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Abstract
As the major source of energy for colonic mucosal cells and as an important 
regulator of gene expression, inflammation, differentiation, and apoptosis in host 
cells, microbiota-derived butyrate can enhance the intestinal mucosal immune 
barrier, modulate systemic immune response, and prevent infections. Maintaining 
a certain level of butyrate production in the gut can help balance intestinal 
microbiota, regulate host immune response, and promote the development and 
maintenance of the intestinal mucosal barrier. Butyrate-producing bacteria act as 
probiotics and play important roles in a variety of normal biological functions. 
Bacteriotherapeutic supplementation by using fecal microbiota transplantation to 
restore butyrate-producing commensal bacteria in the gut has been very suc-
cessful in the treatment of recurrent and refractory Clostridium difficile (C. difficile) 
infection or C. difficile-negative nosocomial diarrhea. Administration of probiotics 
that include butyrate-producing bacteria may have a role in the treatment of 
inflammatory bowel diseases and in the prevention of necrotizing enterocolitis 
and late-onset sepsis in premature infants. Furthermore, modulating gut micro-
biota with dietary approaches may improve intestinal dysbiosis commonly seen 
in patients with obesity-associated metabolic disorders. Supplementation with a 
butyrate-producing bacterial stain might be used to increase energy expenditure, 
improve insulin sensitivity, and to help control obesity and metabolic syndrome.

Key Words: Butyrate; Butyrate-producing bacteria; Gut microbiota; Intestinal mucosal 
barrier; Metabolic syndrome; Probiotics
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Core Tip: This minireview summarizes the potential clinical applications of butyrate-
producing bacteria in disorders related to pediatrics and possible underlying mecha-
nisms. Acting as probiotics, butyrate-producing bacteria play important roles in a 
variety of normal biological functions that include balancing gut microbiota, main-
taining the mucosal barrier, modulating the host immune response, preventing infec-
tions, and regulating energy expenditure. Therefore, butyrate-producing bacteria may 
have a potential therapeutic value in a wide range of clinical conditions associated with 
intestinal dysbiosis such as inflammatory bowel disease, necrotizing enterocolitis, late-
onset sepsis in the premature infant, nosocomial diarrhea, and obesity-associated meta-
bolic disorders.
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INTRODUCTION
Short chain fatty acids (SCFAs), in particular butyric acid, play important roles in 
human intestinal health. They are the major source of energy for the colonic mucosal 
cells[1]. Maintaining a certain level of butyric acid production in the lumen can help to 
balance gut microbiota, regulate host immune response, and enhance intestinal 
mucosal barrier function. When butyrate is taken orally in food or as a medicine, it is 
digested and absorbed by the body before it reaches the colon, making it difficult for 
butyrate to perform its functions in the hindgut. Butyrate-producing bacteria are 
capable of fermenting undigested carbohydrates in the intestinal lumen, producing 
acidifying SCFAs such as butyric acid. Therefore, butyrate-producing bacteria may be 
used as probiotics with the goal of promoting gut health, and thus having a wide 
range of potential clinical applications[2]. This minireview focuses on recent research 
on butyrate-producing bacteria and their potential clinical applications, especially in 
disorders related to pediatrics.

BUTYRATE-PRODUCING BACTERIA AND THEIR MAIN PHYSIOLOGICAL 
FUNCTIONS
Butyrate-producing bacteria are not a coherent phylogenetic group but rather a group 
of commensal intestinal flora that can ferment carbohydrates and produce butyric acid
[2,3]. Both lactic acid and acetic acid can be used as substrates in the biochemical 
synthesis of butyric acid[3]. The majority of Firmicutes are butyrate-producing bacteria. 
At the genus level, Ruminococcus, Clostridium, Eubacterium, and Coprococcus are com-
mon butyrate-producing bacteria. Clostridium butyricum (C. butyricum) is relatively 
common in the Clostridium genus[4]. Others include Faecalibacterium, Butyrivibrio, etc.,
[5]. In the genus Eubacterium, Eubacterium Hallii (E. Hallii) and Eubacterium Rectale are 
among the most abundant butyrate-producing bacterial strains in human feces[6]. 
Actinomycetes, Bacteroidetes, Proteobacteria, Spirochetes also have been identified as 
potential butyrate-producing bacteria[2].

The butyrate-producing commensal bacteria are mainly anaerobes. The acidic 
environment generated by butyrate-producing bacteria during metabolism keeps a 
balanced microbiota and maintains a normal microecological environment in the 
intestinal tract. Therefore, butyrate-producing bacteria act as probiotics and play 
important roles in a variety of normal biological functions, such as maintaining the 
mucosal barrier, improving immunity, and facilitating nutrient digestion and ab-
sorption in animals[7]. Like other probiotics, butyrate-producing bacteria can ferment 
carbohydrates to produce SCFAs and synthesize folic acid, pyridoxol, vitamin B1 and 
other vitamins[8,9]. By using an in vitro model of the colonic mucosa barrier, Lewis et 
al[10] have shown that butyrate can ameliorate increased translocation of bacteria 
across metabolically stressed intestinal epithelia. With a similar model, we have shown 
previously that butyrate can enhance the intestinal barrier function by facilitating the 
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https://dx.doi.org/10.5409/wjcp.v10.i5.84


Zhu LB et al. Clinical applications of butyrate-producing bacteria

WJCP https://www.wjgnet.com 86 September 9, 2021 Volume 10 Issue 5

assembly of tight junctions through the activation of AMP-activated protein kinase 
(AMPK) and have demonstrated that butyrate is important in the maintenance and 
regulation of the barrier function of the colonic epithelium[11]. Also, Wang et al[12] 
recently demonstrated that butyrate dynamically regulates intestinal homeostasis 
through regulation of synaptopodin, an actin-binding protein that is critical for barrier 
integrity and cell motility. Therefore, it is evident that production of butyrate in the 
intestinal lumen is vital for the maintenance of the intestinal mucosal barrier.

Butyrate is a potent histone deacetylase inhibitor, which can promote the prolif-
eration and activation of regulatory T-cells (Treg cells) and thereby play an important 
role in the immune regulation[13,14]. Microbiota-derived butyrate can reduce the 
release of pro-inflammatory cytokines by regulating the activity of G protein-coupled 
receptors, NF-κB, JAK/STAT and other inflammation-related pathways, thereby 
inhibiting intestinal inflammation and maintaining intestinal immune balance[15]. In 
addition to the direct effects on the mucosal barrier, microbiota-derived butyrate can 
be absorbed and directly transmitted to mesenteric lymph nodes, into the lymphatic 
system, and then into the systemic circulation, affecting other organ systems. NF-kB 
pathway is involved in the expression of tumor necrosis factor (TNF), interleukin (IL)-
1, IL-6 and other inflammation-related genes in the immune and inflammatory res-
ponses. The role of butyrate is to inhibit NF-κB from entering the nucleus. Without 
active NF-κB, the mRNA of pro-inflammatory factors cannot be transcribed and pro-
inflammatory factors will not be expressed, resulting in inflammatory response 
inhibition[15]. Studies have shown that butyrate regulates the function of T cells in the 
induction of colitis by differentially regulating Th1 and Th17 cell differentiation, thus 
modulating the production of inflammatory cytokines[16,17]. Moreover, butyrate can 
inhibit the release of IL-12, TNF-α, IL-1β and nitric oxide in monocytes, up-regulate the 
expression of IL-10, and reduce the activity of NF-κB, thereby playing an anti-inflam-
matory role in other organ systems, such as the respiratory system[18]. In short, as the 
major source of energy for the colonic mucosa and as an important regulator of gene 
expression, inflammation, differentiation and apoptosis in host cells, microbiota-
derived butyrate enhances the role of the intestinal mucosal immune barrier, mo-
dulates the systemic immune response, and thus prevents bacteria and their meta-
bolites from entering the bloodstream and causing inflammation[19,20].

POTENTIAL CLINICAL APPLICATIONS OF BUTYRATE-PRODUCING  
BACTERIA
Maintenance of the intestinal mucosal barrier
A monolayer of intestinal epithelial cells separates the body tissues from the dense 
communities of bacteria in the intestinal lumen. Therefore, maintenance of the mucosal 
epithelial barrier that prevents the invasion of host tissues by resident bacteria is vital 
for normal intestinal function. It is well known that the main energy source for the 
colonic epithelium is derived directly from the lumen rather than from blood. More 
than 90% of SCFAs produced in the intestinal lumen by bacterial fermentation are 
normally absorbed by intestinal epithelial cells. Lack of luminal SCFAs or the inability 
to oxidize butyrate leads to a nutritional deficiency of the colonic epithelium, causing 
mucosal atrophy in the short term and ‘nutritional colitis’ in the long term[1]. In 
patients with ulcerative colitis, the ability of the colonic epithelial cells to oxidize 
butyrate is weakened, so the energy obtained through oxidation is reduced; and thus 
the ability of butyrate to repair colonic mucosa is decreased[21]. The depletion of gut 
commensal flora by a prolonged course of broad spectrum of antibiotics can lead to 
more severe intestinal mucosal injury in a dextran sulfate sodium (DSS)-induced 
mouse colitis model[22]. Furthermore, reduced abundance of butyrate-producing 
commensal bacteria species has been found in the fecal microbial community in 
patients with inflammatory bowel disease (IBD)[23,24].

Probiotics have been advocated in clinical practice for prevention or treatment of 
intestinal mucosal injury associated with IBD or neonatal necrotizing enterocolitis 
(NEC)[25,26]. In children with IBD, a specific probiotic preparation (VSL#3) combined 
with Lactobacillus was shown to have a significant effect in achieving a clinical 
response[27]. A study in an animal model of DSS-induced colitis has shown that 
administration of C. butyricum, one of the butyrate-producing bacterial strains, can 
increase the luminal production of butyrate in the cecum and alleviate DSS-induced 
injury to colonic mucosa[28]. C. butyricum may induce intestinal macrophages to 
secrete IL-10, thereby inhibiting the occurrence of experimental colitis[29]. Geirnaer et 
al[30] used an in vitro system to examine the response of microbiota from patients with 
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Crohn’s disease to the treatment with different combinations of butyrate-producing 
bacterial stains. They assessed the effects of butyrate-producing bacteria supple-
mentation on short-chain fatty acid production, bacterial colonization of the mucus 
environment and intestinal epithelial barrier function. They demonstrated that 
treatments with butyrate-producing bacteria improved epithelial barrier integrity in 
vitro. More recently, Steppe et al[31] isolated and characterized the butyrate-producing 
strain Butyricicoccus pullicaecorum 25-3(T) and identified it as a potential probiotic for 
patients with IBD.

Regulation of intestinal immune response
The human intestine normally harbors billions of commensal bacteria. Intestinal 
epithelia cells actively sense those commensal bacteria and play an essential role in 
maintaining host-microbial homeostasis at the mucosal interface[19]. Commensal 
bacteria such as butyrate-producing bacteria can ferment undigested carbohydrates to 
produce small molecular metabolites such as lactic acid and SCFAs in the intestine, 
promote the proliferation of beneficial intestinal bacteria such as bifidobacterium, 
lactobacillus and fecal bacillus, and inhibit the growth of pathogenic bacteria such as 
Staphylococcus, Escherichia coli, Salmonella typhus and Clostridium difficile (C. difficile)[32,
33]. Thus, butyrate-producing bacteria promote intestinal microecological balance and 
participate in the regulation of the production of amines, indole, hydrogen sulfide and 
other potential harmful substances. Therefore, they not only can improve intestinal 
digestive and absorptive capacity, but also play important roles in improving the 
body’s immunity and preventing infections[8].

SCFAs promote intestinal peristalsis and reduce the duration of the presence of 
toxin in the intestinal tract. Among the SCFAs, butyrate is a potent mediator involved 
in the effects of gut microbiota on intestinal mucosal immune functions[34]. Butyrate 
can act as a ligand to activate specific G-protein-coupled receptors, activate intestinal 
mucosal immune activity, and enhance immunity[34]. Enhanced butyrate production 
by colonic butyrate-producing bacteria after diet manipulation is associated with 
increased levels of the anti-inflammatory cytokine IL-10 in mice[35]. Using intestinal 
mucosa biopsy tissues obtained from the patients with Crohn’s disease, Segain et al[15] 
have shown that butyrate can ameliorate the inflammatory response of isolated lamina 
propria cells and that of cultured peripheral blood mononuclear cells. NF-κB pathway 
is involved in the inhibition of immune cell activation[15].

Butyrate regulation of Toll-like receptor (TLR) expression in human colonic 
epithelial cells may be one of the key mechanisms mediating the cross talk and 
interplay between normal gut microbiota and a host’s innate and adaptive immune 
systems[36]. TLRs in intestinal epithelial cells and mucosal immune cells are pattern-
recognition-receptors that are critical components of the symbiosis between the host 
and commensal microflora[37]. Therefore, bacterial production of butyrate plays a key 
role in maintaining intestinal homeostasis. Other factors such as antimicrobial peptides 
produced by commensal bacteria or the host may also be involved in the process[38-
40]. More recently, a clinical study found that higher fecal SCFA concentrations were 
associated with the efficacy of immunotherapy in solid tumor cancer patients, in-
dicating that gut microbiota might have wide-ranging impacts on host immune res-
ponse[41].

Dysbiosis of intestinal microbiota and infection
Dysbiosis of intestinal microbiota may lead to so-called leaky gut and therefore 
microbial translocation, contributing to the development of infection. It is well 
accepted that an impaired interaction between intestinal microbiota and the host 
immune response can lead to an increased risk of infection caused by gram-negative 
bacteria or other pathogens[37,42]. It has been shown that reductions in mucosal 
butyrate from diminished colonic butyrate-producing bacteria contribute to HIV-
associated mucosal pathogenesis[43]. SCFA uptake coupled with sodium absorption is 
one of the major mechanisms for salt and water uptake in the colon. The association 
between the depletion of intestinal microbiota and nosocomial diarrhea is well re-
cognized. Normally abundant gut commensal organisms, including the butyrate-
producing C2 to C4 anaerobic fermenters, are significantly depleted in the patients 
with C. difficile infection or C. difficile-negative nosocomial diarrhea[44]. Furthermore, 
dysfunction of the intestinal mucosal barrier and impaired mucosal immunity can lead 
to pathological translocation of intestinal bacteria or endotoxins, causing sepsis and 
multiple organ dysfunction syndrome in patients who experienced severe trauma, 
serious burn, major surgery or hemorrhagic shock[45]. Loss of the intestinal microbiota 
diversity and a subsequent loss of health-promoting SCFAs, such as butyrate, con-
tribute to the dysregulated immune response and organ failure associated with sepsis
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[46].
Bacteriotherapeutic supplementation may restore normal gut microbiota. For 

example, using fecal microbiota transplantation (FMT) to restore butyrate-producing 
bacteria in the gut and therefore the normal host immune response has been tested in 
clinical practice for the treatment of diseases related to dysbiosis of the intestinal 
microbiota[47]. FMT has been very successful in the treatment of recurrent and re-
fractory C. difficile infection[48]. FMT has also been trialed for aiding in the recovery of 
septic patients[49]. However, concerns for lethal complications associated with FMT 
prevent its use other than for quite restricted clinical indications. Oral administration 
of health-promoting next-generation probiotics to ameliorate dysbiotic microbiota may 
be a safe alternative[9]. As summarized by a recent systematic review and meta-
analysis, administration of probiotic mixtures, not single-strain products, has a bene-
ficial effect of reducing the incidence of late-onset sepsis in human milk-fed very low 
birth weight preterm infants[50].

Role in obesity-associated metabolic disorders
Diet can modulate and support the symbiotic microbial communities that colonize the 
digestive tract. Modulating gut microbiota with dietary approaches may improve 
health, and prevent or treat diseases related to intestinal dysbiosis[51]. Dietary pre-
biotics are a group of nutrients that are degraded by gut microbiota. It is defined as a 
non-digestible food ingredient that beneficially affects the host by selectively sti-
mulating the growth and/or activity of one or a limited number of bacteria in the 
colon, and thus improving host health[52]. Most complex carbohydrates and plant 
polysaccharides ingested are metabolized by fermentation of commensal bacteria in 
the colon, which generate butyrate and other SCFAs (Figure 1). Consumption of a diet 
rich in fiber or prebiotic supplementation can boost the growth and metabolism of 
beneficial commensals in the colon, specifically targeting butyrate production[35,51].

Numerous studies have demonstrated the beneficial effects of a diet rich in fiber on 
obesity-associated metabolic syndrome. A fiber rich diet is beneficial in the prevention 
of obesity, improving insulin resistance, and control of abnormal blood lipid profile 
commonly seen in metabolic syndrome[53]. We previously have proposed that in-
creased production of SCFAs as a result of colonic bacterial fermentation of dietary 
fiber might, in part, account for some of the beneficial effects of dietary fiber on the 
metabolic syndrome[53]. Indeed, while on a high-fat diet, supplementation of butyrate 
prevented development of insulin resistance and obesity in mice. Fasting blood 
glucose, fasting insulin, and insulin tolerance were all preserved in the treated mice. In 
the obese mice, supplementation of butyrate led to an increase in insulin sensitivity 
and a reduction in adiposity[54]. Oral administration of E. Hallii, a butyrate-producing 
bacterial stain, can improve insulin sensitivity and increase energy expenditure in 
diabetic db/db mice[55]. As a potential therapeutic strategy for obesity and metabolic 
syndrome, FMT has also been trialed in a few randomized controlled human studies 
with some mixed beneficial results[56]. Promotion of energy expenditure, induction of 
mitochondrial function by activation of AMPK, and serving as an agonist of free fatty 
acid receptors, may be some of the mechanisms underlying the beneficial effects of 
butyrate on the abnormalities characterizing the metabolic syndrome[54,57-59].

CONCLUSION
This minireview summarizes the potential clinical applications and possible under-
lying mechanisms of butyrate-producing bacteria in disorders related to pediatrics. As 
the major source of energy of the colonic mucosa and as an important regulator of 
gene expression, inflammation, differentiation and apoptosis in host cells, microbiota-
derived butyrate enhances the role of the intestinal mucosal immune barrier, mo-
dulates the systemic immune response, and thus prevents bacteria and their meta-
bolites from entering the bloodstream and causing inflammation. Butyrate regulation 
of energy metabolism may play a role in the beneficial effects of a high fiber diet on 
metabolic syndrome. Therefore, acting as probiotics, butyrate-producing bacteria play 
important roles in a variety of normal biological functions that include balancing gut 
microbiota, maintaining the mucosal barrier, modulating the host immune response, 
preventing infections, and regulating energy expenditure. Thus, butyrate-producing 
bacteria may have a potential therapeutic value in a wide range of clinical conditions 
associated with intestinal dysbiosis such as IBD, NEC, late-onset sepsis in premature 
infant, nosocomial diarrhea, and obesity-associated metabolic disorders.
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Figure 1 Butyric acid production by bacterial fermentation.
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