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Abstract
Sepsis can develop during the body’s response to a critical illness leading to 
multiple organ failure, irreversible shock, and death. Sepsis has been vexing 
health care providers for centuries due to its insidious onset, generalized 
metabolic dysfunction, and lack of specific therapy. A common factor underlying 
sepsis is the characteristic hypermetabolic response as the body ramps up every 
physiological system in its fight against the underlying critical illness. A 
hypermetabolic response requires supraphysiological amounts of energy, which is 
mostly supplied via oxidative phosphorylation generated ATP. A by-product of 
oxidative phosphorylation is hydrogen peroxide (H2O2), a toxic, membrane-
permeable oxidizing agent that is produced in far greater amounts during a 
hypermetabolic state. Continued production of mitochondrial H2O2 can 
overwhelm cellular reductive (antioxidant) capacity leading to a build-up within 
cells and eventual diffusion into the bloodstream. H2O2 is a metabolic poison that 
can inhibit enzyme systems leading to organ failure, microangiopathic 
dysfunction, and irreversible septic shock.  The toxic effects of H2O2 mirror the 
clinical and laboratory abnormalities observed in sepsis, and toxic levels of blood 
H2O2 have been reported in patients with septic shock. This review provides 
evidence to support a causal role for H2O2 in the pathogenesis of sepsis, and an 
evidence-based therapeutic intervention to reduce H2O2 levels in the body and 
restore redox homeostasis, which is necessary for normal organ function and 
vascular responsiveness.
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Core Tip: Sepsis mortality remains unacceptably high because there is no specific 
treatment to prevent or reverse the multiple organ failure and refractory hypotension 
that develops in this condition. An evidence-based analysis suggests that impaired 
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systemic redox homeostasis caused by the toxic accumulation of hydrogen peroxide 
has a causal role in the pathogenesis of this often fatal illness. The data imply that 
restoration of redox homeostasis by therapeutic reduction of hydrogen peroxide will 
significantly reduce the morbidity and mortality associated with sepsis. A therapeutic 
intervention to reduce systemic levels of hydrogen peroxide is presented.
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INTRODUCTION
Medicine has made fantastic strides over the past century. Our intricate knowledge of 
disease has been spearheaded by amazing advances in laboratory techniques that 
allow us to identify and instigate changes at the molecular level. This has led to an 
explosion of data accompanied by a detailed insight into pathological processes that 
perpetuate disease states leading to the identification of potential therapeutic targets, 
which can be exploited for new and more effective therapeutic interventions. 
However, while laboratory research is an extremely useful tool to obtain a 
pathophysiological snapshot of disease it cannot, on its own, identify the pathogenesis, 
and for some diseases, a creative theoretical approach is the only way to get 
"upstream" where novel insights may shed light on difficult clinical problems.

A prime example is sepsis, a systemic process with a high fatality rate that 
ultimately leads to microangiopathic dysfunction, refractory hypotension, multiple 
organ failure, and death. Worldwide, someone dies of sepsis every 3 s with 20% of 
global deaths being sepsis-related for a total of 11 million deaths annually and 
growing. Sepsis is thought to be a hyper-immune response to infection[1]. But in over 
40% of sepsis cases there is no identifiable infectious agent, and culture positivity is 
not independently associated with mortality in sepsis[2-6]. These observations suggest 
that infection can be sufficient but is not absolutely necessary for sepsis to develop. It 
also suggests an endogenous process that is common to both infectious and non-
infectious conditions (i.e., multiple body trauma, pancreatitis, post-surgery, etc.), which 
is set in motion, ultimately leading to sepsis. Finally, the profound immunosup-
pression occurring during sepsis[7] suggests a non-immune contemporaneous process 
as the proximate causal factor in the development of the sepsis syndrome. This raises 
the consideration that the immune system is failing for the same reason other organs 
fail.

From a metabolic perspective, there is evidence of impaired mitochondrial oxygen 
utilization in sepsis despite normal oxygen tension[4,8-10]. This suggests a 
mitochondrial-derived agent capable of interfering with oxygen utilization by 
inhibiting substrate oxidation during the tricarboxylic acid (Krebs) cycle or oxidative 
phosphorylation. The close association of hyperlactatemia with adverse sepsis 
outcomes despite the absence of tissue hypoxia or impaired tissue oxygenation 
provides further evidence that implicates impairment of mitochondrial oxidative 
metabolism as discussed in more detail below[11,12].

The identification of mitochondrial abnormalities in sepsis focuses attention on 
bioenergetics and suggests that the common link between infectious and non-
infectious origins of sepsis is not an immune response but a hypermetabolic state that 
sends mitochondrial metabolism into “overdrive” causing dysfunction of vital intram-
itochondrial bioenergetic processes. This reduces the problem of sepsis to the identi-
fication of a mitochondrial-generated molecule whose production is scaled up during 
hypermetabolism and is capable of inhibiting enzymes in the Krebs cycle and/or the 
electron transport chain (ETC). This is likely to be a small molecule that is normally 
eliminated within mitochondria since most people do not develop sepsis during a 
clinical hypermetabolic response.

A prime element that fulfills these theoretical requirements is hydrogen peroxide 
(H2O2), a small, cell-membrane permeable highly toxic oxidizing agent that is 
produced within mitochondria as a result of electron transport chain auto-oxidation
[13]. H2O2 must be immediately eliminated to prevent cell damage and is removed by 
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the following series of reactions (Figure 1)[14-16].
Studies have shown that blood H2O2 is significantly elevated in human sepsis and 

septic shock with values reported up to 558 μmol/L, which is over 100 times the 
normal upper limit of 5 μmol/L and over ten times 50 μmol/L upper limit at which  
H2O2 becomes cytotoxic[17-19]. Certain cell populations, such as lymphocytes, 
undergo apoptosis at H2O2 exposure of less than 1 μmol/L, which can lead to 
significant lymphopenia and immunosuppression[19,20]. Normal intracellular H2O2 
levels are in the picomolar range[19,21]. Thus, septic blood has over a million times 
greater H2O2 concentration than normal cells resulting in the potential for significant 
systemic cellular cytotoxicity which can disrupt metabolic pathways and organ 
function.

Other clinical abnormalities observed in sepsis such as hypotension, coagulopathy, 
encephalopathy, microangiopathic and cardiac dysfunction, erythrocyte rigidity, 
methemoglobinemia, glutathione depletion, mitochondrial damage, and lymphocyte 
apoptosis are also documented adverse effects of H2O2, all of which contribute to 
multiple organ failure and lymphocytopenia observed in sepsis[22-25].

But where does all this H2O2 come from? Although leukocytes such as neutrophils 
can produce large amounts of H2O2 during the respiratory burst[26], the profound 
immunosuppression[7,27-30] during advanced stages of sepsis suggests a significant 
non-immune contribution to the persistently elevated blood H2O2 levels observed in 
advanced sepsis and septic shock. Significant depletion of tissue glutathione in muscle, 
lung, and erythrocytes in addition to plasma thiol depletion (albumin cys34) suggests 
these tissues have become H2O2 generators contributing to elevated blood H2O2 in 
sepsis patients[22,31,32].

The production of mitochondrial H2O2 depends upon the rate of electron transfer 
through the ETC. The higher the electron transfer rate the greater the production of H2

O2. Studies in isolated mitochondria have shown an exponential increase in reactive 
oxygen species (i.e., H2O2) at strongly polarized levels of mitochondrial membrane 
potential[33], which can occur in hypermetabolic critically ill patients. Other studies in 
mice have shown that mitochondrial H2O2 will increase up to 15x the normal rate 
during state-3 (maximal) respiration[34]. The clinical correlate of state-3 respiration is a 
hypermetabolic state, which is characterized by tachycardia, tachypnea, leukocytosis, 
high fever, and significantly enhanced protein biosynthesis. These are the cardinal 
elements that define the systemic inflammatory response syndrome (SIRS), which 
accompanies sepsis. This implies that a clinical hypermetabolic response is accom-
panied by supraphysiological increases in ETC-generated H2O2 and is the common 
factor linking infectious and non-infectious sepsis.

Due to the limited amount of mitochondrial glutathione available for H2O2 neutral-
ization in addition to high basal levels of mitochondrial H2O2, a sustained hyper-
metabolic response can overwhelm cellular reductive (antioxidant) capacity resulting 
in un-neutralized H2O2 leaking out of cells and into the bloodstream with a subsequent 
rise in blood H2O2 reaching toxic levels[35-40].

H2O2 is a metabolic poison and the data suggest that sepsis is due to an endogenous 
H2O2 poisoning secondary to the oxidative damage inflicted by this highly toxic 
oxidizing agent. Since H2O2 is permeable through cell membranes, elevated blood H2O
2 indicates systemic reductive depletion, which perpetuates the production of H2O2

[41]. Toxic levels of H2O2 will disrupt cellular function in all body organs, which can 
lead to multiple organ failure and microvascular dysfunction. Any cell undergoing a 
hypermetabolic response can deplete its reductive capacity and contribute to total 
body H2O2 load.

A potential cause and effect relationship between H2O2 and sepsis has likely 
remained obscure because a hypermetabolic state, which generates H2O2, is a 
confounding factor in the relationship between infection and sepsis (Figure 2)[42-51].

Based on the data, H2O2 is also an intervening variable in the setting of critical 
illness-associated sepsis (Figure 3)[52-55]. Intervening variables have an important role 
in therapy as they are mechanistically “closer” to the final effect and can serve as a 
therapeutic target. The observation that culture-positive sepsis patients on appropriate 
antibiotics still die suggests an additional factor independent of infection that exerts a 
significant influence on the clinical outcome of sepsis[5]. In this scenario, the H2O2 
induced tissue damage and metabolic dysfunction (the effect) is too severe and can no 
longer be reversed by treating the infection (the exposure) with antibiotics. As an 
intervening variable with a postulated causal role in sepsis, H2O2 explains why culture 
positivity is not independently associated with mortality in sepsis[5] since the data 
supports H2O2 (and not infection per se) as the proximal causal agent in sepsis.
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Figure 1 Krebs cycle derived reducing equivalents (NADH, FADH2) donate electrons that are processed by the electron transport chain 
during oxidative phosphorylation. Up to 5% of electrons (e-) will normally escape the electron transport chain (ETC) into the mitochondrial matrix (electron 
leakage)[14-16]. These electrons combine with molecular oxygen (O2) to form superoxide anion radical (O2

-), which is metabolized by superoxide dismutase (SOD) to 
hydrogen peroxide (H2O2) that in turn is converted to glutathione disulfide (GS-SG) and water via glutathione peroxidase (GPX) and its reducing co-factor glutathione 
(GSH). Critical illness hypermetabolic states increase ETC activity leading to enhanced electron leakage and far greater H2O2 formation, which can deplete cellular 
GSH resulting in a build-up of H2O2 in cells and blood causing bioenergetic dysfunction and organ failure.

Figure 2 Confounding in Sepsis: The hypermetabolic state that accompanies a critical illness is a con-founding factor in the relationship 
between systemic infection (exposure) and sepsis (effect). Hypermetabolism generates large amounts of hydrogen peroxide (H2O2), which is both a risk 
factor for the development of sepsis and is bilaterally associated (double arrow) with infection. Systemic infection triggers a hypermetabolic state accompanied by 
greatly amplified generation of H2O2, but non-infectious critical illness can also generate large amounts of H2O2 due to the accompanying hypermetabolic state. High 
levels of blood H2O2 can cause systemic lymphocyte apoptosis leading to significant lymphocytopenia, which predisposes to infection. Thus, systemic build-up of H2O2 

can lead to sepsis. This can occur after an infectious or non-infectious insult. In the latter instance, infection may develop as a result of H2O2 induced systemic 
lymphocyte apoptosis and subsequent lymphocytopenia.

Figure 3 Sepsis and intervening variables: Hydrogen peroxide is an intervening variable between a critical illness (exposure), which 
triggers a systemic hypermetabolic response, and sepsis (effect). Hypermetabolism, characterized by the systemic inflammatory response syndrome, is 
the clinical manifestation of supraphysiological cellular H2O2 production. This will eventually lead to reductive depletion and sepsis (H2O2 toxicity, bioenergetic organ 
failure) if allowed to persist. Prolonged critical illness (hypermetabolism) and dietary restriction severely limit the body’s ability to re-establish and maintain redox 
homeostasis. Under these circumstances, direct acting reducing equivalents must be supplied to the patient to aid in neutralizing excess H2O2. A hypermetabolic 
response to critical illness or injury may continue for years after hospital discharge and contribute to increased inpatient and post-discharge morbidity and mortality 
(chronic critical illness and post sepsis syndrome respectively)[52-55].

All hypermetabolic states (infectious and non-infectious), have the potential of 
generating excess H2O2, which can accumulate to toxic levels leading to bioenergetic 
organ failure and sepsis. The relationship between exposure (infection) and con-
founder (H2O2) is bilateral because systemic infections cause a hypermetabolic state 
that can elevate blood H2O2 but non-infectious hypermetabolic states (i.e., burns, 
multiple body trauma) can generate sufficient H2O2 leading to generalized lymphocyte 
apoptosis and profound lymphocytopenia, which can lead to infection. Serial negative 
blood cultures can eventually turn positive because of this phenomenon. In other 
words, infections can increase blood H2O2 but a primary non-infectious increase in 
blood H2O2 can eventually lead to infection, reinforcing the widely held view that 
sepsis is always due to infection. In the latter case, infection is the result of H2O2 
induced lymphocytopenia (Figure 4).

Studies have shown that certain antibiotics can cause mitochondrial dysfunction 
accompanied by a significant production of H2O2[46]. This implies that patients must 
have sufficient residual reductive capacity to deal with the oxidative stress imposed by 
antibiotic treatment, underscoring the critical need to begin antibiotics along with 
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Figure 4 H2O2 induced immune system failure. Sequences 4A and 4B illustrate the common hypermetabolic response in infectious and non-infectious critical illness leading to H2O2 toxicity induced organ failure and sepsis. Lymphocytes are highly 
sensitive to H2O2 induced apoptosis. Lymphopenia is thus a manifestation of H2O2 induced immune system failure secondary to a hypermetabolic response in both infectious and non-infectious critical illness. H2O2 induced lymphopenia will predispose to 
de-novo infection in otherwise sterile critical illness and may cause a super-infection in patients on appropriate antibiotics. H2O2 toxicity and/or super-infection may contribute to sepsis mortality despite appropriate antibiotics.

reductive therapy as early as possible during the course of infection-associated sepsis. 
Reductive therapy encompasses any treatment that increases reductive (antioxidant) 
capacity, i.e., glutathione, protein thiols, etc. The purpose of which (in sepsis) is to 
augment the patient’s reductive (antioxidant) capacity to neutralize H2O2.

For the patient, the clinical benefits of limiting exposure to H2O2 go beyond 
discharge from the hospital because H2O2 can damage mitochondrial DNA. 
Mitochondrial DNA (mtDNA) is highly vulnerable to H2O2 induced oxidative damage 
due to the proximity of mtDNA to the electron transport chain, both of which reside 
on the matrix side of the inner mitochondrial membrane. Exposure of mtDNA to H2O2 
will inflict base mutations and nucleotide mispairing that upon transcription result in 
the incorporation of mutated protein subunits into the electron transport chain (ETC). 
Mutated ETC components interfere with electron transport resulting in augmented 
electron leakage with increased H2O2 generation[47-52]. This establishes a self-
amplifying vicious cycle with ever greater production of H2O2 and mtDNA damage, 
which can lead to prolonged metabolic and bioenergetic dysfunction in sepsis 
survivors and contribute to the post-sepsis syndrome.

H2O2 induced impaired redox homeostasis as a primary mechanism of disease is a 
novel pathogenesis that is supported by experimental evidence and is grounded in 
fundamental concepts of redox biology, redox biochemistry, and bioenergetics. Similar 
to electrolyte balance and acid/base buffering systems, redox homeostasis is a vital 
homeostatic mechanism required for normal cellular function and should be assessed 
in all critically ill patients.
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CLINICAL MANIFESTATIONS OF H2O2 INDUCED OXIDATIVE STRESS
Since most H2O2 is a product of mitochondrial electron transport chain activity, clinical 
manifestations of H2O2 begin with its effects on cellular metabolism. Indeed, with 
almost 40% of all cellular reactions being redox reactions[53], the potential for H2O2 

induced oxidative impairment of cellular metabolism and bioenergetics cannot be 
overstated, especially since blood H2O2 levels reported in sepsis exceed cellular 
cytotoxic tolerances by several-fold[17]. The mechanisms of H2O2 toxicity mirror the 
clinical manifestations of sepsis and include:

Hyperlactatemia
Elevated blood lactate is common among patients with sepsis and is associated with 
significantly greater mortality[12]. Toxic levels of H2O2 can inhibit enzymes in the 
Krebs cycle and electron transport chain leading to hyperlactatemia and bioenergetic 
failure characteristic of advanced sepsis[54-59]. H2O2 increases cellular lactate by 
interrupting mitochondrial oxidative energy flux (directional oxidation), which is 
needed to maintain the proton motive force (electrochemical proton gradient) that 
fuels pyruvate import into the mitochondrial matrix[60,61]. Studies have shown that 
H2O2 inhibits a variety of enzymes including enzymes within the Krebs’ cycle such as 
aconitase, alpha-ketoglutarate dehydrogenase, and Succinate Dehydrogenase[55-57,
62].

Once inhibited, the Krebs cycle can no longer supply sufficient reducing equivalents 
(NADH, FADH2) needed to sustain the mitochondrial proton gradient. Diminished 
Krebs cycle supplied reducing equivalents can decrease (and eventually collapse) the 
mitochondrial proton gradient. This will impair the proton motive force needed for 
pyruvate translocase in the inner mitochondrial membrane to transport pyruvate into 
mitochondria in symport with a proton[60,61]. The end result is increased cytosolic 
pyruvate and subsequent conversion to lactate with resulting hyperlactatemia[11]. 
Thus, in sepsis, hyperlactatemia can be a manifestation of H2O2 toxicity, in which case 
the reduction of serum lactate alone has no effect on the outcome of sepsis[63,64].

The effect of a dysfunctional Krebs cycle on serum lactate levels can be seen with the 
inherited deficiency of alpha-ketoglutarate dehydrogenase, which is associated with 
severe congenital hyperlactatemia[65]. Under these circumstances, increasing inspired 
oxygen will not lower serum lactate since the problem is with the diminished supply 
of electrons to the electron transport chain, which collapses the proton gradient 
dissipating the proton motive force, and not the availability of oxygen.

Studies have shown substantial lactate production from the lungs of patients with 
septic shock[66]. Hypoperfusion or hypoxia is highly unlikely given that the lungs are 
continuously bathed in oxygen and receive the entire cardiac output. However, when 
combined with other studies showing decreased lung glutathione in sepsis, H2O2 
toxicity is a strong possibility. Therapeutic removal of H2O2 (discussed below) can 
contribute to the normalization of bioenergetic function and serum lactate.

It’s worth noting that the mitochondrial proton motive force fuels both ATP 
synthase and nicotinamide nucleotide transhydrogenase both of which are located in 
the inner mitochondrial membrane. The former is needed to synthesize ATP while the 
latter is required to generate mitochondrial NADPH, a critical source of reducing 
equivalents for the regeneration of mitochondrial glutathione needed to neutralize 
H2O2[13]. Thus, sepsis-associated hyperlactatemia may signal a compromised proton 
motive force and the start of a vicious cycle leading to increased H2O2 induced 
oxidative stress and bioenergetic failure.

Anemia
A common feature during the progression of sepsis is anemia. Several factors can 
contribute to the development of sepsis-associated anemia however, sepsis per se is 
independently associated with the development of anemia, and healthy erythrocytes 
exposed to plasma from sepsis patients undergo eryptosis[67,68]. H2O2 induced 
oxidative stress initiates erythrocyte suicidal cell death known as eryptosis leading to 
cell shrinkage and clearance from the blood[68-71]. Thus, H2O2 initiated eryptosis may 
contribute to sepsis-related anemia.

Hypocalcemia
Low serum calcium is a common finding in patients with sepsis and critical illness, 
with reported prevalence rates of up to 80%[72]. Hypocalcemia may be due to one or 
more of various causes[73]. However, during sepsis, calcium is shifted into red blood 
cells with significant increases in erythrocyte calcium of more than twice the control 
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value[74]. Given that about 85% of all cells in the body are red blood cells, this shift 
may significantly contribute to sepsis-associated hypocalcemia[75]. Erythrocytes 
exposed to oxidative stress (i.e., H2O2) activate calcium-permeable cation channels 
leading to calcium entry into the cell[71]. Significantly increased lymphocyte calcium 
has also been reported in sepsis[76]. This suggests that the elevated blood H2O2 
reported in sepsis may cause a more generalize intracellular shift of calcium.

Shock
Sepsis-associated hemodynamic instability can progress to septic shock, which carries 
a high mortality. Oxidative stress due to H2O2 exposure causes extensive cytoskeletal 
disruption to endothelial cells leading to significant endothelial retraction and 
microangiopathic dysfunction[22]. The net effect of microvascular H2O2 exposure is 
microangiopathic dysfunction, impaired vasomotor responsiveness, barrier disruption 
with edema formation, and irreversible hypotension (septic shock)[22,77]. Studies have 
reported hypotension in an animal model after intravenous administration of H2O2
[25].

Immunosuppression
Sepsis patients develop profound immunosuppression that begins within days after 
the onset of sepsis[7,28,30]. Lymphocytes are extremely sensitive to H2O2 induced 
apoptosis, which occurs at H2O2 concentrations of less than 1 μmol/L[19,20]. Studies 
report blood H2O2 concentrations in sepsis of up to 558 μmol/L, which is over 500 
times the concentration of H2O2 needed to cause lymphocyte apoptosis[17-19]. The 
ability of high blood H2O2 concentrations to cause generalized lymphocyte apoptosis 
explains the profound immunosuppression observed in sepsis patients.

Respiratory failure
Sepsis-associated acute respiratory distress syndrome (ARDS) is a serious compli-
cation of sepsis that carries a high mortality. It is characterized by increased 
permeability of pulmonary capillary endothelial and epithelial cells. The increased 
vascular permeability leads to diffuse capillary leak, pulmonary edema, and eventual 
wet lung, which triggers the secondary development of pathological features[78,79]. 
Studies have demonstrated that low dose H2O2 can increase pulmonary vascular bed 
permeability and capillary filtration[80-83]. This suggests that the high levels of H2O2 
reported in the blood of sepsis patients may have a causal role in the initiation of 
ARDS.

Acute kidney injury
Sepsis-associated acute kidney injury (S-AKI) is a life-threatening complication that 
develops in up to two-thirds of patients with sepsis or septic shock, which in half of 
the patients develops before seeking medical attention[84]. Once thought to be a 
consequence of cellular hypoxia leading to acute tubular necrosis, it is now recognized 
that S-AKI can occur in the setting of normal or increased renal blood flow[84]. Studies 
suggest a critical role for microcirculatory dysfunction, which is present in every vital 
organ in animal models and humans with sepsis[84-86]. When combined with studies 
showing a decreased substrate flux through the Krebs cycle in mice kidneys after the 
induction of experimental sepsis[87], these effects mirror the known toxic effects of 
H2O2, among which is microangiopathic dysfunction and Krebs cycle enzymatic 
inhibition[22]. In support of a role for H2O2 in S-AKI, studies of experimental murine 
sepsis employing Mito-TEMPO, a mitochondrially targeted reducing agent 
(antioxidant) active against H2O2, significantly increased renal microcirculation, 
glomerular filtration rate, and ATP synthesis[88,89].

The renal endothelium is highly vulnerable to oxidative stress with agents such as 
H2O2, a highly toxic oxidizing agent that can diffuse across cell membranes to impair 
critical signaling and regulatory function required for microvascular function[90]. 
Other studies report significant cytotoxicity in human tubular epithelial cells exposed 
to 100 μmol/L H2O2, while 200 μmol/L exposure caused mitochondrial cytochrome-C 
translocation to the cytoplasm in addition to significant intracellular increases in H2O2. 
These concentrations are within the range reported for blood H2O2 in sepsis patients of 
up to 558 μmol/L[17,91]. H2O2 can inhibit various enzymes involved in oxidative 
metabolism including Krebs cycle enzymes, ATP synthase, and nucleotide (ADP-ATP) 
translocase[55-57,92]. The resulting inhibition in mitochondrial oxidative flux may 
contribute to the increased glycolytic production of lactate by proximal tubule cells 
observed during sepsis[93]. Increased glycolysis would revert to oxidative 
phosphorylation when H2O2 induced inhibition of mitochondrial oxidative metabolism 
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is resolved. Lastly, rat renal artery infusion of 70 mmol/L H2O2 (140x that found in 
human sepsis blood) is reported to cause massive proteinuria without electron 
microscopic ultrastructural glomerular abnormalities[94]. This is consistent with the 
minimal postmortem histological findings in human S-AKI[84,86]. This suggests that renal 
exposure to blood H2O2 levels observed in human sepsis may cause cellular dys-
function without overt signs of cellular damage.

Coagulopathy
Disseminated intravascular coagulation (DIC) is a life-threatening complication 
frequently encountered in sepsis that is characterized by the systemic activation of the 
coagulation system leading to microvascular thrombosis, and potentially life-
threatening hemorrhage due to consumption of platelets and coagulation factors[95]. 
DIC can originate from damage to the microvasculature, which triggers the extrinsic 
coagulation cascade[96]. H2O2 can cause microvascular injury by peroxidation of 
endothelial cell membranes, which triggers the expression of tissue factor and 
subsequent systemic activation of the extrinsic coagulation pathway leading to DIC
[97-99]. Intravenous administration of H2O2 is reported to have resulted in fatal sepsis 
and DIC, underscoring the role of H2O2 induced oxidative stress in both of these 
conditions[100].

On a more fundamental level, the endothelium is critically involved in preventing 
inappropriate coagulation by maintaining barrier function and producing several 
endogenous anticoagulants[101]. The elevated levels of blood H2O2 reported in sepsis 
can permeate endothelial cells throughout the body causing substantial oxidative 
stress accompanied by profound disruption in both form and function[77,102]. Studies 
have reported significant endothelial dysfunction that is associated with mortality and 
severity of coagulopathy[101]. H2O2 induced endothelial dysfunction can explain why 
anticoagulants fail to show a survival benefit in sepsis-induced DIC[103] since these 
agents fail to restore endothelial redox homeostasis.

Encephalopathy
Sepsis-associated encephalopathy (SAE) is a diffuse cerebral dysfunction ranging from 
lethargy and lack of concentration to personality changes, delirium, and coma that 
occurs secondary to sepsis in the absence of direct central nervous system (CNS) 
infection. SAE affects up to 70% of sepsis patients and is associated with higher 
mortality and poorer long term outcomes with half of surviving patients suffering 
from long-term cognitive defects[104,105]. The brain is highly sensitive to H2O2 

induced oxidative damage and dysfunction, and studies report dose-dependent 
cytotoxicity starting at H2O2 exposures of 10 μmol/L[106]. Encephalopathy is reported 
to occur after the accidental ingestion of H2O2[107]. Encephalopathy was also reported 
after intravenous administration of H2O2 for alternative medicine therapy[100].

H2O2 is diffusible through cell membranes which facilitates its diffusion into the 
central nervous system where it can disrupt neuronal and synaptic function. Studies 
have shown that H2O2 can alter neuron membrane properties and impair synaptic 
transmission leading to hyperexcitability and epileptiform activity[108,109]. This is 
notable because epileptic seizures can be a manifestation of SAE. Other studies have 
demonstrated bioenergetic impairment with decreased ATP biosynthesis and 
utilization in neurons exposed to H2O2[110,111]. H2O2 has also been reported to alter 
rat hippocampal synaptic plasticity, which can negatively impact long-term 
potentiation, learning, and memory[112]. Thus, the presence of elevated levels of 
blood H2O2 in sepsis can have acute and chronic effects on brain function and 
cognition.

TREATMENT
Sepsis is a life-threatening medical emergency that can precipitously evolve into 
hemodynamic instability, septic shock, and death. Thus it may not be possible or 
prudent to wait for a blood H2O2 level if clinical signs of H2O2 toxicity are present. 
Additionally, it takes some time before free H2O2 can accumulate in the bloodstream 
given the multiple layers of reductive (antioxidant) defense systems that mito-
chondrial H2O2 must traverse on its way to the intravascular compartment including 
mitochondrial and cytoplasmic glutathione followed by interstitial albumin whose 
cys34 amino acid can react with H2O2 (60% of total albumin) and ultimately serum 
albumin (40% of total albumin) and red blood cell reductive (glutathione) capacity
[13]. During the time it takes to reach the blood stream and build-up, toxic levels of 
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intracellular H2O2 can inhibit critical cellular bioenergetic reactions leading to 
compromised bioenergetic function.  This was demonstrated in ulcerative colitis, an 
inflammatory bowel disease, in which a primary increase in colonic epithelial H2O2, 
thought to have a causal role in this disease, resulted in impaired beta-oxidation due to 
H2O2 inhibition of mitochondrial thiolase, the last enzyme in the beta-oxidation 
cascade[113].

Within this context, the data support the critical need for reduction of systemic H2O2 
in sepsis to prevent bioenergetic organ failure and restore microcirculatory function. 
Restoration of redox homeostasis by the elimination of excess H2O2 must accompany 
other therapeutic interventions to optimize clinical responsiveness and outcome. 
Sodium thiosulfate (STS) is a direct-acting reducing agent that can neutralize H2O2 
upon contact.

STS is approved for use in cyanide poisoning with a recommended dose of 12.5 g 
over slow IV infusion (10 to 20 min) in adults and 250 mg/kg in children[114]. Similar 
dosing regimens can be considered in sepsis. Repeat dosing can be guided by clinical 
status, blood reducing capacity (glutathione, plasma thiols), and blood H2O2 levels. 
The general chemical reaction for the reduction of H2O2 with sodium thiosulfate yields 
sodium trithionate, sodium sulfate, and water[115].

2Na2S2O3 + 4H2O2 → Na2S3O6 + Na2SO4 + 4H2O
The rationale underlying STS administration in sepsis is to reduce blood H2O2 to 

normal (less than 30 μmol/L) in order to allow intracellular H2O2 to diffuse down its 
concentration gradient into the systemic circulation where it can be neutralized by 
STS. STS is generally well tolerated and is an accepted therapy for cisplatin toxicity 
and renal failure associated calciphylaxis (25 g three times weekly)[116,117]. High dose 
STS (up to 16 g per M2 surface area, repeated after 4 h) is reported to be well tolerated 
in children under 12 years of age[118].

STS is reported to replenish intracellular glutathione, which will aid in the removal 
of intracellular H2O2 and restoration of redox homeostasis[119,120]. Decreasing serum 
lactate indicates that H2O2-induced Krebs cycle inhibition and bioenergetic dysfunction 
are being reversed. Restoration of vascular responsiveness by STS may cause extant 
vasopressor measures to have an unanticipated amplified effect. Thus, STS adminis-
tration in critically ill patients should be accompanied by close patient monitoring. 
Finally, if STS therapy proves to be successful in the treatment of sepsis then treatment 
with STS should be considered in all critically ill (hypermetabolic) patients in order to 
restore depleted systemic reducing equivalents before blood H2O2 becomes toxically 
elevated.

Specific treatment considerations
ARDS: Inhaled STS may have a beneficial effect to neutralize H2O2 that has diffused 
through the alveolar-capillary membrane causing oxidant damage in the alveolar 
space.

S-AKI: Primary prevention of S-AKI is not possible in all patients because most 
patients developing S-AKI already have it at presentation. Administration of STS 
should be considered when patients first seek medical care to initiate primary or 
secondary prevention.

The evidence supports the use of STS as a specific therapeutic agent for the 
treatment of sepsis and its associated complications. Given the high mortality, 
significant societal burden, and absence of a safe and effective treatment for this 
deadly condition, clinical studies are urgently needed to determine the effectiveness of 
STS for the treatment of sepsis.

CONCLUSION
The mortality in sepsis is unacceptably high because there is no specific therapy to 
treat the sepsis syndrome. H2O2 toxicity mirrors the clinical and laboratory 
abnormalities observed in sepsis, and toxic levels of blood H2O2 have been reported in 
this condition. This and other data implicate H2O2 as the causal factor in the 
pathogenesis of sepsis, which predictably develops accompanied by systemic 
depletion of reducing equivalents (i.e., glutathione) needed for the reduction (neutral-
ization) of metabolically generated H2O2. Once the body’s reductive (antioxidant) 
capacity is depleted, H2O2 will continue to be generated and flood the system.

Prolonged supraphysiological production of H2O2 generated by electron transport 
chain hyperactivity during a hypermetabolic state (such as sepsis) can overwhelm 
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cellular reductive systems leading to H2O2 accumulation within tissues and blood. H2O
2 is a highly toxic membrane-permeable metabolic poison that can cause severe 
bioenergetic dysfunction and cellular damage if allowed to accumulate. Continued 
exposure can lead to the collapse of systemic redox homeostasis, proton motive force 
dissipation, organ failure, microvascular dysfunction, and fatal septic shock. 
Reduction of blood H2O2 is paramount in order to prevent H2O2 toxicity from 
irreversibly shutting down cellular metabolism.

The data support the use of sodium thiosulfate as a systemic reducing agent with 
the goal of restoring redox homeostasis by neutralizing excess systemic H2O2. Prophy-
lactic use of sodium thiosulfate in all critically ill (hypermetabolic) patients should be 
considered before irreversible H2O2 induced bioenergetic failure and microvascular 
dysfunction develop.

Based on the data, the missing critical intervention to improve patient outcomes and 
reduce mortality in patients with sepsis and septic shock is the normalization of 
systemic redox homeostasis. The addition of specialists in redox medicine to the team 
providing care to critically ill patients can contribute to achieving this heretofore 
elusive goal.
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