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Abstract
Promoting bone healing after a fracture has been a frequent subject of research. 
Recently, sclerostin antibody (Scl-Ab) has been introduced as a new anabolic 
agent for the treatment of osteoporosis. Scl-Ab activates the canonical Wnt (cWnt)-
β-catenin pathway, leading to an increase in bone formation and decrease in bone 
resorption. Because of its rich osteogenic effects, preclinically, Scl-Ab has shown 
positive effects on bone healing in rodent models; researchers have reported an 
increase in bone mass, mechanical strength, histological bone formation, total 
mineralized callus volume, bone mineral density, neovascularization, prolif-
erating cell nuclear antigen score, and bone morphogenic protein expression at 
the fracture site after Scl-Ab administration. In addition, in a rat critical-size 
femoral-defect model, the Scl-Ab-treated group demonstrated a higher bone 
healing rate. On the other hand, two clinical reports have researched Scl-Ab in 
bone healing and failed to show positive effects in the femur and tibia. This 
review discusses why Scl-Ab appears to be effective in animal models of fracture 
healing and not in clinical cases.

Key Words: Canonical Wnt-β-catenin pathway; Fracture healing; Osteoporosis; 
Romosozumab; Sclerostin antibody
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Core Tip: Sclerostin antibody (Scl-Ab) has been recently introduced for the treatment of 
osteoporosis. Several researchers have reported on the effects of Scl-Ab in bone 
fracture healing because of its rich osteogenic potential. In this review, we describe the 
latest reports of preclinical and clinical studies on the bone-healing effects of Scl-Ab.
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INTRODUCTION
Achieving robust bone healing is the ultimate goal in the treatment of bone fractures. 
The development of methods to promote fracture healing has been a frequent subject 
of research. Recently, the safety of several osteoporosis drugs has been established in 
large-scale clinical trials, and it is expected that these drugs could be converted to 
fracture treatment. In experimental studies, some agents used to treat osteoporosis 
have had a positive effect on the promotion of bone healing, including parathyroid 
hormone (PTH), bisphosphonates, and sclerostin antibody (Scl-Ab).

Romosozumab, an Scl-Ab for humans, which recently has been developed for the 
treatment of osteoporosis, is an anabolic agent that stimulates bone formation. The 
difference between Scl-Ab and PTH1-34 (teriparatide), a former anabolic agent, is that 
teriparatide increases both bone formation and resorption via PTH-PTH receptor 
signaling, whereas Scl-Ab increases bone formation and simultaneously decreases 
bone resorption via canonical Wnt (cWnt)-β-catenin signaling[1]. This difference shows 
that the bone formation by PTH1-34 is primarily “remodeling-based” and that by Scl-Ab 
is primarily “modeling-based”[2,3].

In this review, we describe how Scl-Ab effects the cWnt-β-catenin pathway to 
stimulate bone formation and then discuss the current experimental and clinical 
evidence in bone healing.

SCLEROSTIN AND THE CANONICAL WNT/BETA-CATENIN PATHWAY IN 
BONE METABOLISM
The cWnt-β-catenin pathway plays an important role in bone metabolism, including 
skeletal development and homeostasis and bone remodeling[4]. The pathway is 
activated by the binding of Wnt proteins to receptor complexes composed of frizzled 
receptors and co-receptors of the low-density lipoprotein receptor-related protein 
(LRP) family, LRP5 and LRP6. This event increases the level of β-catenin and induces 
its translocation to the nucleus and activates the transcription of gene; it further 
accelerates the differentiation of osteoblast precursors and promotes the maturation of 
osteoblast and their survival, leading to osteogenesis by the increased and activated 
osteoblasts. On the other hand, the increased level of β-catenin results in an increased 
expression of osteoprotegerin, which binds to RANKL as a decoy receptor, preventing 
the binding of RANKL and RANK. Osteoclast activation and differentiation, which 
lead to bone resorption, occurs in the presence of RANKL-to-RANK binding. Thus, the 
activation of this pathway leads to increased bone formation by the increased and 
activated osteoblasts and to decreased bone resorption due to the disturbed binding of 
RANKL to RANK[5-7].

In the regulation of the cWnt-β-catenin pathway, osteocytes play an important role 
as producers and targets of Wnt ligands and as secretors of molecules that regulate 
Wnt action[8]. One regulation mechanism is the secretion of sclerostin, a potent 
antagonist of Wnt signaling. Sclerostin is a protein encoded by the SOST gene 
primarily expressed by mature osteocytes, but not by early osteocytes or osteoblasts
[9]. Sclerostin binds to the Wnt co-receptors LRP5/LRP6, antagonizing downstream 
signaling in the cWnt-β-catenin pathway[10]. Thus, when the stoichiometry levels of 
sclerostin overwhelms the levels of the Wnt ligands, the signals will not be activated, 
leading to β-catenin degradation, lower bone formation, and higher bone resorption. 
On the other hand, when the stoichiometry levels favor in Wnt ligands than sclerostin, 
Wnt-β-catenin signaling will be activated, leading to stabilized β-catenin for translo-
cation to the nucleus and the activation of target genes to increase bone formation and 
decrease bone resorption[2]. In addition, not only LRP 5 and 6, but also LRP4 was 
associated with bone homeostasis by interacting with sclerostin; mutation of LRP4, 
impairing interaction with sclerostin was found in patients suffering from bone 
overgrowth[11]. Thus, sclerostin is established as a bone formation inhibitor, though 
the molecular mechanisms are not fully understood.

https://www.wjgnet.com/2218-5836/full/v12/i9/651.htm
https://dx.doi.org/10.5312/wjo.v12.i9.651
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In humans, the absence of sclerostin expression or secretion causes an abnormally 
high bone mass. These conditions have been seen in the rare hereditary diseases 
sclerosteosis and van Buchem disease. Sclerosteosis was first described by Truswell as 
osteopetrosis with syndactyly and is mostly seen in patients in South Africa; van 
Buchem disease was described by van Buchem as hyperostosis corticalis generalisata 
familiaris and is mostly found in patients in the Netherlands[12,13]. In both diseases, 
the SOST gene encoding sclerostin was identified as the gene responsible; a loss-of-
function mutation occurs in sclerosteosis, and the downregulation of the expression of 
the SOST gene occurs in van Buchem disease[14]. Bone mineral density (BMD) and 
bone strength are significantly higher in patients with these diseases than those in the 
general population[15,16]. In experimental reports using mice, genetic deletion of the 
SOST gene or neutralizing antibodies for sclerostin duplicated the high bone mass 
found in humans lacking sclerostin[17-19]. Conversely, sclerostin overexpression leads 
to a decrease in bone mass[20-22].

SCLEROSTIN ANTIBODY THERAPY AND OSTEOPOROSIS
As the mechanisms of sclerostin and the cWnt-β-catenin pathway were elucidated, 
improvement in bone mass became the expected outcome of inhibiting the action of 
sclerostin. In a study using a model of ovariectomized rats with postmenopausal 
osteoporosis treated with Scl-Ab, researchers found a significant increase in bone 
formation on the trabecular, periosteal, endocortical, and intracortical surfaces. 
Furthermore, osteoblast and mineralizing surfaces increased, while the osteoclast 
surface decreased. These results suggest that the use of Scl-Ab increased bone 
formation and decreased bone resorption for osteoporosis[23]. In another study 
evaluating the effects of the osteoblast lineage in young rats with Scl-Ab and PTH1-34, 
the osteoblastic surface and estimated total number of osteoblasts increased to similar 
levels in both the Scl-Ab and PTH1-34 groups at week 4. However, both parameters 
decreased in the Scl-Ab group while maintaining in the PTH1-34 group at week 26. 
Similarly, the osteoprogenitors increased to similar levels in both groups at week 4, 
and only those in the Scl-Ab group decreased at week 26. Interestingly, the percentage 
of labeled perimeter of the periosteal surface of the femur diaphysis was higher in the 
Scl-Ab group at both weeks 4 and 26, and the percentage of labeled perimeter of the 
endocortical surface was at the same level at week 4 and was higher in the Scl-Ab 
group at week 26. These results suggest that Scl-Ab strongly increases the differen-
tiation induction of osteoprogenitors to osteoblasts, while increase of osteoprogenitors 
are only seen in the early stages of administration. While, PTH1-34 increases both the 
differentiation induction of osteoprogenitors to osteoblasts and the number of 
osteoprogenitors at similar levels throughout the administration period, although the 
level of bone formation was similar or even higher in Scl-Ab than in PTH1-34[24].

In cynomolgus monkeys, treatment with Scl-Ab led to increase in BMD and bone 
strength just like in the rats. No increase in bone resorption markers was noted, while 
a significant increase in bone formation markers was demonstrated, also suggesting 
the distinct effects of modeling-based bone formation associated with Scl-Ab, differing 
from remodeling-based bone formation by PTH1-34 in which osteoblast-mediated bone 
formation follows osteoclast-mediated bone resorption[25]. Summarizing the 
difference between Scl-Ab and PTH, with Scl-Ab, bone formation is seen with no 
increase or even some decrease of bone resorption. The effect of bone formation is 
stronger in the early stages of administration and decreases with longer administration 
due to lack of osteoprogenitors after the strongly accelerated differentiation to 
osteoblasts. With PTH, bone formation is also seen with increase of bone resorption 
(relatively higher formation than resorption). Bone formation is similar in any stage of 
administration due to increase in both number of osteoprogenitors and differentiation 
to osteoblasts.

Romosozumab, a Scl-Ab agent for humans, has recently become commercially 
available for clinical use. A phase III clinical trial has shown that romosozumab 
strengthened osteoporotic bone by increasing BMD and decreased the incidence of 
new fractures. The Fracture Study in Postmenopausal Women with Osteoporosis trial 
evaluated the 12-month efficacy of romosozumab as compared with the placebo. The 
risk of vertebral fracture was reduced by 73% at 12 mo (incidence, 0.5% in the 
romosozumab group vs 1.8% in the placebo group, P < 0.001), and the risk of clinical 
fracture was reduced by 36% at 12 mo (incidence, 1.6% in the romosozumab group vs 
2.5% in the placebo group, P = 0.008). The percentage of change in BMD from baseline 
was 13.3% greater in the lumbar spine, 6.9% greater in the total hip, and 5.9% greater 
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in the femoral neck in the romosozumab group than in the placebo group. An increase 
in the bone formation marker P1NP was seen in the romosozumab group, and a 
decrease in the bone resorption marker β-CTX was seen early in treatment, suggesting 
modeling-based bone formation[26]. Similar results of increased bone formation and 
strength, decreased fracture risk, and increased levels of bone formation markers with 
decreased levels of bone resorption markers have been shown in other phase III trials 
(ARCH trial, romosozumab vs alendronate; STRUCTURE trial, romosozumab vs 
teriparatide)[1,27].

SCLEROSTIN ANTIBODY THERAPY AND BONE HEALING
Preclinical evidence
Bone healing is a complex process controlled by numerous cellular signaling pathways 
regulated by factors expressed in a time and concentration-dependent manner. The 
cWnt-β-catenin pathway is one of the most critical signaling pathways involved in 
bone healing[28-30]. The peak of upregulation was from 7 to 14 d in rat models[31,32]. 
Upregulating and/or controlling the cWnt pathway along with the levels of β-catenin 
have the potential of accelerating bone healing. Bone healing occurs in two different 
mechanisms; intramembranous or endochondral bone formation. Marsell et al[33] 
reported Wnt-responsive cells were not observed near the marrow cavity but seen 
over the periosteal callus, presuming that the cWnt-β-catenin pathway associates with 
endochondral bone formation rather than intramembranous bone formation. Liedert et 
al[34] suggested that Wnt inhibitors play a role in delayed union and Montjovent et al
[35] demonstrated non-rigid fixation of femoral defects caused increase levels of 
inhibitors of Wnt proteins. In non-rigid fixation, endochondral bone formation 
becomes the main healing process. Inhibiting the inhibitors of Wnt proteins and 
activating the cWnt-β-catenin pathway may help bone healing in such fractures.

The efficacy of Scl-Ab for bone healing has been demonstrated in several reports 
with animal models (Table 1). In a mouse tibial-shaft osteotomy model, both the 
sclerostin knockout and wild-type groups showed an increase in bone mass at the 
osteotomy site when Scl-Ab was administered[36]. Ominsky et al[37] observed in a rat 
femur fracture model that an increase in bone mass and mechanical strength at the 
fracture site occurred after 7 wk in the Scl-Ab group. The other researchers also 
reported similar positive effects of Scl-Ab for a rat femur fracture or osteotomy model
[38,39]. Virdi et al[40] also observed that in a rat femoral bone ablation model with 
intramedullary fixation, there was a 1.9-fold increase in fixation strength at week 4 and 
a 2.2-fold increase at week 8 in the Scl-Ab group compared to the vehicle group. 
Furthermore, Yee et al[41] reported in a type 1 diabetes mellitus (T1DM) mouse model, 
administration of Scl-Ab mitigates inhibition of osteoblast differentiation caused by 
the diabetic state. They found a significant benefit in callus bone volume, increase in 
callus size and a reverse of lower mineralization seen in T1DM mouse model. 
Studying the mechanisms for the fracture healing effect of Scl-Ab, Feng et al reported 
an increase in the proliferating cell nuclear antigen score and bone morphogenetic 
protein (BMP)-2 expression at weeks 1 and 2 in a femur osteotomy model in young 
rats. Furthermore, cartilage decreased and BMD and the mechanical strength of the 
callus associated with accelerated fracture healing increased at weeks 4 and 6[42].

As an evaluation outside the long tubular bone fracture model, Agholme et al[43] 
inserted screws into the proximal tibia of young rats and measured the pull-out 
strength; the Scl-Ab-treated group showed a 50% increase after 2 and 4 wk compared 
with the saline-treated group. They conducted the same experiment comparing with 
PTH, and the PTH group showed significant higher pull-out strength in the 
metaphyseal, while Scl-Ab significantly increased femoral cortical and vertebral 
strength[44]. In a rat model of distraction osteogenesis, no difference occurred in the 
rate of bone union between the Scl-Ab and control groups, but mechanical strength 
and bone mass increased in the Scl-Ab group, suggesting that the optimal effect of Scl-
Ab treatment is achieved in the later stages of distraction osteogenesis[45]. In addition, 
in a rat critical-size femoral-defect model with a 6-mm femoral defect, 24% of the Scl-
Ab-treated group had healed after 12 wk compared with no cases of healing in the 
control group[46]. Furthermore, in the treated group, systemic Scl-Ab administration 
plus local BMP-2 administration resulted in significantly more robust healing of 
critical-size femoral defects than did BMP-2 alone[47].

On the other hand, Kruck et al[48] negatively reported on the effects of Scl-Ab on 
bone healing. The author created rigid and semirigid fixation models for femoral 
osteotomy in rats. All groups showed an increase in bone mass, but no difference in 
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Table 1 The efficacy of sclerostin antibody for bone healing has been demonstrated in several reports with animal models

Animal model Bone Bone injury model Dosage, frequency Major findings Ref.

Mouse Tibia Osteotomy 100 mg/kg, 1/wk BV/TV↑, strength↑ [36]

Rat Femur Fracture 25 mg/kg, 2/wk Callus↑, BMC↑, BV/TV↑, strength↑ [37]

Cynomolgus monkey Fibula Osteotomy 30 mg/kg, 1/2 wk Callus↑, BMC↑, strength↑ [37]

Rat Femur Ablation 25 mg/kg, 2/wk Fixation strength↑, cortical thickness↑, BV/TV↑ [40]

Rat Femur Fracture 25 mg/kg, 2/wk BMD↑, BV/TV↑, strength↑, MS/BS↑, BFR/BS↑ [38]

Rat Femur Osteotomy 25 mg/kg, 2/wk Callus↑, BMD↑, BV/TV↑, strength↑, bone area↑, 
cartilage↓

[39]

Mouse Femur Fracture 25 mg/kg, 2/wk BV/TV↑, BMC↑ [41]

T1DM mouse Femur Fracture 25 mg/kg, 2/wk BV/TV↑, BMC↑ [41]

Rat Femur Osteotomy 25 mg/kg, 2/wk Mature callus↑, BMC↑, BMD↑, strength↑ [42]

Rat Tibia Metaphyseal screw 25 mg/kg, 2/wk Pull-out strength↑, bone volume surrounding 
screw↑

[43]

Rat Femur Distraction osteogenesis 25 mg/kg, 2/wk Union rate→, (united bones) strength↑, bone 
volume↑

[45]

Rat Femur Critical defect 25 mg/kg, 2/wk Union rate↑, bone formation markers↑ [46]

Mouse Femur Osteotomy rigid fix 25 mg/kg, 2/wk Periosteal and/or intracortical bridging→, 
endosteal bridging↑

[48]

Mouse Femur Osteotomy semi-rigid fix 25 mg/kg, 2/wk Periosteal and/or intracortical bridging→, 
endosteal bridging↑

[48]

T1DM: Type 1 diabetes mellitus; BV/TV: Bone volume to total bone volume ratio; BMC: Bone mineral content; BMD: Bone mineral density; MS/BS: 
Mineralizing surface rate; BFR/BS: Bone formation rate.

delayed healing occurred with semirigid fixation between the Scl-Ab and control 
groups. In rigid fixation, Scl-Ab had more bridging of the endosteum, which adversely 
affected late healing, suggesting delayed callus remodeling and marrow reconstitution 
at the time of fracture. These results suggest that Scl-Ab promotes bone formation in 
the early stages of healing, but not in the advanced stages of fracture callus remodeling
[48].

Clinical evidence
Two phase II clinical trials have reported the efficacy of romosozumab in adult fresh 
fractures. Bhandari et al[49] reported the efficacy of romosozumab in 402 patients with 
fresh unilateral tibial diaphyseal fractures (median age, 40 years; range, 18−82 years) 
who underwent fracture fixation with intramedullary nails. Patients were randomized 
to a placebo (n = 103) or one of nine different romosozumab groups (n = 299), with 
three different doses and frequencies of administration (doses: 70 mg, 140 mg, and 210 
mg; administration: twice, postoperative day 1 and week 2; three times, postoperative 
days 1 and 2 and week 6; and four times, postoperative days 1 and 2 and weeks 6 and 
12). The percentage of patients with a radiological cure, defined as the bridging of 
three of the four cortices as shown on the radiographs, which ranged from 63.2% to 
84.7% at week 24 and from 83.4% to 96.7% at week 52 in the romosozumab group and 
from 76.1% at week 24 and 87.1% at week 52 in the placebo group. The estimated 
median time to radiological cure ranged from 14.4 to 18.6 wk in the romosozumab 
group and 16.4 wk in the placebo group. Thus, no significant difference occurred 
between both groups. In addition, no significant difference occurred in the time to 
clinical healing (defined as the ability to bear weight without pain at the fracture site) 
between the groups. Furthermore, the authors found no treatment effects of 
romosozumab on the incidence of unplanned revision surgery, physical function 
scores, or adverse events. The study concluded that romosozumab did not promote 
the healing of tibial fractures in this patient population.

Schemitsch et al[50] reported on a trial of romosozumab for the treatment of hip 
fractures in 332 patients (median age, 78 years; range 55−94 years). Patients were 
randomized to groups receiving a placebo (n = 89) or romosozumab at three different 
doses (70 mg, 140 mg, and 210 mg). Patients received subcutaneous romosozumab 
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injections on postoperative days 1, 2, 6, and 12, and the percentage of patients with 
radiographic evidence of healing ranged from 66.2% to 78.6% at week 24 and from 
89.1% to 93.2% at week 52, with no significant difference between the treatment 
groups. In addition, no significant difference occurred in the estimated median time to 
radiographic evidence of healing neither between the groups nor in functional 
mobility assessment, radiographic fracture healing assessment, and hip pain scores. 
Similar to the results with patients with tibial fractures, romosozumab did not 
improve fracture healing in patients with hip fractures.

It is unclear why bone healing was not accelerated in humans. In both studies, 
romosozumab was administered starting on postoperative day 1. Since romosozumab 
promotes the differentiation of osteoblasts from osteoprogenitors with little increase in 
osteoprogenitors[24], it is possible that administering romosozumab early in the 
fracture healing process period is not ideally timed. Yukata et al[51] reported that 
SOST gene expression were more abundant in the hard callus in the later stages of 
bone repair than in the soft callus in the early stages in a mouse tibia fracture model, 
and PTH administration upregulated SOST expression as the hard callus increased. 
These suggest the need to change the starting point of administration and to consider 
the combination of romosozumab and PTH, which has the effect of increasing 
immature cells. Additionally, in both studies the patients were treated at sites for high 
surgical standards of care and they received rigid fixation. The quality of the surgery 
and care may out-weighed the effects of romosozumab on fracture healing[49,50]. 
Future studies may focus on healing of serious fractures, which could only accomplish 
relatively un-rigid fixation.

CONCLUSION
Despite the preclinical success of Scl-Ab in promoting fracture healing in animals, 
currently, no clinical evidence exists for the positive effects of Scl-Ab for bone healing 
in humans. As an osteogenic agent in osteoporosis, Scl-Ab offers promising effects 
supported by reliable evidence. Although the drug targets the same bone tissue, 
further research is needed on the differences in the pathogenesis of osteoporosis and 
fracture, spatio-temporal expression pattern of SOST according to bone healing 
process, and corresponding timing and interval of drug administration.
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