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Abstract
Cholangiocarcinomas (CCAs) are diverse biliary epithelial tumours involving the 
intrahepatic, perihilar and distal parts of the biliary tree. The three entirely 
variable entities have distinct epidemiology, molecular characteristics, prognosis 
and strategy for clinical management. However, many cholangiocarcinoma tu-
mor-cells appear to be resistant to current chemotherapeutic agents. The role of 
autophagy and the therapeutic value of autophagy-based therapy are largely 
unknown in CCA. The multistep nature of autophagy offers a plethora of re-
gulation points, which are prone to be deregulated and cause different human 
diseases, including cancer. However, it offers multiple targetable points for 
designing novel therapeutic strategies. Tumor cells have evolved to use auto-
phagy as an adaptive mechanism for survival under stressful conditions such as 
energy imbalance and hypoxic region of tumors within the tumor microenvir-
onment, but also to increase invasiveness and resistance to chemotherapy. The 
purpose of this review is to summarize the current knowledge regarding the 
interplay between autophagy and cholangiocarcinogenesis, together with some 
preclinical studies with agents that modulate autophagy in order to induce tumor 
cell death. Altogether, a combinatorial strategy, which comprises the current anti-
cancer agents and autophagy modulators, would represent a positive CCA patient 
approach.
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cells in tumorigenesis remains controversial. A grown body of research data suggests 
that autophagy is a promising target for several cancer types, including cholangiocar-
cinomas (CCAs). A novel therapeutic approach which could involve autophagy ma-
nipulation plus chemotherapeutic agents may open a new field for more beneficial 
therapeutic strategies for patients with CCA.

Citation: Koustas E, Trifylli EM, Sarantis P, Papavassiliou AG, Karamouzis MV. Role of 
autophagy in cholangiocarcinoma: An autophagy-based treatment strategy. World J 
Gastrointest Oncol 2021; 13(10): 1229-1243
URL: https://www.wjgnet.com/1948-5204/full/v13/i10/1229.htm
DOI: https://dx.doi.org/10.4251/wjgo.v13.i10.1229

INTRODUCTION
Cholangiocarcinoma (CCA) constitutes a highly malignant group of epithelial tu-
mours, originated in the biliary tree, consisting of three heterogeneous entities based 
on their anatomical occurrence: (1) The intrahepatic (ICC), 10% of primary liver 
malignancies, the second most common after hepatocellular carcinoma (HCC); (2) 
Perihilar (PCC), the most frequent type of CCA ( 50%-60%); and (3) Distal (DCC) 
which comprises the 20%-30% of all CCA[1-5]. A rare mixed type of CCA and HCC is 
hepatocellular (CHC-CCA), arising from transdifferentiated hepatocytes[6,7]. CCA is a 
rare gastrointestinal cancer (3%), however, it exhibits a noticeably increased incidence 
in the last decades in Western countries (0.3-6 per 10people). It is characterized by a 
late diagnostic type which contributes to a high mortality rate (1-6 per 105 people) and 
a worrisome prognosis[8,9]. The highest incidence of CCA is reported in Southeast 
Asia, especially in Northeast Thailand (85 per 105 people) based on Age-standardized 
global incidence rates[10]. Except for the geographical variations that imply an 
interactive relationship between genetic and local environmental risk factors, CCA 
exhibits gender disparity with a slight male predominance (1.5 fold higher), mostly in 
the 5th decade of life[4,5,10], as well as racial variation based on karyotyping studies
[11,12]. In endemic areas, a well–documented risk factor is the contamination with 
liver fluke, larvae of Opisthorchis viverrini, and Clonorchissinesisvia food consumption, 
and occupational exposure aflatoxins, asbestos and plutonium manual-labor and 
industrial work[13,14]. The majority of CCA cases in the Western world are not related 
to any obvious predisposing factor[13,15,16]. However, primary sclerosing cholangitis 
(PSC) is the most reported risk factor[17]. Pathologies related to chronic biliary inflam-
mation account for risk factors like hepatobiliary lithiasis, chronic pancreatitis, 
fibropolycystic liver disease, non-alcoholic fatty liver disease (NAFLD), cirrhosis, as 
well as, Hepatitis B and C, viral infections, which are strongly associated with iCCA 
occurrence[18]. Metabolic diseases like diabetes mellitus type2 (T2DM), obesity, hyper-
tension, as well as other inflammatory diseases may also contribute to the disease[19,
20].

Cholangiocarcinogenesis is a multistep event, resulted from deregulated signaling 
pathways and genomic aberrations[2,21]. Chronic biliary inflammation leads to the 
proinflammatory cytokine overexpression, like interleukin-6 (IL6), which has the role 
of growth factor in CCA[22,23]. FGFR gene fusion with MGEA5, TACC3, BICC1, 
PPHLN1 and ROS is reported, consisting of therapeutic targets[10,24-26]. A variety of 
mutations have been reported, like KRAS, TP53, RNF43, ROBO2, CDKN2A MLL3, 
SMAD4, ARID1A, and a recently reported in IDH, which also composes a druggable 
target[10,27]. KRAS and Tp53 mutations are associated with an aggressive behaviour 
of tumours and poor prognosis [E], while the latter is frequently coexisting with viral 
hepatitis B inflection[28,29]. Extrahepatic CCA, are frequently associated with ERBBE, 
ELF3 mutations and PRKACA-PRKACB fusions, while iCCA with IDH1/2, BRAF, 
ARID1A and FGFR gene fusions[30]. Epigenetic and microRNAs deregulation, are also 
reported. The former is frequently resulted by the mutation of MLLE, ARIDA1A and 
IDH[4,12,31], involved in chromatin remodeling and DNA methylation[3,32,33]. 
microRNAs up or down-regulation is closely involved in cell cycle function, including 
autophagy, as well as in invasion, metastasis and chemoresistance[34,35], while they 
constitute biomarkers for survival and prognosis prediction, especially miR-10b, miR-
22 and miR-551b[10,36-38].

http://creativecommons.org/Licenses/by-nc/4.0/
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Autophagy is a multiphasic, homeostatic, self-degenerative cellular mechanism by 
which non-functional, clustered or mutant proteins and impaired organelles such as 
Endoplasmic reticulum, peroxisomes or mitochondria, are insulated into vesicles, 
which are further fused with lysosomes for the degeneration process[39].  Autophagy 
appears to have a dual role in cancer, either promotes or suppress carcinogenesis. This 
peculiar capacity has created new therapeutic strategies for cancer via interfering in 
autophagy steps[40]. Despite the fact that autophagy’s regulatory mechanism on 
tumors is still examined, many studies demonstrate propitious results of its thera-
peutic potency, especially in combination with other chemotherapeutic agents[41].

Based on several preclinical studies, disturbances in autophagy regulation are 
closely related to carcinogenesis in cholangiocytes, as well as with metastasis and 
dismal outcomes, while it can act as a potent anti-cancer drug target[42].

This review gathers information from the current clinical and preclinical research 
data, about autophagy modulation in CCA and the therapeutic strategies for this 
highly invasive malignancy.

MAIN ROLE OF AUTOPHAGY IN CANCER BIOLOGY
Autophagy (previously described as Macroautophagy) ensures cellular survival under 
stressful conditions[40]. Other less described entities of autophagy are: Microauto-
phagy, which includes engulfment of intracellular components via the invagination of 
cell-membrane and fusion with lysosomes, as well as chaperon-mediated autophagy 
direct translocation of the targeted protein towards lysosomes for the degradation 
process[39]. In Figure 1, the main steps of autophagy are presented.

Despite the fact that it is a physiological mechanism, it has a dual role (as it was 
mentioned before), either as a tumour suppressor or promoter of tumorigenesis and 
metastasis[43,44]. This complex procedure includes a series of steps in order to allow 
the engulfment of the cellular organelles by vesicles, the formation and the expansion 
of phagophore, the maturation into autophagosome and the fusion of the latter with 
the lysosome, with the formation of autolysosome, which is responsible for the 
degradation and recycling of the organelles[39]. The first step of the mechanism 
(induction) is initiated, by the inactivation of mammalian target of rapamycin (mTOR), 
allowing the activation of Unc-51-like kinase1 complex (ULK1) and the cargo selection 
and engulfment by vacuoles. The second step (nucleation), includes the activation and 
phosphorylation of activated class III PI3K complex by ULK1, with the formation of 
PI3K -Beclin-1 complex[39]. In the third step, phagophore starts to expand via mem-
brane elongation, which includes two conjugations of ATG5–ATG12 complex with 
ATG16 and the LC3I (soluble-form) to lipid phosphatidylethanolamine (PE), with the 
former recruiting more cargo for the phagophore expansion and the latter resulting 
into LC3II (lipid form), which locates in autophagosome-membrane for the binding of 
degradation-products[45].The fourth step includes the formation of autolysosome 
(fusion of the autophagosome with lysosome) and the fifth, the degradation of cargo 
and the recycling of the products[39,46]. Autophagy is closely related to the tumour 
microenvironment (TME), exhibiting a protective role via the degradation of damaged 
cargo and the inhibition of tumour growth in early malignant stages[45], like damaged 
mitochondria, a major source of mutagenic reactive-oxygen species (ROS)[47-49]. In 
the late stages, it is used by the cancer cells for their adaptation and survival, in 
extreme micro-environmental conditions, like hypoxia and starvation, having the role 
of tumour growth promoter[42,45,50]. All the steps can be targeted in anti-cancer 
therapy via the induction of an autophagiccytoprotective mechanism, which can 
further reduce the chemo-resistance and induce cancer cell death[40,51].

ROLE OF AUTOPHAGY IN CHOLANGIOCARCINOMA
CCA is a highly diversified group of malignancies that exhibit various risk factors and 
an aberrant epigenetic and genetic landscape[2]. The well-established therapeutic 
strategies include surgical tumor resection, chemotherapy regimens, as well as locore-
gional therapies. Only a limited portion of patients (1/3) are eligible for tumor re-
section at the diagnostic time, which are further receive adjuvant chemotherapy, 
including either gemcitabine, cisplatin, or 5-fluorouracil (5-FU). However, they cannot 
put a halt to tumor recurrence and resistance. Due to the highly aggressive behavior of 
these malignancies, the majority of patients are diagnosed when the metastasis already 
occurs, or the resection is unfeasible. Palliative care is reserved for these cases, in-
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Figure 1 The stages of autophagosome formation. The autophagy process includes five distinct steps: initiation, elongation, maturation, fusion and 
degradation. In the first step or initiation (1), the double-membrane structure, the Phagophore, is formed after activation of PI3K-classIII – Beclin-1 complex in 
endoplasmic reticulum. Elongation (2) is the second step where the new-formed phagophore begin to enclose Ubiquitin-labeled cytosolic cargos such as proteins. A 
plethora of proteins such as LC3 (LC3-I is conjugated to phosphatidylethanolamine to form LC3-phosphatidylethanolamine conjugate or LC3-II, responsible for the 
autophagosomal membrane structure), Tags (Autophagy-related genes) and p62 (an adaptor protein responsible for the docking of cargoes) have a key role in the 
Maturation (3) step where the Autophagosome has already formed. In the fourth step or Fusion/degradation (4) step, the Autophagosome is fused with a Lysosome in 
order to create the autolysosomes wherein the degradation step (5) the cytosolic cargos are digested from lysosomal enzymes.

cluding the combination of chemotherapeutic agents as gemcitabine and cisplatin, 
which nevertheless exhibit limited benefits[52,53]. In unsuccessful treatment cases 
with the former combination, another regimen is reserved, based on fluoropyrimidine
[2].

Genetic and epigenetic information, as well as the knowledge of the molecular 
pathways in CCA, which contribute to tumor resistance, relapse, as well as metastatic 
behavior, open up more therapeutic approaches via the usage of molecular agents, 
although with moderate overall survival enhancement[1,54,55]. Genomic profiling of 
iCCA sub-classifies it into: (i) inflammatory and (ii) proliferative classes. In the former, 
the activation of inflammatory pathways mainly occurs, while on the latter, the 
activation of oncogenes demonstrates a more worrisome prognosis[12].

The heterogeneity of CCAs subtypes is also demonstrated by Next-generation 
sequencing analysis, which indicates different genetic mutations based on CCA’s 
anatomical location. (iCCA vs extrahepatic: pCCA and dCCA). RAS mutation is more 
frequently exhibited in CCA, particularly in dCCA[56], however, there is a subclass of 
CCA, without exhibiting it. There is also emerging evidence of gene FGFR2 fusions 
involvement in cholangiocarcinogenesis, based on exome sequencing analysis[57]. 
Aberrations are also identified in the epigenetic level of gene regulation, such as 
histone modification, DNA hypermethylation and microRNAs (miRNAs) dysregu-
lation, all implied in CCA Tumorigenesis[34].

As alluded to previously, a better understanding of the molecular, genomic and 
epigenetic affected pathways driving to CCA development and progression could give 
rise to new and improved generations of therapeutic approaches based on patient-



Koustas E et al. Autophagy-based treatment strategy in cholangiocarcinoma

WJGO https://www.wjgnet.com 1233 October 15, 2021 Volume 13 Issue 10

stratification. Major factors implicated in CCA establishment are chronic biliary 
inflammation, ductal obstruction with cholestasis and bile duct injury[58]. As a 
consequence of chronic inflammation, proinflammatory cytokines’ overexpression 
occurs (TNF, IL-6, endotoxins). Persistent secretion of IL-6 by inflamed cholangiocytes 
and immune cells contributes to cancer establishment and progress. IL-6 oversecretion, 
induces nitric oxide production (via nitric oxide synthase), which is implied in DNA 
oxidation and damage[59], as well as stimulates the secretion of cyclic oxygenase 
(COX)-2-mediated prostaglandin, which promotes angiogenesis and disrupts the 
programmed cell death[60].

Autophagy has a crucial role in inflammation; however, their correlation is still 
being researched[44]. A large number of signaling pathways are involved in chronic 
inflammation, during cancer establishment, which influences the process of auto-
phagy. An example of this interconnection is the persistent overexpression of IL6 by 
lung cells, as a response to arsenic exposure, that down-regulates autophagy and 
promotes malignant transformation[61]. IL-6 up-regulation influences the STAT3 
signalling pathway via the inhibition of the Beclin1-Bcl2 complex, which further 
enables an IL-6-dependent transformation. On the contrary, Beclin1 over-stimulation 
enables the blockage of this transformation[61]. The above interrelation between IL-6-
dependent transformation and autophagy during tumorigenesis could open up treat-
ment opportunities in inflammatory-type iCCA. Additionally, many studies de-
monstrate the correlation of different pro-inflammatory signaling pathways with 
autophagy and stress[42].

Based on studies, many genetic mutations have been reported, implied in CCA. 
Harboring mutant KRAS has been identified in 40% of CCAs, particularly in dCCA 
with dismal outcomes[56]. Moreover, it is also related to lymphatic dissemination, 
lower long-term OS and higher grade, as was demonstrated in a study with a limited 
number of patients with iCCA and mutant KRAS gene (7.4%)[62]. In addition, based 
on an animal model study, concomitant mutations of KRAS and P53 are related to 
worse overall survival and malignant transformation in murine[63], while they con-
stitute the most frequently reported genetic modifications[56,64]. The iCCA in murine 
demonstrates similar morphopathological characteristics with humans and presents an 
upregulation of autophagy mechanism, contributing to tumor development. The 
utilization of chloroquine (CQ) ceased tumor growth via the inhibition of the me-
chanism, resulting in the accumulation of LC3-II[42]. Human iCCA, with KRAS and 
P53 alterations, exposed as well increased mechanism of autophagy, compared with 
iCCA without them and the tumor progression was similarly inhibited via the use of 
CQ[42,63].

The development of KRAS axis inhibitors, such as selumetinib, opens up new 
therapeutic strategies, which potentially could be enhanced via the addition of auto-
phagy modulators[1,65]. Mutations in MET lead to STAT modulation, Akt/PI3K and 
MAPK signaling pathways and are associated with aggressiveness, higher tumor 
stage, and reduced survival[66,67].

Furthermore, c-MET inhibition is related to an increased level of autophagy, as it 
was demonstrated in lung cancer[68]. Similarly, mutant EGFR and ERBB genes are 
associated as well with poor outcome and invasiveness[69,70].  In many cancers, 
treated with inhibitors of tyrosine kinase, autophagy acts as a tumor suppressor[71]. 
The combination of autophagy and tyrosine kinase inhibitors could potentially 
improve the treatment results. Moreover, the fusion of FGFR2 genes is demonstrated 
in CCA[72], and they are correlated with decreased autophagy levels, leading to 
tumorigenesis. Inhibition of the above gene induces autophagy as a tumor suppressor 
mechanism in breast and lung malignancies, and its effect can be enhanced with the 
combination of autophagy inhibitors[73,74]. All the above data support that the com-
bination of these inhibitors could potentially increase the therapeutic potential in CCA. 
Alteration in the SMAD4 gene is mainly identified in dCCA[75] and in pancreatic 
malignancy, in which increased autophagy is associated with resistance to radio-
therapy[76]. Similarly, inhibition of autophagy could also be beneficial to this type of 
cancer.

In the initial phase of cholangiocarcinogenesis, Adenomatous Polyposis Coli (APC) 
mutation has been also reported[77], with the altered mechanism of autophagy[78] 
and during the establishment of cancer models[79]. Aberrations in the epigenetic level, 
such as histone modification, DNA hypermethylation, and miRNAs deregulation, are 
crucial for CCA establishment and development[80] while modulating the autophagy 
process[81], as well. The expression and the characteristics of the cilium are influenced 
by the increased expression of histone deacetylase 6 (HDAC6), which reduces its 
length and increases its proliferation. Inhibition of HDAC6 is correlated with reduced 
tumor progression and restoration of cilia[82,83]. Suppression of autophagy contri-
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butes to the effects of HDAC6 inhibition in many cancers such as neuroblastoma, 
colorectal and multiple myeloma[84].

Aggressiveness and dismal outcome of iCCA, are also reported in cases of modified 
HDAC1expression[85]. Significant autophagy regulators are the methylations of 
histone, which decelerate it[86]. Inactivation of tumor suppressors, caused by DNA 
methylation, is reported in cholangiocarcinogenesis.  DNA hypermethylation of 
IDH1/2, is identified in some iCCA cases (10%), which leads to deregulation of 
cellular functions, such as their differentiation[87,88]. Mutation of IDH, identified in 
gliomas, demonstrates the interconnection of autophagy suppression and methyl-
ations of histone[81,86], which open up therapeutic opportunities via autophagy 
inhibitors[89]. Deregulation of many non-coding RNA sequences, such as miR-21, 
miR-29, miR-141 and others, present either up or down-regulation and they constitute 
biomarkers for tumor progression, invasion, cancer cell-death and chemoresistance in 
CCA[90,91]. Autophagy and its components, such as autophagy-associated proteins 
(ATG4, ATG9), beclin1, LC3 and ULK2, are also modulated via miRNAs[92,93]. 
Induction of autophagy, via the action of miR-124, resulted in an altered STAT3 sig-
naling pathway, as it was reported[94].

Autophagy modulators in combination with immunotherapy, targeted therapies 
and chemotherapy are positioning as a promising strategy to increase therapeutic 
benefits for cancer patients. Current treatment options for patients with CCA are 
limited to chemotherapy, thus, combinatorial scheme including autophagy modulators 
could offer an opportunity to increase survival of patients with CCA. Autophagy 
inhibition such as Hydroxy-chloroquine (HCQ) alters the mechanism of resistance and 
could potentially decrease CCA metastatic potential; therefore, clinical results of this 
study would be of great help for further design of novel therapeutic approaches 
involving autophagy inhibitors in CCA. Recent studies revealed the potential of the 
well-known autophagy marker, Beclin-1, as a prognostic factor in different cancers 
including CCA.  It has emphasized the necessity to combine Beclin-1 expression with 
other autophagy-related proteins such as Bcl-2 family proteins Bcl-xL and BNIP3, HIF-
1α, PI3KC3 or ATGs to increase its clinical value for patients with CCA.

TARGETING AUTOPHAGY—A PUTATIVE THERAPEUTIC OPTION
Autophagy activators and cancer therapy
Many studies demonstrate the correlation of autophagy mechanism with the microen-
vironment of tumors and the antitumor immune response, in many cancers, including 
CRC. Major histocompatibility complex (MCH) I/II Ag presentation is closely re-
gulated by autophagy mechanism, as well as the cellular apoptosis. The multi-roles of 
autophagy gave the opportunity for the development of antitumor agents that induce 
this mechanism. Notable activators are Rapamycin and its analog-like, deforolimus, 
rapalogs like temsirolimus and everolimus and mTOR inhibitors, which activate the 
mechanism of autophagy[95].

More particularly, it is demonstrated that therapy with Rapamycin intensifies 
radiotherapy effects on A549 malignant lung cells via autophagy activation and by 
expressing a dilatory effect on genome damage repairing[96]. Rapalogs, like evero-
limus, have been indicated that suppress the progression and the growth of malignant 
endometrial cells, especially when Paclitaxel is added to the therapeutic scheme[97,
98]. Both of the above autophagy activators can be added to anti-cancer therapeutic 
strategies, with another kind of antitumor medication. However, their use in clinical 
practice should be further examined[97].

Furthermore, it is reported that another anti-proliferative agent, that inducts 
autophagy mechanism is the well-known metformin, which directs inhibition of 
autophagy, or via blocking beclin-1. Moreover, it is reported that metformin induces 
autophagy mechanism in the case of adenocarcinoma in the lung, as well as cell 
apoptosis via increasing tumor necrosis factor (TNF), the so-called TNF-Related-
Apoptosis-Inducing Ligand (TRAIL), apoptosis[99]. In breast cancer therapy, without 
BRCA1 mutation, metformin is combined with another autophagy inhibitor, spautin-1, 
which sensitizes these tumors, for the mitochondrial-targeted disruptors. In this case, 
the combination of an autophagy activator and inhibitor, like metformin and spautin-
1, responsively can modify the function of mitochondria differently, resulting in redu-
cing the cell life span[100].

Induction of autophagy can be achieved via another agent, like Obatoclax, com-
monly reported in Hematologic malignant diseases[101]. This agent aims at the Bcl-2 
protein family, which is closely associated with cell-apoptosis at the mitochondrion, 



Koustas E et al. Autophagy-based treatment strategy in cholangiocarcinoma

WJGO https://www.wjgnet.com 1235 October 15, 2021 Volume 13 Issue 10

while is also influencing autophagosome membranes vianecrosome congregation, 
resulting in necroptosis[45,102].

Alkaloids are identified as another group of autophagy inducers in malignancies
[103]. Some of them are liensinine, isoliensinine and cepharanthine[48], which target 
AMPK phosphorylation and mTOR blockage. These agents have been utilized in cases 
of MEFs, in which we are presenting resistance in the cell-apoptosis mechanism[102].

In addition to the well-established antioxidant function of omega-3polyunsaturated 
fatty acids (ω-3 PUFAs)[104], it has been shown that these safenatural compounds can 
induce 15-hydroxyprostaglandin dehydrogenase(15-PGDH) leading to inactivation of 
prostaglandin E2 (PGE2) that is knownto drive human cholangiocarcinoma[105]. The 
latter, combined with the fact that ω-3 PUFAs induce autophagy-mediated cell death 
in cancer cells support the use of ω-3 PUFAs as non-toxic adjuvant therapeutic agents 
for the treatment of human cholangiocarcinoma[106].

Autophagy inhibitors and cancer therapy
A wide range of studies about autophagy and its influence on the efficacy of other 
cancer treatments, such as chemotherapy, radiotherapy, or immunotherapy, has been 
reported in the last years[107]. These studies focused on this mechanism, used by 
cancer cells for their energy, metabolic regulation and survival[40,108]. The dual role 
of autophagy, either as tumor promoter, or tumor suppressor, opened up new oppor-
tunities for anti-cancer treatment via autophagy- inhibitors.

The most widely known inhibitors are Chloroquine (CQ) and hydroxychloroquine 
(HCQ), which impede the fusion of autophagosomes with the lysosomes. Their effi-
ciency as anti-cancer therapy has been evaluated in a variety of malignancies[43]. 
However, their clinical significance as monotherapy was limited due to their non-
persistent inhibition[109]. The combination of other cancer therapies demonstrated 
better therapeutic results[41,110], such as the combination of HCQ with gemcitabine in 
the case of pancreatic adenocarcinoma, which resulted in a significant reduction of 
tumor marker 19-9 (60%)[111].

Moreover, the combination of immunotherapy and autophagy inhibitors, such as 
CQ with IL-2, has been proven beneficial with reduced toxicity, such as in animal-
model studies of murine with hepatic metastasis.  Furthermore, it was demonstrated 
that this dual therapeutic strategy, has a better survival rate in the long term as well as 
a better response by immune cells[107]. However, the response to CQ derivatives, 
including HCQ is variable, due to the lack of specificity, which leads to the interaction 
with other medical substances and the modification of tumor properties, like pH[109,
112]. Additionally, the efficacy of autophagy inhibition by the above agents, cannot be 
evaluated due to the absence of biomarkers, which is a significant limitation in the 
clinical practice. This is the reason that new inhibitors with higher specificity have 
been developed[41,107].

There are some new, efficacious inhibitors, such as Lys05, also described as dimeric 
chloroquine, which is well–tolerated and exhibits a strong antitumor action via the 
modification of lysosome enzymes[112]. Another one is SAR405, an inhibitor of kinase, 
which is more specific and targets Vps18 and Vps34 vacuole proteins, which have a 
crucial role in the initiation of autophagy-mechanism. More particularly, the initiation 
step is regulated by Beclin-1 and Vps34, whereas Vps34 suppression, results in the 
impairment of lysosomal and vesicular transport[113]. Initiation-step can also be 
targeted, via the use of Beclin-1 inhibitors, which suppress the tumor progression, 
intensify the antitumor activity of Natural Killer (NK) cells and induce CCL5 cytokine 
overexpression by cancer cells, a condition that influences the transporting of NK cells 
towards the malignant tumors[107].

Based on studies in various malignancies, the inhibition of ULK1 (Unc-51 Like 
kinase-1) by SBI-0206965, has great antitumor potential due to its higher selectivity, 
resulting from the suppression of ULK1-phosphorylations[114]. Some other agents, are 
DCMI including desmethylclomipramine, verteporfin and clomipramine, impeding 
the fusion of autophagosome with lysosomes or acidification lysosomes[115], whereas 
the addition of DCMI to doxorubicin, in vitro, demonstrated higher effectiveness of the 
latter[116]. Moreover, spautin-1, is another effective inhibitor, which impedes the 
initiation step of autophagy, by suppressing the crucial for the process ubiquitin-
specific peptidases USP13, USP10, as well as Beclin-1, which is deubiquitinated in 
Vps34 complex[99].

The microenvironment of tumors, is closely related to the autophagy mechanism, as 
well as with the antitumor immune response. According to this fact, the inhibition of 
autophagy could have a negative impact on the adaptive immune response against 
malignant tumors. However, Starobinetset al[117] in 2016 confuted this hypothesis by 
proving that inhibition of autophagy does not have an adverse impact on the adaptive 
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Table 1 Small molecules able to induce autophagic activity

Agents Mechanism of action

GDC-0941 Inhibitor of class I PI3K

GDC-0980 Dual inhibitor of PI3K and mTORC1

Everolimus mTORC1 inhibitor

Temsirolimus mTORC1 inhibitor

Rapamycin mTORC1 inhibitor

Tat–beclin 1 peptide Releases beclin-1 into cytoplasm-regulate autophagosome formation

Metformin AMPK activator

Fluspirilene Antagonists of L-type Ca2+ channels

Loperamide Antagonists of L-type Ca2+ channels

Amiodarone Antagonists of L-type Ca2+ channels

Isoliensinine Natural alkaloid

Cepharanthine Natural alkaloid

mTORC1: Mammalian target of rapamycin complex 1; AMPK: 5’ AMP-activated protein kinase; PI3K: Phosphatidylinositol 3-kinases; AKT: Protein kinase 
B; Beclin-1: The mammalian ortholog of the yeast autophagy-related gene 6 (Atg6).

Table 2 Small molecules able to inhibit autophagic activity

Agents Mechanism of action

3-Methyladenine (3-MA) Inhibitor of class III PI3K

LY294002 PI3K inhibitor

Wortmannin PI3K inhibitor

SB202190 Cross-inhibition of the PI3K/mTOR and MAPKs pathway

MHY1485 Activator of mTOR

Azithromycin Inhibitor of v-ATPase, inhibition of lysosomal acidification

Bafilomycin A1 Inhibitor of v-ATPase, inhibition of lysosomal acidification

Concanamycin A Inhibitor of v-ATPase, inhibition of lysosomal acidification

Chloroquine (CQ) Autophagosome-lysosome fusion

Hydroxy-chloroquine (HCQ) Autophagosome-lysosome fusion

Clomipramine Alter acidification of lysosomes

Verteporfin Alter acidification of lysosomes

Paclitaxel Microtubule stabilizer- inhibit phosphorylation of VPS34 at T159

Spain-1 Inhibits the activity of ubiquitin-specific peptidases, USP10 and USP13

Monensin Inhibit autophagosome-lysosome fusion

PI3K: Phosphatidylinositol 3-kinases; mTORC1: Mammalian target of rapamycin complex 1; AMPK: 5’ AMP-activated protein kinase;VPS: Vacuolar 
protein sorting; ATG: Autophagy-related proteins; USP: Ubiquitin-specific protease.

anti-cancer immunity in melanoma and breast cancers. For this reason, inhibitors of 
autophagy can be combined with another chemotherapeutic agent without negatively 
influencing the antitumor response of T cells towards malignant tumors[117].

Herein, we provide two summarized tables about small agents that inhibit or 
activate autophagy. Autophagy manipulation is already used in research to develop 
putative chemotherapeutic strategies with a plethora of agents for different types of 
cancer (Tables 1 and 2).
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CONCLUSION
It is a well-established knowledge that autophagy’s prominent role is strongly 
correlated with the degradation of dysfunctional cellular proteins and organelles. A 
plethora of studies in the field of cancer research and autophagy highlights the contro-
versial role of this mechanism either as tumor suppressor or promoter mechanism in 
different types of cancer, including CCA. Several in vitro and in vivo studies in CCAs 
have associated autophagy with cholangiocarcinogenesis development and progre-
ssion. Furthermore, autophagy markers such as Beclin-1 and LC3 and/or autophagy-
associated proteins appeared to associate with a different CCAs stage through 
miRNAs expression. Current treatment options for CCA are limited to chemotherapy 
with limited efficacy on CCA patients. Agents that modulate autophagy in different 
steps in combination with the currents chemotherapeutic drugs are proposed as a 
promising therapeutic strategy in order to increase the beneficial effect of the the-
rapeutic expectancy of cancer patients.
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