcinoma; MC: Mucinous carcinoma; SC: Serrated carcinoma; PC: Papillary carcinoma; CCTA: Cribriform comedo-type 
adenocarcinoma; AD: Adenoma; CNN: Convolutional neural network; HP: Hyperplastic polyp; SSP: Sessile serrated polyp; TSA: Traditional serrated 
adenoma; TA: Tubular adenoma; TVA: Tubulovillous adenoma; VA: Villous adenoma; WSI: Whole slide images; ML: Machine learning; DCRN: Densely 
connected recurrent convolutional network; R2U-Net: Recurrent residual U-Net; HR: Hazard ratio; AUC: Area under the curve; TCGA: The Cancer 
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Genome Atlas; ResNet: Residual network; VGG: Visual geometry group; RNN: Recurrent neural network; FCN: Fully convolutional networks; LSM: 
Locality-sensitive method.

Table 3 Advantages and disadvantages of representative machine-learning methods in the development of artificial intelligence-models 
for gastrointestinal pathology

AI model Advantages Disadvantages

Conventional ML 
(supervised)

User can reflect domain knowledge to features Requires hand-crafted features; Accuracy depends heavily on the 
quality of feature extraction

Conventional ML 
(unsupervised)

Executable without labels Results are often unstable; Interpretability of the results

Deep neural networks (CNN) Automatic feature extraction; High accuracy Requires a large dataset; Low explainability (Black box)

Multi-instance learning Executable without detailed labels Requires a large dataset; High computational cost

Semantic segmentation (FCN, 
U-Net)

Pixel-level detection gives the position, size, and 
shape of the target

High labeling cost

Recurrent neural networks Learn sequential data High computational cost

Generative adversarial 
networks

Learn to synthesize new realistic data Complexity and instability in training

AI: Artificial intelligence; ML: Machine learning; CNN: Convolutional neural network; FCN: Fully convolutional network

minimized, by defining cases for no further review by a pathologist, even in "negative" 
gastric biopsies, other findings, in addition to neoplastic lesions, such as Helicobacter 
pylori infection, need to be reviewed and recorded. Therefore, AI application cannot 
be functional until it sufficiently represents diagnostic procedures of real-life practice.

The prediction of prognosis from histopathological images of GI cancers is also an 
attractive area for AI application. Considering the many types of histopathological 
prognostic features of cancer, such as tumor differentiation or lymphovascular 
involvement, the unveiling of hidden morphological features may be expected from AI 
for better prediction of clinical outcomes from the histopathological images 
alone[25-27]. After ingesting a sufficient number of histopathological images from 
patients with known outcomes, AI may comprehensively predict the patient's future 
outcomes. Recently, an exponentially increasing number of studies conducted for 
major GI cancers have demonstrated the feasibility of this concept[26,28,29]. 
Additionally, according to a recent study, tumor-infiltrating lymphocytes were 
associated with the prognosis of patients with gastric cancer[30]. CNN model may 
detect tumor-infiltrating lymphocytes on histopathological specimens with an 
acceptable accuracy of 96.9%[30]. The development of DL models that incorporate 
clinical and multi-omics data is also a promising approach for predictive 
purposes[19]. Prognosis prediction by AI applications might be more accurate than 
that by the conventional pathological method; however, these AI-based predictions 
alone seem not to be accepted in clinical practice due to lack of interpretability. If 
doctors and patients cannot understand the reason for prediction, they will not 
recognize misprediction by AI. We cannot provide patients’ care based on prediction 
as in “fortune-telling.” Biological and clinical reasons for the prediction by AI 
application must be understood prior to its implementation into clinical practice.

Some researchers have also attempted to predict biomarker status from histopatho-
logical images alone using AI applications. Specimens of various GI cancers can be 
processed to identify molecular markers that may predict responses to targeted 
therapies. Research has shown that certain clinically relevant molecular alterations in 
GI cancers are associated with specific histopathological features detected on 
hematoxylin-eosin (HE) slides; there have been some successful attempts to adopt AI 
applications for HE sections as surrogate markers for these alterations[31-34].

Histopathological AI-applications in colorectal cancer
As in gastric cancer, various AI applications have recently been developed for 
colorectal cancer (Table 2). Regarding tumor classification, several AI algorithms have 
been trained to classify the dataset into two to six specific classes, such as normal, 
hyperplasia, adenoma, adenocarcinoma, and histological subtypes of polyps or 
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Figure 2 Challenges for implementation in the development process of an artificial intelligence application. The process of development and 
implementation of an artificial intelligence (AI) application is composed of multiple steps from needs identification to use in real-life (left). In each step, various 
challenges keep AI applications from being implemented into clinical practice (right). AI: Artificial intelligence; IT: Information technology.

adenocarcinomas[22,35-40]. Korbar et al[36] reported that the AI model, constructed 
using over 400 WSIs, could classify five types of colorectal polyps with an accuracy of 
93%. Wei et al[41] demonstrated that the DL model, trained using WSIs, could classify 
colorectal polyps, even in datasets from the other hospitals, with reproducibility. Its 
accuracy was comparable to that of a local pathologist. While most researches exhibit 
promising performance, a precise comparison of performances among these AI applic-
ations is impossible and irrelevant; each model is derived from different datasets with 
different annotations and focuses on different tasks. To accurately compare the 
performance of AI models, it is necessary to have them perform a common task using 
a standardized dataset with standardized annotations.

Further, a few studies have predicted prognosis using pathological images for 
colorectal cancer[26,34,42]. Bychkov et al[42] used 420 tissue microarray-WSIs to 
predict the 5-year disease-specific survival of patients and obtained an AUC of 0.69. 
Kather et al[26] used more than 1000 histological images, collected from three 
institutions, to predict the prognosis of the patient; they observed accuracy of 99%. 
Another study, using the ResNet model for direct identification of microsatellite 
instability (MSI) on histological images, demonstrated an AUC of 0.77 for both FFPE 
and frozen specimens from The Cancer Genome Atlas (TCGA)[34]. The identification 
of colorectal cancer with MSI is crucial; these tumors are reportedly highly responsive 
to immunomodulating therapies[43,44]; moreover, the MSI could be a clue for the 
diagnosis of Lynch syndrome[45]. MSI is usually identified by polymerase chain 
reaction (PCR), but not all patients are screened for MSI in clinical practice. Echle 
et al[46] recently developed a DL model to detect colorectal cancer with MSI using 
more than 8800 images. The DL algorithm demonstrated an AUC of 0.96 in the multi-
institutional validation cohort. Furthermore, the consensus molecular subtype of 
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colorectal cancer could be predicted from the images of colorectal surgical specimens 
using a CNN-based model[31]. Although prediction of molecular alterations by AI 
application might seem attractive, as clinically relevant biomarkers cannot be 
identified using HE stained slides and conventional PCR assay are both expensive and 
time-consuming, AI can neither achieve complete concordance with the gold standard 
test nor replace it. Thus, users must consider how to employ AI for predicting 
biomarkers with an appropriate, cost-effective balance in real-life practice.

A ROAD TO IMPLEMENTATION OF AI APPLICATIONS INTO REAL-LIFE 
PRACTICE
To achieve clinical implementation of the AI, several steps should be considered 
(Figure 2). Colling et al[47] presented an expected roadmap for the routine use of AI in 
pathology practice. They highlighted the main aspects of designing and applying AI in 
daily practice. The steps concerning design creation, ethics, financing, development, 
validation and regulation, implementation, and effect on the workforce were closely 
reviewed. For pathological image analysis, various problems exist in the execution of 
these steps, which would prevent the AI from being implemented in the clinical 
practice for GI cancers.

Identification of the true needs in daily practice
AI applications can either conduct routine tasks, usually performed by pathologists, or 
offer novel insights into diseases that are not possible by human pathologists[12]. The 
applications are needed to fill gaps and address unmet needs without impacting the 
daily workflow in the pathology department. The needs include mitosis detection, 
tumor-percentage calculation, lymph node metastasis, and other activities that are 
considered monotonous, repetitive, or vulnerable to higher interobserver variability.

The initial step in the development of the AI application is to recognize the true 
clinical need and define a possible solution. The novel AI applications can be 
developed by various stakeholders, including pathologists, physicians, computer 
scientists, engineers, IT companies, and drug companies. However, viewpoints 
between the professionals in academia and industry differ. For example, individuals in 
academia and businesses have different goals, such as grant funding, academic public-
ations, and profitable commercial products.

Even if there is a problem that pathologists are eager to solve, the market size of the 
problem could be small. If the cost of developing an AI application to solve the 
problem cannot be recovered by the subsequent profit from the sale of the application, 
the company may not develop it. There is a wide range of classification tasks in 
diagnostic pathology, and it is difficult to secure an appropriate market for an AI 
application specializing only in a single task. For example, an AI algorithm can detect 
lymph node metastases in breast cancer as reliably as human pathologists[48,49]. Still, 
this tool has not been widely used or approved by the regulatory authorities. 
Although there could be many reasons, one is the imbalance between the overall cost 
of its implementation and the benefit of detecting only breast cancer lymph node 
metastases in real-life pathology practice.

Another significant concern is obtaining consent for the use of patient data in AI-
model development[50]. Although the consent for research use could be obtained in 
most studies, patients might not consent to commercial use of their data required for 
product development, which could be an obstacle when developing products for 
clinical implementation. Therefore, consent should be obtained at the beginning of the 
research, conveying the possibility of its commercial use for product development; a 
framework for global data sharing should be developed.

For the development of AI algorithms, at least three parties need to collaborate, 
which include pathologists who know the true needs, academic professionals who can 
develop technology, and companies that will promote AI applications as products. In 
addition, to obtain a sufficiently sized market, it may be vital to develop global 
networks and online services using the cloud.

Development
After a concept of AI has been conceived and collaboratively established, the 
development of AI is carried out through the following steps: defining the output, 
designing the algorithm, collection of a pilot or larger follow-up sample, annotation 
and processing of data, and performing statistical analysis of the data.
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High-quality data set curation is one of the major hurdles in the development of AI 
applications. Generally, CNNs require hundreds or thousands of data sets of 
pathological images to achieve significant performance and sufficient genera-
lizability[51]. For rare tumors, researchers can obtain a very limited number of images; 
thus, it requires efficient data augmentation techniques and learning methods to 
resolve this issue. Conversely, in the case of transfer learning, small-scale datasets 
consisting of < 100 digital slides may suffice[52].

In addition, publicly available datasets should be developed for global data sharing. 
However, few such datasets are available in pathology, partly due to confidentiality, 
copyright, and financial problems[53]. Even under such circumstances, TCGA 
provides many WSIs and associated molecular data[54]. However, even TCGA data 
does not include sufficient numbers of cases for training AI applications for clinical 
implementation. Another potential source of datasets could be the public challenges 
provided for developing DL algorithms[55].

The development of AI applications with sufficient performance needs training on 
huge datasets demonstrating scanning[56] and staining protocol variability[56,57]. The 
major challenges for its implementation into practice are laboratory infrastructure and 
reproducibility and robustness of the AI model. Recently, automated methods for 
reducing blur in images have been developed. Automated algorithms (for example, 
HistoQC[58] and DeepFocus[59] can reportedly standardize the quality of WSIs; these 
AI applications automatically detects optimum quality regions and eliminates out-of-
focus or artifact-related regions. Standardization of the color, displayed by histopatho-
logical slides, is important for the accuracy of AI; the color variations are often 
produced due to differences in batches or manufacturers of staining reagents, 
variations in the thickness of tissue sections, the difference in staining protocols, and 
disparity in scanning characteristics. These variations lead to inadequate classification 
by AI applications[56,60]. AI algorithms have been developed to standardize the 
data[61], including staining[62] and color characteristics[63].

After data set curation, the annotation of the dataset is required. Histopathological 
image annotation is not a simple task. The extent of annotation detail depends on the 
application of AI, which could vary from classification at the slide level to labeling at 
the pixel level. The annotation task, for many images, by human experts is time-
consuming and tedious. In addition, variability in annotation performance, especially 
when the task is difficult, may affect the accuracy of the trained models. Moreover, for 
manufacturers, this task could be often expensive. Among GI pathologies, many 
lesions, such as intramucosal gastric carcinoma, do not have high interobserver 
reproducibility. When developing an AI application to assist pathologists in making a 
diagnosis, if the target disease shows significant interobserver variability, the 
correctness of the annotation of the dataset cannot be guaranteed, and the trained 
algorithm may not be able to reproduce performance in the dataset when used in other 
facilities, which may hinder its clinical implementation.

The problem of annotation in AI is an important research area. The majority of the 
AI models are trained using images of small tissue patches collected from WSIs. Since 
the patches, cropped from positive tissue, may not contain a tumor unless the tissue is 
filled with tumors, it is challenging to construct a high-accuracy model, particularly 
when pixel-level labeling is unavailable. To conduct patch-based training, without 
detailed annotation, multi-instance learning (MIL) algorithm can be used[64,65]. 
Cosatto et al[65] employed MIL for gastric cancer detection; they used over 12000 
cases, 2/3rd for training and 1/3rd for the test, and achieved an AUC of 0.96. MIL is 
especially effective when there is a large dataset, and detailed annotations are 
impossible to obtain[51].

After the preparation of the annotated dataset, the model development process is 
usually composed of the following steps: preparation of the datasets for training, 
testing, and validation; selecting the ML framework, ML technique, and learning 
method. Once the learning process is completed, the output of the model is evaluated 
through performance metrics, and the hyperparameters are fine-tuned to improve 
performance. Considering the exponential increase in AI research for image analysis, 
this step does not seem to be a major obstacle to the implementation of AI in clinical 
practice.

Validation and regulation
As AI-based technologies grow increasingly, an evidence-based approach is required 
for their validation. Colling et al[47] presented summarized guidance by the current in 
vitro device regulation and their recommendations for the main components of 
validation. In laboratory medicine, apart from clinical evaluation, analytical validation 
should be considered[66]. The establishment of steps and criteria for the validation of 
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new tests against existing gold standards is essential. For image analysis validation, 
the technique is often compared with the “ground truth” (for example, comparing an 
AI-technology analyzing HER2 expression within the tumor to a detailed tumor 
assessment performed manually). It would be appropriate to compare the digital 
pathology technique with the performance of human pathologists. However, 
considering inter- and intra-observer variability in visual assessments of human 
pathologists, it is difficult to identify the ground truth; thus, it involves careful 
designing of the study and acceptance of the limitations of the present gold standard. 
Currently, most AI applications seem to have difficulty in establishing absolute 
ground truth. Therefore, the robustness and reproducibility of AI applications should 
be repeatedly validated in large and variable patient cohorts.

The relative lack of a validation cohort is an urgent issue in the development of AI-
based applications. Histopathological slides, with detailed clinical data linked to them, 
cannot be often shared widely for reasons such as privacy protection. Annotations by 
pathologists, which are usually considered the “ground truth”, are still controversial. 
Inter-observer variability and subjectivity in assessments by a pathologist indicate that 
a certain amount of uncertainty is inherent to ground truth. However, where the 
pathologist's assessment is the only available ground truth, it is important to enhance 
accuracy through validation as the next best measure. Efficient validation and testing 
require multicenter assessments involving multiple pathologists and datasets. If the AI 
application is intended to be used in real-life practice, it should be robust against pre-
analytical variations within the target images, such as differences in staining 
conditions and WSI scanners, and its performance should be reproducible. With 
respect to this, a significant proportion of currently published AI research in GI 
cancers has not been externally validated.

Regulatory challenges
Appropriate regulations are required for the safe and effective use of AI in 
pathological practice. Unlike other laboratory tests, it is difficult to understand how 
predictions are made in AI applications; therefore, they are often viewed as black 
boxes. While various visualization techniques, including gradient saliency maps[67] 
and filter visualization methods, have been developed, it may not be possible for users 
to fully understand all the parameter changes causing erroneous performance or 
misprediction. Regulatory approval should be structured to minimize potential harm, 
define the risk-benefit balance, develop appropriate validation standards, and promote 
innovation[68].

Regulatory authorities, such as the FDA, the Centers for Medicare and Medicaid 
Services (CMS), and the European Union Conformité Européenne (EUCE) are not yet 
completely prepared for the implementation of AI applications in clinical medicine. As 
a result, AI-based devices are being controlled by prior and potentially obsolete 
guidelines for testing medical devices.

In the United States, the FDA is devising novel regulations for AI-based devices to 
make them safer and more effective[69]. CMS controls laboratory testing through the 
Clinical Laboratory Improvement Amendments (CLIA). CLIA stipulates that 
appropriate validation must be performed for all laboratory tests using human tissue 
before clinical implementation, regardless of their FDA approval. Currently, CLIA has 
no specific regulations for validating AI applications. The EUCE will replace the 
medical device directive in May 2021, and in vitro diagnostic medical device directives 
will be replaced by in vitro diagnostic regulation in May 2022[70]. Successful clinical 
implementation of AI-based applications will be assisted by the global market, and 
those clinically enforcing the applications will need to pay particular attention to the 
regulatory trends in their own country as well as in the US and EU. For AI applic-
ations to be approved by the FDA and EUCE, they should be established based on the 
updated details on FDA and EUCE regulations.

Implementation
Before implementing an AI application in real-life pathology practice, several obstacles 
must be addressed. Established business-use cases and a guarantee from pathologists 
for the use of the AI system should be accounted for before investing substantial time, 
energy, and funds on AI applications and required IT infrastructure.

The changes required for shifting daily workflow in the pathology department, 
from glass slides to WSIs, must be addressed. The department would require new 
digital pathology-related devices, a specific data management system, data storage 
facilities, and additional personnel to handle these changes. Simultaneously, an 
institutional IT infrastructure is required to enable users to operate through both on-
site and cloud-based computing systems. Therefore, in the real-world, digital 
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pathology systems, requiring substantial investment, may hamper the implementation 
of these technologies[71]. Notably, augmented microscopy, connected directly to the 
cloud network service, might solve the issue of whole slide scanner installation. Chen 
and colleagues reported the augmented reality microscope, overlaying AI-based 
information onto the sample-view in real-time, may enable a seamless integration of 
AI into the routine workflow[72]. According to Hegde et al[73], the cloud-based AI 
application (SMILY, Similar image search for histopathology), developed by GOOGLE, 
irrespective of its annotation status, allows the search for morphologically similar 
features in a target image.

In addition, one must consider the relative inexperience of pathologists with AI-
based technologies and acknowledge the range of issues the department would 
encounter prior to the implementation of AI. Second, a pathologist must buy-in to 
make significant improvements in a conventional century-old workflow. In view of the 
fact that progress does not happen immediately, the pathologist's management 
concerns should be dealt with separately from the technological hurdles. Initially, 
pathologists must commit to the installation of both digital pathology systems and AI 
applications to a pathology department. They have to understand the long-term risk-
benefit balance of AI implementation. The present DL-based AI applications lack 
interpretability, which may contribute to patients’ and clinicians' reluctance. 
Developing AI solutions that can be interpreted by end-users, thereby providing them 
with detailed descriptions of how their predictions are made, could be useful[74]. For 
lack of interpretability of DL model, various solutions, such as generating attention 
heat map[75], constructing interpretable model[76], creating external interpretive 
model[77], have been reported. However, this black box problem is not yet fully 
resolved.

On the downside, dependence on AI assistance for diagnoses can result in fewer 
opportunities for trainees to learn diagnostic skills. Although AI can be used as an 
auxiliary method to improve the quality and precision of clinical diagnoses, resident 
pathologists should be trained and encouraged to understand the utility, limitations, 
and pitfalls of AI application[78]. As molecular pathologists have become necessary, 
since the advent of genomic medicine, “computational pathologists”[47] will become 
necessary in the near future.

As with other clinical tests, ongoing post-marketing quality assurance is also 
essential for the safe and effective use of AI in clinical practice. Apart from laboratory 
testing processes, laboratory staff should understand the quality management system. 
As in conventional laboratory tests, a novel scheme of external quality assurance for AI 
applications in pathology should be urgently prepared for its implementation.

The use of AI applications in diagnostic practice poses complex new issues around 
the legal ramifications of signing a report prepared using AI by a pathologist. In order 
to incorporate their output into a pathological report, a pathologist should be 
confident in the performance of the algorithm; further, any algorithms used should be 
validated and regulated correctly. Although AI applications may not replace 
pathologists in view of this legal issue, they can be employed to support the 
pathologists in their clinical work. In particular, AI researchers are attempting to 
provide their predictions/results with confidence estimates and localize pathology-
related features. This could help mitigate interpretability and confidence-building 
concerns.

CONCLUSION
The immense potential of AI in pathological practice can be harnessed by improving 
workflows, eliminating simple mistakes, increasing diagnostic reproducibility, and 
revealing predictions that are impossible with the use of conventional visual methods 
by human pathologists. The clinically implemented AI applications are expected to be 
user-friendly, explainable, robust, manageable, and cost-effective. Considering the 
current limited clinical awareness and uncertainty about how AI tools can be 
introduced into real-life practice, caution should be paid to their deployment. 
Eventually, AI applications may be implemented and used appropriately, provided 
they are supported by human pathologists, standardized usage recommendations, and 
harmonization of AI applications with present information systems.

AI can play a pivotal role in the practice of pathologists and the development of 
precision medicine for GI cancers. However, there are various barriers to its effective 
implementation. To overcome these barriers and implement AI at the practice level, it 
is necessary to work with a range of stakeholders, including pathologists, clinicians, 
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developers, regulators, and device vendors, to establish a strong network to grab true 
needs, expand the market, and use the application safely and efficiently.
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