World Journal of *Critical Care Medicine*

World J Crit Care Med 2021 July 9; 10(4): 61-162

Published by Baishideng Publishing Group Inc

World Journal of C C M Critical Care Medicine

Contents

Bimonthly Volume 10 Number 4 July 9, 2021

EDITORIAL

61 New Year's greeting and overview of World Journal of Critical Care Medicine in 2021 Wang LL

REVIEW

- 66 Sepsis: Evidence-based pathogenesis and treatment Pravda J
- 81 What we learned in the past year in managing our COVID-19 patients in intensive care units? Nitesh J, Kashyap R, Surani SR

MINIREVIEWS

- 102 Glucocorticoid and mineralocorticoid receptor expression in critical illness: A narrative review Vassiliou AG, Athanasiou N, Vassiliadi DA, Jahaj E, Keskinidou C, Kotanidou A, Dimopoulou I
- 112 Predictive modeling in neurocritical care using causal artificial intelligence Dang J, Lal A, Flurin L, James A, Gajic O, Rabinstein AA

ORIGINAL ARTICLE

Retrospective Study

120 Emergency service results of central venous catheters: Single center, 1042 patients, 10-year experience Coskun A, Hıncal SÖ, Eren SH

SYSTEMATIC REVIEWS

SARS-CoV-2 (COVID-19), viral load and clinical outcomes; lessons learned one year into the pandemic: A 132 systematic review

Shenoy S

META-ANALYSIS

151 COVID-19 and resuscitation: La tournée of traditional Chinese medicine?

Inchauspe AA

Contents

Bimonthly Volume 10 Number 4 July 9, 2021

ABOUT COVER

Editorial board member of World Journal of Critical Care Medicine, Maria Kapritsou, MSc, PhD, RN, Chief Nurse, Nurse, Postdoc, Anaesthesiology, Hellenic Anticancer "Saint Savvas" Hospital, Day Care Clinic "N. Kourkoulos", Athens 11544, Greece. mariakaprit@gmail.com

AIMS AND SCOPE

The primary aim of the World Journal of Critical Care Medicine (WJCCM, World J Crit Care Med) is to provide scholars and readers from various fields of critical care medicine with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJCCM mainly publishes articles reporting research results and findings obtained in the field of critical care medicine and covering a wide range of topics including acute kidney failure, acute respiratory distress syndrome and mechanical ventilation, application of bronchofiberscopy in critically ill patients, cardiopulmonary cerebral resuscitation, coagulant dysfunction, continuous renal replacement therapy, fluid resuscitation and tissue perfusion, hemodynamic monitoring and circulatory support, ICU management and treatment control, sedation and analgesia, severe infection, etc.

INDEXING/ABSTRACTING

The WJCCM is now indexed in PubMed, PubMed Central, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Li-Li Wang, Production Department Director: Xiang Li; Editorial Office Director: Li-Li Wang,

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS		
World Journal of Critical Care Medicine	https://www.wjgnet.com/bpg/gerinfo/204		
ISSN	GUIDELINES FOR ETHICS DOCUMENTS		
ISSN 2220-3141 (online)	https://www.wjgnet.com/bpg/GerInfo/287		
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH		
February 4, 2012	https://www.wjgnet.com/bpg/gerinfo/240		
FREQUENCY	PUBLICATION ETHICS		
Bimonthly	https://www.wjgnet.com/bpg/GerInfo/288		
EDITORS-IN-CHIEF	PUBLICATION MISCONDUCT		
Kam-Lun Ellis Hon	https://www.wjgnet.com/bpg/gerinfo/208		
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE		
https://www.wjgnet.com/2220-3141/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242		
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS		
July 9, 2021	https://www.wjgnet.com/bpg/GerInfo/239		
COPYRIGHT	ONLINE SUBMISSION		
© 2021 Baishideng Publishing Group Inc	https://www.f6publishing.com		

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

World Journal of C C M Critical Care Medicine

Submit a Manuscript: https://www.f6publishing.com

World J Crit Care Med 2021 July 9; 10(4): 66-80

DOI: 10.5492/wiccm.v10.i4.66

ISSN 2220-3141 (online)

REVIEW

Sepsis: Evidence-based pathogenesis and treatment

Jay Pravda

ORCID number: Jay Pravda 0000-0001-5737-5506.

Author contributions: Pravda J solely contributed to this manuscript.

Conflict-of-interest statement: The author has no any conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: htt p://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Invited Manuscript

Specialty type: Critical care medicine

Country/Territory of origin: United States

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): 0

Jay Pravda, Inflammatory Disease Research Centre, Therashock LLC, Palm Beach Gardens, FL 33410, United States

Corresponding author: Jay Pravda, MD, Research Scientist, Inflammatory Disease Research Centre, Therashock LLC, 4371 Northlake Blvd No. 247, Palm Beach Gardens, FL 33410, United States. jaypravda1@gmail.com

Abstract

Sepsis can develop during the body's response to a critical illness leading to multiple organ failure, irreversible shock, and death. Sepsis has been vexing health care providers for centuries due to its insidious onset, generalized metabolic dysfunction, and lack of specific therapy. A common factor underlying sepsis is the characteristic hypermetabolic response as the body ramps up every physiological system in its fight against the underlying critical illness. A hypermetabolic response requires supraphysiological amounts of energy, which is mostly supplied via oxidative phosphorylation generated ATP. A by-product of oxidative phosphorylation is hydrogen peroxide (H₂O₂), a toxic, membranepermeable oxidizing agent that is produced in far greater amounts during a hypermetabolic state. Continued production of mitochondrial H₂O₂ can overwhelm cellular reductive (antioxidant) capacity leading to a build-up within cells and eventual diffusion into the bloodstream. H_2O_2 is a metabolic poison that can inhibit enzyme systems leading to organ failure, microangiopathic dysfunction, and irreversible septic shock. The toxic effects of H₂O₂ mirror the clinical and laboratory abnormalities observed in sepsis, and toxic levels of blood H_2O_2 have been reported in patients with septic shock. This review provides evidence to support a causal role for H_2O_2 in the pathogenesis of sepsis, and an evidence-based therapeutic intervention to reduce H_2O_2 levels in the body and restore redox homeostasis, which is necessary for normal organ function and vascular responsiveness.

Key Words: Sepsis; Septic shock; Redox homeostasis; Thiosulfate; Hydrogen peroxide

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Sepsis mortality remains unacceptably high because there is no specific treatment to prevent or reverse the multiple organ failure and refractory hypotension that develops in this condition. An evidence-based analysis suggests that impaired

WJCCM | https://www.wjgnet.com

Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

Received: February 9, 2021 Peer-review started: February 10, 2021 First decision: March 31, 2021 Revised: April 13, 2021 Accepted: June 2, 2021 Article in press: June 2, 2021 Published online: July 9, 2021

P-Reviewer: Shou ST S-Editor: Ma YJ L-Editor: A P-Editor: Wang LYT

systemic redox homeostasis caused by the toxic accumulation of hydrogen peroxide has a causal role in the pathogenesis of this often fatal illness. The data imply that restoration of redox homeostasis by therapeutic reduction of hydrogen peroxide will significantly reduce the morbidity and mortality associated with sepsis. A therapeutic intervention to reduce systemic levels of hydrogen peroxide is presented.

Citation: Pravda J. Sepsis: Evidence-based pathogenesis and treatment. World J Crit Care Med 2021; 10(4): 66-80

URL: https://www.wjgnet.com/2220-3141/full/v10/i4/66.htm DOI: https://dx.doi.org/10.5492/wjccm.v10.i4.66

INTRODUCTION

Medicine has made fantastic strides over the past century. Our intricate knowledge of disease has been spearheaded by amazing advances in laboratory techniques that allow us to identify and instigate changes at the molecular level. This has led to an explosion of data accompanied by a detailed insight into pathological processes that perpetuate disease states leading to the identification of potential therapeutic targets, which can be exploited for new and more effective therapeutic interventions. However, while laboratory research is an extremely useful tool to obtain a pathophysiological snapshot of disease it cannot, on its own, identify the pathogenesis, and for some diseases, a creative theoretical approach is the only way to get "upstream" where novel insights may shed light on difficult clinical problems.

A prime example is sepsis, a systemic process with a high fatality rate that ultimately leads to microangiopathic dysfunction, refractory hypotension, multiple organ failure, and death. Worldwide, someone dies of sepsis every 3 s with 20% of global deaths being sepsis-related for a total of 11 million deaths annually and growing. Sepsis is thought to be a hyper-immune response to infection[1]. But in over 40% of sepsis cases there is no identifiable infectious agent, and culture positivity is not independently associated with mortality in sepsis[2-6]. These observations suggest that infection can be sufficient but is not absolutely necessary for sepsis to develop. It also suggests an endogenous process that is common to both infectious and noninfectious conditions (*i.e.*, multiple body trauma, pancreatitis, post-surgery, *etc.*), which is set in motion, ultimately leading to sepsis. Finally, the profound immunosuppression occurring during sepsis[7] suggests a non-immune contemporaneous process as the proximate causal factor in the development of the sepsis syndrome. This raises the consideration that the immune system is failing for the same reason other organs fail

From a metabolic perspective, there is evidence of impaired mitochondrial oxygen utilization in sepsis despite normal oxygen tension[4,8-10]. This suggests a mitochondrial-derived agent capable of interfering with oxygen utilization by inhibiting substrate oxidation during the tricarboxylic acid (Krebs) cycle or oxidative phosphorylation. The close association of hyperlactatemia with adverse sepsis outcomes despite the absence of tissue hypoxia or impaired tissue oxygenation provides further evidence that implicates impairment of mitochondrial oxidative metabolism as discussed in more detail below^[11,12].

The identification of mitochondrial abnormalities in sepsis focuses attention on bioenergetics and suggests that the common link between infectious and noninfectious origins of sepsis is not an immune response but a hypermetabolic state that sends mitochondrial metabolism into "overdrive" causing dysfunction of vital intramitochondrial bioenergetic processes. This reduces the problem of sepsis to the identification of a mitochondrial-generated molecule whose production is scaled up during hypermetabolism and is capable of inhibiting enzymes in the Krebs cycle and/or the electron transport chain (ETC). This is likely to be a small molecule that is normally eliminated within mitochondria since most people do not develop sepsis during a clinical hypermetabolic response.

A prime element that fulfills these theoretical requirements is hydrogen peroxide (H₂O₂), a small, cell-membrane permeable highly toxic oxidizing agent that is produced within mitochondria as a result of electron transport chain auto-oxidation [13]. H₂O₂ must be immediately eliminated to prevent cell damage and is removed by

the following series of reactions (Figure 1)[14-16].

Studies have shown that blood H_2O_2 is significantly elevated in human sepsis and septic shock with values reported up to 558 µmol/L, which is over 100 times the normal upper limit of 5 µmol/L and over ten times 50 µmol/L upper limit at which

 H_2O_2 becomes cytotoxic[17-19]. Certain cell populations, such as lymphocytes, undergo apoptosis at H_2O_2 exposure of less than 1 µmol/L, which can lead to significant lymphopenia and immunosuppression[19,20]. Normal intracellular H_2O_2 levels are in the picomolar range[19,21]. Thus, septic blood has over a million times greater H_2O_2 concentration than normal cells resulting in the potential for significant systemic cellular cytotoxicity which can disrupt metabolic pathways and organ function.

Other clinical abnormalities observed in sepsis such as hypotension, coagulopathy, encephalopathy, microangiopathic and cardiac dysfunction, erythrocyte rigidity, methemoglobinemia, glutathione depletion, mitochondrial damage, and lymphocyte apoptosis are also documented adverse effects of $H_2O_{2'}$ all of which contribute to multiple organ failure and lymphocytopenia observed in sepsis[22-25].

But where does all this H_2O_2 come from? Although leukocytes such as neutrophils can produce large amounts of H_2O_2 during the respiratory burst[26], the profound immunosuppression[7,27-30] during advanced stages of sepsis suggests a significant non-immune contribution to the persistently elevated blood H_2O_2 levels observed in advanced sepsis and septic shock. Significant depletion of tissue glutathione in muscle, lung, and erythrocytes in addition to plasma thiol depletion (albumin cys34) suggests these tissues have become H_2O_2 generators contributing to elevated blood H_2O_2 in sepsis patients[22,31,32].

The production of mitochondrial H_2O_2 depends upon the rate of electron transfer through the ETC. The higher the electron transfer rate the greater the production of H_2 O_2 . Studies in isolated mitochondria have shown an exponential increase in reactive oxygen species (*i.e.*, H_2O_2) at strongly polarized levels of mitochondrial membrane potential[33], which can occur in hypermetabolic critically ill patients. Other studies in mice have shown that mitochondrial H_2O_2 will increase up to 15x the normal rate during state-3 (maximal) respiration[34]. The clinical correlate of state-3 respiration is a hypermetabolic state, which is characterized by tachycardia, tachypnea, leukocytosis, high fever, and significantly enhanced protein biosynthesis. These are the cardinal elements that define the systemic inflammatory response syndrome (SIRS), which accompanies sepsis. This implies that a clinical hypermetabolic response is accompanied by supraphysiological increases in ETC-generated H_2O_2 and is the common factor linking infectious and non-infectious sepsis.

Due to the limited amount of mitochondrial glutathione available for H_2O_2 neutralization in addition to high basal levels of mitochondrial H_2O_2 , a sustained hypermetabolic response can overwhelm cellular reductive (antioxidant) capacity resulting in un-neutralized H_2O_2 leaking out of cells and into the bloodstream with a subsequent rise in blood H_2O_2 reaching toxic levels[35-40].

 H_2O_2 is a metabolic poison and the data suggest that sepsis is due to an endogenous H_2O_2 poisoning secondary to the oxidative damage inflicted by this highly toxic oxidizing agent. Since H_2O_2 is permeable through cell membranes, elevated blood H_2O_2 indicates systemic reductive depletion, which perpetuates the production of H_2O_2 [41]. Toxic levels of H_2O_2 will disrupt cellular function in all body organs, which can lead to multiple organ failure and microvascular dysfunction. Any cell undergoing a hypermetabolic response can deplete its reductive capacity and contribute to total body H_2O_2 load.

A potential cause and effect relationship between H_2O_2 and sepsis has likely remained obscure because a hypermetabolic state, which generates H_2O_2 is a confounding factor in the relationship between infection and sepsis (Figure 2)[42-51].

Based on the data, H_2O_2 is also an intervening variable in the setting of critical illness-associated sepsis (Figure 3)[52-55]. Intervening variables have an important role in therapy as they are mechanistically "closer" to the final effect and can serve as a therapeutic target. The observation that culture-positive sepsis patients on appropriate antibiotics still die suggests an additional factor independent of infection that exerts a significant influence on the clinical outcome of sepsis[5]. In this scenario, the H_2O_2 induced tissue damage and metabolic dysfunction (the effect) is too severe and can no longer be reversed by treating the infection (the exposure) with antibiotics. As an intervening variable with a postulated causal role in sepsis, H_2O_2 explains why culture positivity is not independently associated with mortality in sepsis[5] since the data supports H_2O_2 (and not infection per se) as the proximal causal agent in sepsis.

Zaishidena® WJCCM | https://www.wjgnet.com

$$\mathsf{ETC} \longrightarrow \mathsf{e}^{\text{-}} \overset{\mathsf{O}_2}{\longrightarrow} \mathsf{O}_2^{\text{-}} \overset{\mathsf{SOD}}{\longrightarrow} \mathsf{H}_2\mathsf{O}_2 \xrightarrow{\mathsf{GPX}} \mathsf{GS-SG+H}_2\mathsf{O}$$

Figure 1 Krebs cycle derived reducing equivalents (NADH, FADH2) donate electrons that are processed by the electron transport chain during oxidative phosphorylation. Up to 5% of electrons (e') will normally escape the electron transport chain (ETC) into the mitochondrial matrix (electron leakage)[14-16]. These electrons combine with molecular oxygen (O₂) to form superoxide anion radical (O₂), which is metabolized by superoxide dismutase (SOD) to hydrogen peroxide (H₂O₂) that in turn is converted to glutathione disulfide (GS-SG) and water via glutathione peroxidase (GPX) and its reducing co-factor glutathione (GSH). Critical illness hypermetabolic states increase ETC activity leading to enhanced electron leakage and far greater H₂O₂ formation, which can deplete cellular GSH resulting in a build-up of H₂O₂ in cells and blood causing bioenergetic dysfunction and organ failure.

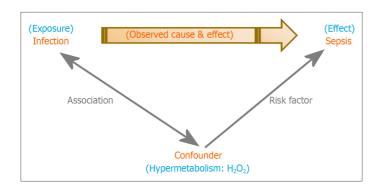


Figure 2 Confounding in Sepsis: The hypermetabolic state that accompanies a critical illness is a con-founding factor in the relationship between systemic infection (exposure) and sepsis (effect). Hypermetabolism generates large amounts of hydrogen peroxide (H₂O₂), which is both a risk factor for the development of sepsis and is bilaterally associated (double arrow) with infection. Systemic infection triggers a hypermetabolic state accompanied by greatly amplified generation of H₂O₂, but non-infectious critical illness can also generate large amounts of H₂O₂ due to the accompanying hypermetabolic state. High levels of blood H₂O₂ can cause systemic lymphocyte apoptosis leading to significant lymphocytopenia, which predisposes to infection. Thus, systemic build-up of H₂O₂ can lead to sepsis. This can occur after an infectious or non-infectious insult. In the latter instance, infection may develop as a result of H₂O₂ induced systemic lymphocyte apoptosis and subsequent lymphocytopenia.

Exposure	Intervening variable		Effect
Critical Illness	Increased H_2O_2		Sepsis
(Infection, burns severe trauma, <i>etc.</i>)	(Hypermetabolism)	(H ₂ O ₂ toxicity	-induced organ failure)

Figure 3 Sepsis and intervening variables: Hydrogen peroxide is an intervening variable between a critical illness (exposure), which triggers a systemic hypermetabolic response, and sepsis (effect). Hypermetabolism, characterized by the systemic inflammatory response syndrome, is the clinical manifestation of supraphysiological cellular H₂O₂ production. This will eventually lead to reductive depletion and sepsis (H₂O₂ toxicity, bioenergetic organ failure) if allowed to persist. Prolonged critical illness (hypermetabolism) and dietary restriction severely limit the body's ability to re-establish and maintain redox homeostasis. Under these circumstances, direct acting reducing equivalents must be supplied to the patient to aid in neutralizing excess H₂O₂. A hypermetabolic response to critical illness or injury may continue for years after hospital discharge and contribute to increased inpatient and post-discharge morbidity and mortality (chronic critical illness and post sepsis syndrome respectively)[52-55].

> All hypermetabolic states (infectious and non-infectious), have the potential of generating excess H2O2, which can accumulate to toxic levels leading to bioenergetic organ failure and sepsis. The relationship between exposure (infection) and confounder (H₂O₂) is bilateral because systemic infections cause a hypermetabolic state that can elevate blood H₂O₂ but non-infectious hypermetabolic states (i.e., burns, multiple body trauma) can generate sufficient H2O2 leading to generalized lymphocyte apoptosis and profound lymphocytopenia, which can lead to infection. Serial negative blood cultures can eventually turn positive because of this phenomenon. In other words, infections can increase blood H2O2 but a primary non-infectious increase in blood H₂O₂ can eventually lead to infection, reinforcing the widely held view that sepsis is always due to infection. In the latter case, infection is the result of H2O2 induced lymphocytopenia (Figure 4).

> Studies have shown that certain antibiotics can cause mitochondrial dysfunction accompanied by a significant production of H_2O_3 [46]. This implies that patients must have sufficient residual reductive capacity to deal with the oxidative stress imposed by antibiotic treatment, underscoring the critical need to begin antibiotics along with

Pravda J. Sepsis: A causal role for impaired redox homeostasis and treatment

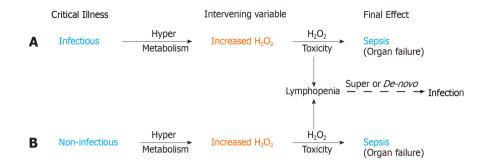


Figure 4 H₂O₂ induced immune system failure. Sequences 4A and 4B illustrate the common hypermetabolic response in infectious and non-infectious critical illness leading to H₂O₂ toxicity induced organ failure and sepsis. Lymphocytes are highly sensitive to H₂O₂ induced apoptosis. Lymphopenia is thus a manifestation of H₂O₂ induced immune system failure secondary to a hypermetabolic response in both infectious and non-infectious critical illness. H₂O₂ induced lymphopenia will predispose to de-novo infection in otherwise sterile critical illness and may cause a super-infection in patients on appropriate antibiotics. H₂O₂ toxicity and/or super-infection may contribute to sepsis mortality despite appropriate antibiotics.

reductive therapy as early as possible during the course of infection-associated sepsis. Reductive therapy encompasses any treatment that increases reductive (antioxidant) capacity, *i.e.*, glutathione, protein thiols, *etc.* The purpose of which (in sepsis) is to augment the patient's reductive (antioxidant) capacity to neutralize H_2O_2 .

For the patient, the clinical benefits of limiting exposure to H_2O_2 go beyond discharge from the hospital because H_2O_2 can damage mitochondrial DNA. Mitochondrial DNA (mtDNA) is highly vulnerable to H_2O_2 induced oxidative damage due to the proximity of mtDNA to the electron transport chain, both of which reside on the matrix side of the inner mitochondrial membrane. Exposure of mtDNA to H_2O_2 will inflict base mutations and nucleotide mispairing that upon transcription result in the incorporation of mutated protein subunits into the electron transport chain (ETC). Mutated ETC components interfere with electron transport resulting in augmented electron leakage with increased H^2O^2 generation[47-52]. This establishes a selfamplifying vicious cycle with ever greater production of H_2O_2 and mtDNA damage, which can lead to prolonged metabolic and bioenergetic dysfunction in sepsis survivors and contribute to the post-sepsis syndrome.

 H_2O_2 induced impaired redox homeostasis as a primary mechanism of disease is a novel pathogenesis that is supported by experimental evidence and is grounded in fundamental concepts of redox biology, redox biochemistry, and bioenergetics. Similar to electrolyte balance and acid/base buffering systems, redox homeostasis is a vital homeostatic mechanism required for normal cellular function and should be assessed in all critically ill patients.

CLINICAL MANIFESTATIONS OF H2O2 INDUCED OXIDATIVE STRESS

Since most H₂O₂ is a product of mitochondrial electron transport chain activity, clinical manifestations of H₂O₂ begin with its effects on cellular metabolism. Indeed, with almost 40% of all cellular reactions being redox reactions [53], the potential for H_2O_2 induced oxidative impairment of cellular metabolism and bioenergetics cannot be overstated, especially since blood H₂O₂ levels reported in sepsis exceed cellular cytotoxic tolerances by several-fold[17]. The mechanisms of H₂O₂ toxicity mirror the clinical manifestations of sepsis and include:

Hyperlactatemia

Elevated blood lactate is common among patients with sepsis and is associated with significantly greater mortality [12]. Toxic levels of H_2O_2 can inhibit enzymes in the Krebs cycle and electron transport chain leading to hyperlactatemia and bioenergetic failure characteristic of advanced sepsis[54-59]. H₂O₂ increases cellular lactate by interrupting mitochondrial oxidative energy flux (directional oxidation), which is needed to maintain the proton motive force (electrochemical proton gradient) that fuels pyruvate import into the mitochondrial matrix [60,61]. Studies have shown that H₂O₂ inhibits a variety of enzymes including enzymes within the Krebs' cycle such as aconitase, alpha-ketoglutarate dehydrogenase, and Succinate Dehydrogenase[55-57, 62].

Once inhibited, the Krebs cycle can no longer supply sufficient reducing equivalents (NADH, FADH₂) needed to sustain the mitochondrial proton gradient. Diminished Krebs cycle supplied reducing equivalents can decrease (and eventually collapse) the mitochondrial proton gradient. This will impair the proton motive force needed for pyruvate translocase in the inner mitochondrial membrane to transport pyruvate into mitochondria in symport with a proton[60,61]. The end result is increased cytosolic pyruvate and subsequent conversion to lactate with resulting hyperlactatemia[11]. Thus, in sepsis, hyperlactatemia can be a manifestation of H₂O₂ toxicity, in which case the reduction of serum lactate alone has no effect on the outcome of sepsis[63,64].

The effect of a dysfunctional Krebs cycle on serum lactate levels can be seen with the inherited deficiency of alpha-ketoglutarate dehydrogenase, which is associated with severe congenital hyperlactatemia^[65]. Under these circumstances, increasing inspired oxygen will not lower serum lactate since the problem is with the diminished supply of electrons to the electron transport chain, which collapses the proton gradient dissipating the proton motive force, and not the availability of oxygen.

Studies have shown substantial lactate production from the lungs of patients with septic shock[66]. Hypoperfusion or hypoxia is highly unlikely given that the lungs are continuously bathed in oxygen and receive the entire cardiac output. However, when combined with other studies showing decreased lung glutathione in sepsis, H₂O₂ toxicity is a strong possibility. Therapeutic removal of H₂O₂ (discussed below) can contribute to the normalization of bioenergetic function and serum lactate.

It's worth noting that the mitochondrial proton motive force fuels both ATP synthase and nicotinamide nucleotide transhydrogenase both of which are located in the inner mitochondrial membrane. The former is needed to synthesize ATP while the latter is required to generate mitochondrial NADPH, a critical source of reducing equivalents for the regeneration of mitochondrial glutathione needed to neutralize H₂O₂[13]. Thus, sepsis-associated hyperlactatemia may signal a compromised proton motive force and the start of a vicious cycle leading to increased H₂O₂ induced oxidative stress and bioenergetic failure.

Anemia

A common feature during the progression of sepsis is anemia. Several factors can contribute to the development of sepsis-associated anemia however, sepsis per se is independently associated with the development of anemia, and healthy erythrocytes exposed to plasma from sepsis patients undergo eryptosis [67,68]. H₂O₂ induced oxidative stress initiates erythrocyte suicidal cell death known as eryptosis leading to cell shrinkage and clearance from the blood[68-71]. Thus, H₂O₂ initiated eryptosis may contribute to sepsis-related anemia.

Hypocalcemia

Low serum calcium is a common finding in patients with sepsis and critical illness, with reported prevalence rates of up to 80%[72]. Hypocalcemia may be due to one or more of various causes[73]. However, during sepsis, calcium is shifted into red blood cells with significant increases in erythrocyte calcium of more than twice the control

value[74]. Given that about 85% of all cells in the body are red blood cells, this shift may significantly contribute to sepsis-associated hypocalcemia [75]. Erythrocytes exposed to oxidative stress (*i.e.*, H_2O_2) activate calcium-permeable cation channels leading to calcium entry into the cell^[71]. Significantly increased lymphocyte calcium has also been reported in sepsis[76]. This suggests that the elevated blood H_2O_2 reported in sepsis may cause a more generalize intracellular shift of calcium.

Shock

Sepsis-associated hemodynamic instability can progress to septic shock, which carries a high mortality. Oxidative stress due to H2O2 exposure causes extensive cytoskeletal disruption to endothelial cells leading to significant endothelial retraction and microangiopathic dysfunction[22]. The net effect of microvascular H₂O₂ exposure is microangiopathic dysfunction, impaired vasomotor responsiveness, barrier disruption with edema formation, and irreversible hypotension (septic shock)[22,77]. Studies have reported hypotension in an animal model after intravenous administration of H₂O₂ [25].

Immunosuppression

Sepsis patients develop profound immunosuppression that begins within days after the onset of sepsis [7,28,30]. Lymphocytes are extremely sensitive to H₂O₂ induced apoptosis, which occurs at H_2O_2 concentrations of less than 1 µmol/L[19,20]. Studies report blood H_2O_2 concentrations in sepsis of up to 558 µmol/L, which is over 500 times the concentration of H_2O_2 needed to cause lymphocyte apoptosis[17-19]. The ability of high blood H_2O_2 concentrations to cause generalized lymphocyte apoptosis explains the profound immunosuppression observed in sepsis patients.

Respiratory failure

Sepsis-associated acute respiratory distress syndrome (ARDS) is a serious complication of sepsis that carries a high mortality. It is characterized by increased permeability of pulmonary capillary endothelial and epithelial cells. The increased vascular permeability leads to diffuse capillary leak, pulmonary edema, and eventual wet lung, which triggers the secondary development of pathological features [78,79]. Studies have demonstrated that low dose H_2O_2 can increase pulmonary vascular bed permeability and capillary filtration[80-83]. This suggests that the high levels of H₂O₂ reported in the blood of sepsis patients may have a causal role in the initiation of ARDS.

Acute kidney injury

Sepsis-associated acute kidney injury (S-AKI) is a life-threatening complication that develops in up to two-thirds of patients with sepsis or septic shock, which in half of the patients develops before seeking medical attention[84]. Once thought to be a consequence of cellular hypoxia leading to acute tubular necrosis, it is now recognized that S-AKI can occur in the setting of normal or increased renal blood flow [84]. Studies suggest a critical role for microcirculatory dysfunction, which is present in every vital organ in animal models and humans with sepsis[84-86]. When combined with studies showing a decreased substrate flux through the Krebs cycle in mice kidneys after the induction of experimental sepsis[87], these effects mirror the known toxic effects of H₂O₂, among which is microangiopathic dysfunction and Krebs cycle enzymatic inhibition[22]. In support of a role for H₂O₂ in S-AKI, studies of experimental murine sepsis employing Mito-TEMPO, a mitochondrially targeted reducing agent (antioxidant) active against H₂O₂, significantly increased renal microcirculation, glomerular filtration rate, and ATP synthesis[88,89].

The renal endothelium is highly vulnerable to oxidative stress with agents such as H_2O_2 , a highly toxic oxidizing agent that can diffuse across cell membranes to impair critical signaling and regulatory function required for microvascular function[90]. Other studies report significant cytotoxicity in human tubular epithelial cells exposed to 100 µmol/L H₂O₂, while 200 µmol/L exposure caused mitochondrial cytochrome-C translocation to the cytoplasm in addition to significant intracellular increases in H₂O₂. These concentrations are within the range reported for blood H₂O₂ in sepsis patients of up to 558 µmol/L[17,91]. H₂O₂ can inhibit various enzymes involved in oxidative metabolism including Krebs cycle enzymes, ATP synthase, and nucleotide (ADP-ATP) translocase[55-57,92]. The resulting inhibition in mitochondrial oxidative flux may contribute to the increased glycolytic production of lactate by proximal tubule cells observed during sepsis^[93]. Increased glycolysis would revert to oxidative phosphorylation when H₂O₂ induced inhibition of mitochondrial oxidative metabolism

is resolved. Lastly, rat renal artery infusion of 70 mmol/L H₂O₂ (140x that found in human sepsis blood) is reported to cause massive proteinuria without electron microscopic ultrastructural glomerular abnormalities [94]. This is consistent with the minimal postmortem histological findings in human S-AKI^{[84,86].} This suggests that renal exposure to blood H_2O_2 levels observed in human sepsis may cause cellular dysfunction without overt signs of cellular damage.

Coagulopathy

Disseminated intravascular coagulation (DIC) is a life-threatening complication frequently encountered in sepsis that is characterized by the systemic activation of the coagulation system leading to microvascular thrombosis, and potentially lifethreatening hemorrhage due to consumption of platelets and coagulation factors[95]. DIC can originate from damage to the microvasculature, which triggers the extrinsic coagulation cascade[96]. H₂O₂ can cause microvascular injury by peroxidation of endothelial cell membranes, which triggers the expression of tissue factor and subsequent systemic activation of the extrinsic coagulation pathway leading to DIC [97-99]. Intravenous administration of H₂O₂ is reported to have resulted in fatal sepsis and DIC, underscoring the role of H₂O₂ induced oxidative stress in both of these conditions^[100].

On a more fundamental level, the endothelium is critically involved in preventing inappropriate coagulation by maintaining barrier function and producing several endogenous anticoagulants[101]. The elevated levels of blood H₂O₂ reported in sepsis can permeate endothelial cells throughout the body causing substantial oxidative stress accompanied by profound disruption in both form and function [77,102]. Studies have reported significant endothelial dysfunction that is associated with mortality and severity of coagulopathy [101]. H₂O₂ induced endothelial dysfunction can explain why anticoagulants fail to show a survival benefit in sepsis-induced DIC[103] since these agents fail to restore endothelial redox homeostasis.

Encephalopathy

Sepsis-associated encephalopathy (SAE) is a diffuse cerebral dysfunction ranging from lethargy and lack of concentration to personality changes, delirium, and coma that occurs secondary to sepsis in the absence of direct central nervous system (CNS) infection. SAE affects up to 70% of sepsis patients and is associated with higher mortality and poorer long term outcomes with half of surviving patients suffering from long-term cognitive defects [104,105]. The brain is highly sensitive to H₂O₂ induced oxidative damage and dysfunction, and studies report dose-dependent cytotoxicity starting at H₂O₂ exposures of 10 µmol/L[106]. Encephalopathy is reported to occur after the accidental ingestion of $H_2O_2[107]$. Encephalopathy was also reported after intravenous administration of H_2O_2 for alternative medicine therapy [100].

 H_2O_2 is diffusible through cell membranes which facilitates its diffusion into the central nervous system where it can disrupt neuronal and synaptic function. Studies have shown that H₂O₂ can alter neuron membrane properties and impair synaptic transmission leading to hyperexcitability and epileptiform activity[108,109]. This is notable because epileptic seizures can be a manifestation of SAE. Other studies have demonstrated bioenergetic impairment with decreased ATP biosynthesis and utilization in neurons exposed to H₂O₂[110,111]. H₂O₂ has also been reported to alter rat hippocampal synaptic plasticity, which can negatively impact long-term potentiation, learning, and memory[112]. Thus, the presence of elevated levels of blood H₂O₂ in sepsis can have acute and chronic effects on brain function and cognition.

TREATMENT

Sepsis is a life-threatening medical emergency that can precipitously evolve into hemodynamic instability, septic shock, and death. Thus it may not be possible or prudent to wait for a blood H₂O, level if clinical signs of H₂O, toxicity are present. Additionally, it takes some time before free H₂O₂ can accumulate in the bloodstream given the multiple layers of reductive (antioxidant) defense systems that mitochondrial H₂O₂ must traverse on its way to the intravascular compartment including mitochondrial and cytoplasmic glutathione followed by interstitial albumin whose cys34 amino acid can react with H₂O₂ (60% of total albumin) and ultimately serum albumin (40% of total albumin) and red blood cell reductive (glutathione) capacity [13]. During the time it takes to reach the blood stream and build-up, toxic levels of

intracellular H₂O₂ can inhibit critical cellular bioenergetic reactions leading to compromised bioenergetic function. This was demonstrated in ulcerative colitis, an inflammatory bowel disease, in which a primary increase in colonic epithelial H_2O_2 , thought to have a causal role in this disease, resulted in impaired beta-oxidation due to H_2O_2 inhibition of mitochondrial thiolase, the last enzyme in the beta-oxidation cascade^[113].

Within this context, the data support the critical need for reduction of systemic H₂O₂ in sepsis to prevent bioenergetic organ failure and restore microcirculatory function. Restoration of redox homeostasis by the elimination of excess H₂O₂ must accompany other therapeutic interventions to optimize clinical responsiveness and outcome. Sodium thiosulfate (STS) is a direct-acting reducing agent that can neutralize H_2O_2 upon contact.

STS is approved for use in cyanide poisoning with a recommended dose of 12.5 g over slow IV infusion (10 to 20 min) in adults and 250 mg/kg in children[114]. Similar dosing regimens can be considered in sepsis. Repeat dosing can be guided by clinical status, blood reducing capacity (glutathione, plasma thiols), and blood H₂O₂ levels. The general chemical reaction for the reduction of H₂O₂ with sodium thiosulfate yields sodium trithionate, sodium sulfate, and water[115].

 $2Na_2S_2O_3 + 4H_2O_2 \rightarrow Na_2S_3O_6 + Na_2SO_4 + 4H_2O_2$

The rationale underlying STS administration in sepsis is to reduce blood H_2O_2 to normal (less than 30 μ mol/L) in order to allow intracellular H₂O₂ to diffuse down its concentration gradient into the systemic circulation where it can be neutralized by STS. STS is generally well tolerated and is an accepted therapy for cisplatin toxicity and renal failure associated calciphylaxis (25 g three times weekly)[116,117]. High dose STS (up to 16 g per M² surface area, repeated after 4 h) is reported to be well tolerated in children under 12 years of age[118].

STS is reported to replenish intracellular glutathione, which will aid in the removal of intracellular H₂O₂ and restoration of redox homeostasis[119,120]. Decreasing serum lactate indicates that H2O2-induced Krebs cycle inhibition and bioenergetic dysfunction are being reversed. Restoration of vascular responsiveness by STS may cause extant vasopressor measures to have an unanticipated amplified effect. Thus, STS administration in critically ill patients should be accompanied by close patient monitoring. Finally, if STS therapy proves to be successful in the treatment of sepsis then treatment with STS should be considered in all critically ill (hypermetabolic) patients in order to restore depleted systemic reducing equivalents before blood H₂O₂ becomes toxically elevated.

Specific treatment considerations

ARDS: Inhaled STS may have a beneficial effect to neutralize H_2O_2 that has diffused through the alveolar-capillary membrane causing oxidant damage in the alveolar space.

S-AKI: Primary prevention of S-AKI is not possible in all patients because most patients developing S-AKI already have it at presentation. Administration of STS should be considered when patients first seek medical care to initiate primary or secondary prevention.

The evidence supports the use of STS as a specific therapeutic agent for the treatment of sepsis and its associated complications. Given the high mortality, significant societal burden, and absence of a safe and effective treatment for this deadly condition, clinical studies are urgently needed to determine the effectiveness of STS for the treatment of sepsis.

CONCLUSION

The mortality in sepsis is unacceptably high because there is no specific therapy to treat the sepsis syndrome. H₂O₂ toxicity mirrors the clinical and laboratory abnormalities observed in sepsis, and toxic levels of blood H2O2 have been reported in this condition. This and other data implicate H₂O₂ as the causal factor in the pathogenesis of sepsis, which predictably develops accompanied by systemic depletion of reducing equivalents (i.e., glutathione) needed for the reduction (neutralization) of metabolically generated H₂O₂. Once the body's reductive (antioxidant) capacity is depleted, H₂O₂ will continue to be generated and flood the system.

Prolonged supraphysiological production of H2O2 generated by electron transport chain hyperactivity during a hypermetabolic state (such as sepsis) can overwhelm

cellular reductive systems leading to H2O2 accumulation within tissues and blood. H2O 2 is a highly toxic membrane-permeable metabolic poison that can cause severe bioenergetic dysfunction and cellular damage if allowed to accumulate. Continued exposure can lead to the collapse of systemic redox homeostasis, proton motive force dissipation, organ failure, microvascular dysfunction, and fatal septic shock. Reduction of blood H_2O_2 is paramount in order to prevent H_2O_2 toxicity from irreversibly shutting down cellular metabolism.

The data support the use of sodium thiosulfate as a systemic reducing agent with the goal of restoring redox homeostasis by neutralizing excess systemic H₂O₂. Prophylactic use of sodium thiosulfate in all critically ill (hypermetabolic) patients should be considered before irreversible H₂O₂ induced bioenergetic failure and microvascular dysfunction develop.

Based on the data, the missing critical intervention to improve patient outcomes and reduce mortality in patients with sepsis and septic shock is the normalization of systemic redox homeostasis. The addition of specialists in redox medicine to the team providing care to critically ill patients can contribute to achieving this heretofore elusive goal.

REFERENCES

- Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, Fleischmann-Struzek C, Machado FR, Reinhart KK, Rowan K, Seymour CW, Watson RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, Angus DC, Murray CJL, Naghavi M. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 2020; 395: 200-211 [PMID: 31954465 DOI: 10.1016/S0140-6736(19)32989-7]
- Klein Klouwenberg PM, Cremer OL, van Vught LA, Ong DS, Frencken JF, Schultz MJ, Bonten 2 MJ, van der Poll T. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: a cohort study. Crit Care 2015; 19: 319 [PMID: 26346055 DOI: 10.1186/s13054-015-1035-11
- 3 Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front Immunol 2018; 9: 2147 [PMID: 30319615 DOI: 10.3389/fimmu.2018.02147]
- 4 Nagar H, Piao S, Kim CS. Role of Mitochondrial Oxidative Stress in Sepsis. Acute Crit Care 2018; **33**: 65-72 [PMID: 31723865 DOI: 10.4266/acc.2018.00157]
- 5 Phua J, Ngerng W, See K, Tay C, Kiong T, Lim H, Chew M, Yip H, Tan A, Khalizah H, Capistrano R, Lee K, Mukhopadhyay A. Characteristics and outcomes of culture-negative vs culture-positive severe sepsis. Crit Care 2013; 17: R202 [PMID: 24028771 DOI: 10.1186/cc12896]
- Molina F, Castaño P, Plaza M, Hincapié C, Maya W, Cataño JC, González J, León A, Jaimes F. 6 Positive Culture and Prognosis in Patients With Sepsis: A Prospective Cohort Study. J Intensive Care Med 2020; 35: 755-762 [PMID: 29925284 DOI: 10.1177/0885066618783656]
- 7 Venet F, Rimmelé T, Monneret G. Management of Sepsis-Induced Immunosuppression. Crit Care *Clin* 2018; **34**: 97-106 [PMID: 29149944 DOI: 10.1016/j.ccc.2017.08.007]
- Boekstegers P, Weidenhöfer S, Kapsner T, Werdan K. Skeletal muscle partial pressure of oxygen in 8 patients with sepsis. Crit Care Med 1994; 22: 640-650 [PMID: 8143474 DOI: 10.1097/00003246-199404000-00021]
- 9 Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin 2001; 17: 219-237 [PMID: 11219231 DOI: 10.1016/s0749-0704(05)70161-5]
- 10 Supinski GS, Schroder EA, Callahan LA. Mitochondria and Critical Illness. Chest 2020; 157: 310-322 [PMID: 31494084 DOI: 10.1016/j.chest.2019.08.2182]
- 11 Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care 2014; 18: 503 [PMID: 25394679 DOI: 10.1186/s13054-014-0503-3]
- 12 Lee SG, Song J, Park DW, Moon S, Cho HJ, Kim JY, Park J, Cha JH. Prognostic value of lactate levels and lactate clearance in sepsis and septic shock with initial hyperlactatemia: A retrospective cohort study according to the Sepsis-3 definitions. Medicine (Baltimore) 2021; 100: e24835 [PMID: 33607851 DOI: 10.1097/MD.000000000248351
- 13 Mailloux RJ. Mitochondrial Antioxidants and the Maintenance of Cellular Hydrogen Peroxide Levels. Oxid Med Cell Longev 2018; 2018: 7857251 [PMID: 30057684 DOI: 10.1155/2018/7857251
- 14 Liu SS. Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep 1997; 17: 259-272 [PMID: 9337481 DOI: 10.1023/a:1027328510931]
- 15 Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep 1997; 17: 3-8 [PMID: 9171915 DOI: 10.1023/a:1027374931887]
- Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative 16 phosphorylation, oxidant production, and methods of measurement. Redox Biol 2020; 37: 101674 [PMID: 32811789 DOI: 10.1016/j.redox.2020.101674]

- 17 19 van Asbeck BS, Braams R, Aarsman JM, Sprong RC, Groenewegen A. Hydrogen Peroxide In Blood Of Patients With Sepsis Syndrome: A Realistic Phenomenon. Crit Care Med 1995; 23: A169 [DOI: 10.1097/00003246-199501001-00290]
- 18 Forman HJ, Bernardo A, Davies KJ. What is the concentration of hydrogen peroxide in blood and plasma? Arch Biochem Biophys 2016; 603: 48-53 [PMID: 27173735 DOI: 10.1016/j.abb.2016.05.005]
- 19 Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett 2000; 486: 10-13 [PMID: 11108833 DOI: 10.1016/s0014-5793(00)02197-9]
- 20 Antunes F, Cadenas E. Cellular titration of apoptosis with steady state concentrations of H(2)O(2): submicromolar levels of H(2)O(2) induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radic Biol Med 2001; 30: 1008-1018 [PMID: 11316581 DOI: 10.1016/s0891-5849(01)00493-2]
- Chandel NS. Mitochondria as signaling organelles. BMC Biol 2014; 12: 34 [PMID: 24884669 DOI: 21 10.1186/1741-7007-12-34]
- Pravda J. Metabolic theory of septic shock. World J Crit Care Med 2014; 3: 45-54 [PMID: 22 24892019 DOI: 10.5492/wjccm.v3.i2.45]
- Evans T, Jin H, Elkins N, Shapiro JI. Effect of acidosis on hydrogen peroxide injury to the isolated 23 perfused rat heart. Am J Physiol 1995; 269: H308-H312 [PMID: 7631862 DOI: 10.1152/ajpheart.1995.269.1.H308]
- 24 Ballinger SW, Van Houten B, Jin GF, Conklin CA, Godley BF. Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res 1999; 68: 765-772 [PMID: 10375440 DOI: 10.1006/exer.1998.0661]
- 25 Shenep JL, Stokes DC, Hughes WT. Lack of antibacterial activity after intravenous hydrogen peroxide infusion in experimental Escherichia coli sepsis. Infect Immun 1985; 48: 607-610 [PMID: 3888840 DOI: 10.1128/IAI.48.3.607-610.1985]
- Weiss SJ. Neutrophil-mediated methemoglobin formation in the erythrocyte. The role of superoxide 26 and hydrogen peroxide. J Biol Chem 1982; 257: 2947-2953 [PMID: 6277918]
- 27 McBride MA, Patil TK, Bohannon JK, Hernandez A, Sherwood ER, Patil NK. Immune Checkpoints: Novel Therapeutic Targets to Attenuate Sepsis-Induced Immunosuppression. Front Immunol 2020; 11: 624272 [PMID: 33613563 DOI: 10.3389/fimmu.2020.624272]
- 28 Ono S, Tsujimoto H, Hiraki S, Aosasa S. Mechanisms of sepsis-induced immunosuppression and immunological modification therapies for sepsis. Ann Gastroenterol Surg 2018; 2: 351-358 [PMID: 30238076 DOI: 10.1002/ags3.12194]
- Reddy RC, Chen GH, Tekchandani PK, Standiford TJ. Sepsis-induced immunosuppression: from 29 bad to worse. Immunol Res 2001; 24: 273-287 [PMID: 11817325 DOI: 10.1385/IR:24:3:273]
- 30 Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD 2nd, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011; 306: 2594-2605 [PMID: 22187279 DOI: 10.1001/jama.2011.1829]
- 31 Ayar G, Sahin S, Men Atmaca Y, Uysal Yazici M, Neselioglu S, Erel O. Thiol-disulphide homeostasis is an oxidative stress indicator in critically ill children with sepsis. Arch Argent Pediatr 2019; 117: 143-148 [PMID: 31063297 DOI: 10.5546/aap.2019.eng.143]
- 32 Turell L, Radi R, Alvarez B. The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med 2013; 65: 244-253 [PMID: 23747983 DOI: 10.1016/j.freeradbiomed.2013.05.050]
- 33 Gerencser AA, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C, Nicholls DG, Brand MD. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol 2012; 590: 2845-2871 [PMID: 22495585 DOI: 10.1113/jphysiol.2012.228387]
- 34 Aon MA, Stanley BA, Sivakumaran V, Kembro JM, O'Rourke B, Paolocci N, Cortassa S. Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimentalcomputational study. J Gen Physiol 2012; 139: 479-491 [PMID: 22585969 DOI: 10.1085/jgp.201210772
- 35 Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014; 5: 151 [PMID: 25024695 DOI: 10.3389/fphar.2014.00151]
- 36 Lu SC. Glutathione synthesis. Biochim Biophys Acta 2013; 1830: 3143-3153 [PMID: 22995213 DOI: 10.1016/j.bbagen.2012.09.008]
- 37 Tang X, Luo YX, Chen HZ, Liu DP. Mitochondria, endothelial cell function, and vascular diseases. Front Physiol 2014; 5: 175 [PMID: 24834056 DOI: 10.3389/fphys.2014.00175]
- 38 Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 2009; 11: 1373-1414 [PMID: 19187004 DOI: 10.1089/ars.2008.2331]
- Muyderman H, Nilsson M, Sims NR. Highly selective and prolonged depletion of mitochondrial 39 glutathione in astrocytes markedly increases sensitivity to peroxynitrite. J Neurosci 2004; 24: 8019-8028 [PMID: 15371502 DOI: 10.1523/JNEUROSCI.1103-04.2004]
- 40 Marí M, de Gregorio E, de Dios C, Roca-Agujetas V, Cucarull B, Tutusaus A, Morales A, Colell A. Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxidants (Basel) 2020; 9 [PMID: 32987701 DOI: 10.3390/antiox9100909]
- Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and

review. Biochim Biophys Acta 2006; 1757: 509-517 [PMID: 16829228 DOI: 10.1016/j.bbabio.2006.04.029]

- Jeschke MG, Gauglitz GG, Kulp GA, Finnerty CC, Williams FN, Kraft R, Suman OE, Mlcak RP, 42 Herndon DN. Long-term persistance of the pathophysiologic response to severe burn injury. PLoS One 2011; 6: e21245 [PMID: 21789167 DOI: 10.1371/journal.pone.0021245]
- Efron PA, Mohr AM, Bihorac A, Horiguchi H, Hollen MK, Segal MS, Baker HV, Leeuwenburgh 43 C, Moldawer LL, Moore FA, Brakenridge SC. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery. Surgery 2018; 164: 178-184 [PMID: 29807651 DOI: 10.1016/j.surg.2018.04.011]
- 44 Cox MC, Brakenridge SC, Stortz JA, Hawkins RB, Darden DB, Ghita GL, Mohr AM, Moldawer LL, Efron PA, Moore FA. Abdominal sepsis patients have a high incidence of chronic critical illness with dismal long-term outcomes. Am J Surg 2020; 220: 1467-1474 [PMID: 32807383 DOI: 10.1016/j.amjsurg.2020.07.016]
- 45 Stortz JA, Mira JC, Raymond SL, Loftus TJ, Ozrazgat-Baslanti T, Wang Z, Ghita GL, Leeuwenburgh C, Segal MS, Bihorac A, Brumback BA, Mohr AM, Efron PA, Moldawer LL, Moore FA, Brakenridge SC. Benchmarking clinical outcomes and the immunocatabolic phenotype of chronic critical illness after sepsis in surgical intensive care unit patients. J Trauma Acute Care Surg 2018; 84: 342-349 [PMID: 29251709 DOI: 10.1097/TA.000000000001758]
- Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, Molina A, Shirihai OS, Collins JJ. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci Transl Med 2013; 5: 192ra85 [PMID: 23825301 DOI: 10.1126/scitranslmed.3006055
- 47 Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283: 1482-1488 [PMID: 10066162 DOI: 10.1126/science.283.5407.1482]
- 48 Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet 2005; 6: 389-402 [PMID: 15861210 DOI: 10.1038/nrg1606]
- Ricci C, Pastukh V, Leonard J, Turrens J, Wilson G, Schaffer D, Schaffer SW. Mitochondrial DNA 49 damage triggers mitochondrial-superoxide generation and apoptosis. Am J Physiol Cell Physiol 2008; 294: C413-C422 [PMID: 18077603 DOI: 10.1152/ajpcell.00362.2007]
- 50 Canter JA, Eshaghian A, Fessel J, Summar ML, Roberts LJ, Morrow JD, Sligh JE, Haines JL. Degree of heteroplasmy reflects oxidant damage in a large family with the mitochondrial DNA A8344G mutation. Free Radic Biol Med 2005; 38: 678-683 [PMID: 15683723 DOI: 10.1016/j.freeradbiomed.2004.11.031]
- 51 Rose G, Passarino G, Scornaienchi V, Romeo G, Dato S, Bellizzi D, Mari V, Feraco E, Maletta R, Bruni A, Franceschi C, De Benedictis G. The mitochondrial DNA control region shows genetically correlated levels of heteroplasmy in leukocytes of centenarians and their offspring. BMC Genomics 2007; 8: 293 [PMID: 17727699 DOI: 10.1186/1471-2164-8-293]
- 52 Lee HC, Wei YH. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood) 2007; 232: 592-606 [PMID: 17463155]
- Jinich A, Flamholz A, Ren H, Kim SJ, Sanchez-Lengeling B, Cotton CAR, Noor E, Aspuru-Guzik A, Bar-Even A. Quantum chemistry reveals thermodynamic principles of redox biochemistry. PLoS Comput Biol 2018; 14: e1006471 [PMID: 30356318 DOI: 10.1371/journal.pcbi.1006471]
- 54 Viola HM, Hool LC. Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide. J Mol Cell Cardiol 2010; 49: 875-885 [PMID: 20688078 DOI: 10.1016/j.yjmcc.2010.07.015]
- 55 Tretter L, Adam-Vizi V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 2000; 20: 8972-8979 [PMID: 11124972 DOI: 10.1523/JNEUROSCI.20-24-08972.2000]
- Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative 56 stress. Philos Trans R Soc Lond B Biol Sci 2005; 360: 2335-2345 [PMID: 16321804 DOI: 10.1098/rstb.2005.1764]
- Nulton-Persson AC, Szweda LI. Modulation of mitochondrial function by hydrogen peroxide. J 57 Biol Chem 2001; 276: 23357-23361 [PMID: 11283020 DOI: 10.1074/jbc.M100320200]
- 58 Levy RJ. Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock 2007; 28: 24-28 [PMID: 17483747 DOI: 10.1097/01.shk.0000235089.30550.2d]
- 59 Japiassú AM, Santiago AP, d'Avila JC, Garcia-Souza LF, Galina A, Castro Faria-Neto HC, Bozza FA, Oliveira MF. Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5'-triphosphate synthase activity. Crit Care Med 2011; 39: 1056-1063 [PMID: 21336129 DOI: 10.1097/CCM.0b013e31820eda5c]
- 60 Bender T, Martinou JC. The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? Biochim Biophys Acta 2016; 1863: 2436-2442 [PMID: 26826034 DOI: 10.1016/j.bbamcr.2016.01.017]
- 61 Zangari J, Petrelli F, Maillot B, Martinou JC. The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules 2020; 10 [PMID: 32708919 DOI: 10.3390/biom10071068]
- Knaus UG. Oxidants in Physiological Processes. Handb Exp Pharmacol 2021; 264: 27-47 [PMID: 32767144 DOI: 10.1007/164_2020_380]
- 63 Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI. Treatment of lactic acidosis with dichloroacetate. N Engl J Med 1983; 309: 390-396 [PMID: 6877297 DOI:

10.1056/NEJM198308183090702]

- 64 Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, Duncan CA, Harman EM, Henderson GN, Jenkinson S. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N Engl J Med 1992; 327: 1564-1569 [PMID: 1435883 DOI: 10.1056/NEJM199211263272204]
- Bonnefont JP, Chretien D, Rustin P, Robinson B, Vassault A, Aupetit J, Charpentier C, Rabier D, 65 Saudubray JM, Munnich A. Alpha-ketoglutarate dehydrogenase deficiency presenting as congenital lactic acidosis. J Pediatr 1992; 121: 255-258 [PMID: 1640293 DOI: 10.1016/s0022-3476(05)81199-0]
- 66 Opdam H, Bellomo R. Oxygen consumption and lactate release by the lung after cardiopulmonary bypass and during septic shock. Crit Care Resusc 2000; 2: 181-187 [PMID: 16599894]
- 67 Jansma G, de Lange F, Kingma WP, Vellinga NA, Koopmans M, Kuiper MA, Boerma EC. 'Sepsisrelated anemia' is absent at hospital presentation; a retrospective cohort analysis. BMC Anesthesiol 2015; 15: 55 [PMID: 25947889 DOI: 10.1186/s12871-015-0035-7]
- 68 Kempe DS, Akel A, Lang PA, Hermle T, Biswas R, Muresanu J, Friedrich B, Dreischer P, Wolz C, Schumacher U, Peschel A, Götz F, Döring G, Wieder T, Gulbins E, Lang F. Suicidal erythrocyte death in sepsis. J Mol Med (Berl) 2007; 85: 273-281 [PMID: 17180345 DOI: 10.1007/s00109-006-0123-8
- 69 Sun Y, Liu G, Jiang Y, Wang H, Xiao H, Guan G. Erythropoietin Protects Erythrocytes Against Oxidative Stress-Induced Eryptosis In Vitro. Clin Lab 2018; 64: 365-369 [PMID: 29739123 DOI: 10.7754/Clin.Lab.2017.170924]
- Repsold L, Joubert AM. Eryptosis: An Erythrocyte's Suicidal Type of Cell Death. Biomed Res Int 70 2018; 2018: 9405617 [PMID: 29516014 DOI: 10.1155/2018/9405617]
- 71 Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 2019; 286: 826-854 [PMID: 30028073 DOI: 10.1111/febs.14606
- 72 Steele T, Kolamunnage-Dona R, Downey C, Toh CH, Welters I. Assessment and clinical course of hypocalcemia in critical illness. Crit Care 2013; 17: R106 [PMID: 23734769 DOI: 10.1186/cc12756
- 73 Tinawi M. Disorders of Calcium Metabolism: Hypocalcemia and Hypercalcemia. Cureus 2021; 13: e12420 [PMID: 33542868 DOI: 10.7759/cureus.12420]
- 74 Todd JC 3rd, Mollitt DL. Effect of sepsis on erythrocyte intracellular calcium homeostasis. Crit Care Med 1995; 23: 459-465 [PMID: 7874895 DOI: 10.1097/00003246-199503000-00008]
- 75 Rogers S, Doctor A. Red Blood Cell Dysfunction in Critical Illness. Crit Care Clin 2020; 36: 267-292 [PMID: 32172813 DOI: 10.1016/j.ccc.2019.12.008]
- Zaloga GP, Washburn D, Black KW, Prielipp R. Human sepsis increases lymphocyte intracellular 76 calcium. Crit Care Med 1993; 21: 196-202 [PMID: 8428469 DOI: 10.1097/00003246-199302000-00009]
- 77 Joffre J, Hellman J. Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxid Redox Signal 2021 [PMID: 33637016 DOI: 10.1089/ars.2021.0027]
- Cardinal-Fernández P, Lorente JA, Ballén-Barragán A, Matute-Bello G. Acute Respiratory 78 Distress Syndrome and Diffuse Alveolar Damage. New Insights on a Complex Relationship. Ann Am Thorac Soc 2017; 14: 844-850 [PMID: 28570160 DOI: 10.1513/AnnalsATS.201609-728PS]
- 79 Sharp C, Millar AB, Medford AR. Advances in understanding of the pathogenesis of acute respiratory distress syndrome. Respiration 2015; 89: 420-434 [PMID: 25925331 DOI: 10.1159/000381102]
- 80 Habib MP, Clements NC. Effects of low-dose hydrogen peroxide in the isolated perfused rat lung. Exp Lung Res 1995; 21: 95-112 [PMID: 7729381 DOI: 10.3109/01902149509031747]
- 81 Seeger W, Hansen T, Rössig R, Schmehl T, Schütte H, Krämer HJ, Walmrath D, Weissmann N, Grimminger F, Suttorp N. Hydrogen peroxide-induced increase in lung endothelial and epithelial permeability--effect of adenylate cyclase stimulation and phosphodiesterase inhibition. Microvasc Res 1995; 50: 1-17 [PMID: 7476570 DOI: 10.1006/mvre.1995.1033]
- 82 Zhou X, Qian Y, Yuan D, Feng Q, He P. H₂ O₂ -induced microvessel barrier dysfunction: the interplay between reactive oxygen species, nitric oxide, and peroxynitrite. Physiol Rep 2019; 7 [PMID: 31448579 DOI: 10.14814/phy2.14206]
- 83 He P, Talukder MAH, Gao F. Oxidative Stress and Microvessel Barrier Dysfunction. Front Physiol 2020; 11: 472 [PMID: 32536875 DOI: 10.3389/fphys.2020.00472]
- Manrique-Caballero CL, Del Rio-Pertuz G, Gomez H. Sepsis-Associated Acute Kidney Injury. 84 Crit Care Clin 2021; 37: 279-301 [PMID: 33752856 DOI: 10.1016/j.ccc.2020.11.010]
- Post EH, Kellum JA, Bellomo R, Vincent JL. Renal perfusion in sepsis: from macro- to 85 microcirculation. Kidney Int 2017; 91: 45-60 [PMID: 27692561 DOI: 10.1016/j.kint.2016.07.032]
- Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from 86 sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96: 1083-1099 [PMID: 31443997 DOI: 10.1016/j.kint.2019.05.026]
- 87 Waltz P, Carchman E, Gomez H, Zuckerbraun B. Sepsis results in an altered renal metabolic and osmolyte profile. J Surg Res 2016; 202: 8-12 [PMID: 27083942 DOI: 10.1016/j.jss.2015.12.011]
- Patil NK, Parajuli N, MacMillan-Crow LA, Mayeux PR. Inactivation of renal mitochondrial 88 respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury. Am J Physiol Renal Physiol 2014; 306: F734-F743 [PMID: 24500690

DOI: 10.1152/ajprenal.00643.2013]

- McCarthy C, Kenny LC. Therapeutically targeting mitochondrial redox signalling alleviates 89 endothelial dysfunction in preeclampsia. Sci Rep 2016; 6: 32683 [PMID: 27604418 DOI: 10.1038/srep32683
- 90 Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant Mechanisms in Renal Injury and Disease. Antioxid Redox Signal 2016; 25: 119-146 [PMID: 26906267 DOI: 10.1089/ars.2016.6665]
- Cao Y, Xu J, Cui D, Liu L, Zhang S, Shen B, Wu Y, Zhang Q. Protective effect of carnosine on 91 hydrogen peroxide-induced oxidative stress in human kidney tubular epithelial cells. Biochem Biophys Res Commun 2021; 534: 576-582 [PMID: 33276949 DOI: 10.1016/j.bbrc.2020.11.037]
- 92 Tatsumi T, Kako KJ. Effects of hydrogen peroxide on mitochondrial enzyme function studied in situ in rat heart myocytes. Basic Res Cardiol 1993; 88: 199-211 [PMID: 8216172 DOI: 10.1007/BF007949931
- Sun J, Zhang J, Tian J, Virzì GM, Digvijay K, Cueto L, Yin Y, Rosner MH, Ronco C. Mitochondria 93 in Sepsis-Induced AKI. J Am Soc Nephrol 2019; 30: 1151-1161 [PMID: 31076465 DOI: 10.1681/ASN.2018111126
- 94 Yoshioka T, Ichikawa I, Fogo A. Reactive oxygen metabolites cause massive, reversible proteinuria and glomerular sieving defect without apparent ultrastructural abnormality. J Am Soc Nephrol 1991; 2: 902-912 [PMID: 1721553]
- Adelborg K, Larsen JB, Hvas AM. Disseminated intravascular coagulation: epidemiology, 95 biomarkers, and management. Br J Haematol 2021; 192: 803-818 [PMID: 33555051 DOI: 10.1111/bih.17172]
- 96 Iba T, Umemura Y, Watanabe E, Wada T, Hayashida K, Kushimoto S; Japanese Surviving Sepsis Campaign Guideline Working Group for disseminated intravascular coagulation. Diagnosis of sepsis-induced disseminated intravascular coagulation and coagulopathy. Acute Med Surg 2019; 6: 223-232 [PMID: 31304023 DOI: 10.1002/ams2.411]
- 97 Ambrosio G, Tritto I, Golino P. Reactive oxygen metabolites and arterial thrombosis. Cardiovasc Res 1997; 34: 445-452 [PMID: 9231027 DOI: 10.1016/s0008-6363(97)00101-6]
- Penn MS, Patel CV, Cui MZ, DiCorleto PE, Chisolm GM. LDL increases inactive tissue factor on 98 vascular smooth muscle cell surfaces: hydrogen peroxide activates latent cell surface tissue factor. Circulation 1999; 99: 1753-1759 [PMID: 10190887 DOI: 10.1161/01.cir.99.13.1753]
- 99 van Vught LA, Uhel F, Ding C, Van't Veer C, Scicluna BP, Peters-Sengers H, Klein Klouwenberg PMC, Nürnberg P, Cremer OL, Schultz MJ, van der Poll T; MARS consortium. Consumptive coagulopathy is associated with a disturbed host response in patients with sepsis. J Thromb Haemost 2021; 19: 1049-1063 [PMID: 33492719 DOI: 10.1111/jth.15246]
- 100 Wetter DA, Davis MD. Ulceration of the arm attributed to a spider bite and treated with intravenous hydrogen peroxide: a cautionary tale. Arch Dermatol 2006; 142: 1658-1659 [PMID: 17179007 DOI: 10.1001/archderm.142.12.1658
- Walborn A, Rondina M, Mosier M, Fareed J, Hoppensteadt D. Endothelial Dysfunction Is 101 Associated with Mortality and Severity of Coagulopathy in Patients with Sepsis and Disseminated Intravascular Coagulation. Clin Appl Thromb Hemost 2019; 25: 1076029619852163 [PMID: 31140293 DOI: 10.1177/1076029619852163]
- 102 Dolmatova EV, Wang K, Mandavilli R, Griendling KK. The effects of sepsis on endothelium and clinical implications. Cardiovasc Res 2021; 117: 60-73 [PMID: 32215570 DOI: 10.1093/cvr/cvaa070]
- 103 Inata Y. Should we treat sepsis-induced DIC with anticoagulants? J Intensive Care 2020; 8: 18 [PMID: 32082582 DOI: 10.1186/s40560-020-0435-8]
- 104 108 Mazeraud A, Righy C, Bouchereau E, et al Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics 2020;17:392-403 [DOI: 10.1007/s13311-020-00862-1]
- 105 Chung HY, Wickel J, Brunkhorst FM, Geis C. Sepsis-Associated Encephalopathy: From Delirium to Dementia? J Clin Med 2020; 9 [PMID: 32150970 DOI: 10.3390/jcm9030703]
- Desagher S, Glowinski J, Premont J. Astrocytes protect neurons from hydrogen peroxide toxicity. J 106 Neurosci 1996; 16: 2553-2562 [PMID: 8786431 DOI: 10.1523/JNEUROSCI.16-08-02553.1996]
- 107 Cannon G, Caravati EM, Filloux FM. Hydrogen peroxide neurotoxicity in childhood: case report with unique magnetic resonance imaging features. J Child Neurol 2003; 18: 805-808 [PMID: 14696912 DOI: 10.1177/08830738030180111501]
- 108 Ohashi M, Hirano T, Watanabe K, Katsumi K, Ohashi N, Baba H, Endo N, Kohno T. Hydrogen peroxide modulates synaptic transmission in ventral horn neurons of the rat spinal cord. J Physiol 2016; 594: 115-134 [PMID: 26510999 DOI: 10.1113/JP271449]
- 109 Frantseva MV, Perez Velazquez JL, Carlen PL. Changes in membrane and synaptic properties of thalamocortical circuitry caused by hydrogen peroxide. J Neurophysiol 1998; 80: 1317-1326 [PMID: 9744941 DOI: 10.1152/jn.1998.80.3.1317]
- Teepker M, Anthes N, Fischer S, Krieg JC, Vedder H. Effects of oxidative challenge and calcium 110 on ATP-levels in neuronal cells. Neurotoxicology 2007; 28: 19-26 [PMID: 16870261 DOI: 10.1016/j.neuro.2006.06.001]
- Wang Y, Floor E. Hydrogen peroxide inhibits the vacuolar H+-ATPase in brain synaptic vesicles at 111 micromolar concentrations. J Neurochem 1998; 70: 646-652 [PMID: 9453558 DOI: 10.1046/j.1471-4159.1998.70020646.x]
- 112 Kamsler A, Segal M. Hydrogen peroxide modulation of synaptic plasticity. J Neurosci 2003; 23: 269-276 [PMID: 12514224 DOI: 10.1523/JNEUROSCI.23-01-00269.2003]

- 113 Santhanam S, Venkatraman A, Ramakrishna BS. Impairment of mitochondrial acetoacetyl CoA thiolase activity in the colonic mucosa of patients with ulcerative colitis. Gut 2007; 56: 1543-1549 [PMID: 17483192 DOI: 10.1136/gut.2006.108449]
- 114 118 US Department of Health and Human Services. Chemical Hazards emergency medical management. [cited 3 February 2021] Available from:
- https://chemm.nlm.nih.gov/countermeasure_sodium-thiosulfate.htm#indication 115 Pravda J. Hydrogen peroxide and disease: towards a unified system of pathogenesis and
- therapeutics. Mol Med 2020; 26: 41 [PMID: 32380940 DOI: 10.1186/s10020-020-00165-3] Tsang RY, Al-Fayea T, Au HJ. Cisplatin overdose: toxicities and management. Drug Saf 2009; 32: 116
- 1109-1122 [PMID: 19916578 DOI: 10.2165/11316640-00000000-00000]
- 117 Nigwekar SU, Thadhani R, Brandenburg VM. Calciphylaxis. N Engl J Med 2018; 378: 1704-1714 [PMID: 29719190 DOI: 10.1056/NEJMra1505292]
- 118 Neuwelt EA, Gilmer-Knight K, Lacy C, Nicholson HS, Kraemer DF, Doolittle ND, Hornig GW, Muldoon LL. Toxicity profile of delayed high dose sodium thiosulfate in children treated with carboplatin in conjunction with blood-brain-barrier disruption. Pediatr Blood Cancer 2006; 47: 174-182 [PMID: 16086410 DOI: 10.1002/pbc.20529]
- 119 Enongene EN, Sun PN, Mehta CS. Sodium thiosulfate protects against acrylonitrile-induced elevation of glial fibrillary acidic protein levels by replenishing glutathione. Environ Toxicol Pharmacol 2000; 8: 153-161 [PMID: 10867374 DOI: 10.1016/s1382-6689(00)00036-3]
- 120 Hayden MR, Tyagi SC, Kolb L, Sowers JR, Khanna R. Vascular ossification-calcification in metabolic syndrome, type 2 diabetes mellitus, chronic kidney disease, and calciphylaxis-calcific uremic arteriolopathy: the emerging role of sodium thiosulfate. Cardiovasc Diabetol 2005; 4: 4 [PMID: 15777477 DOI: 10.1186/1475-2840-4-4]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

