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Abstract
Gastric adenocarcinoma is a global health concern, and Helicobacter pylori (H. 
pylori) infection is the main risk factor for its occurrence. Of note, the immune 
response against the pathogen seems to be a determining factor for gastric 
oncogenesis, and increasing evidence have emphasized several host and 
bacterium factors that probably influence in this setting. The development of an 
inflammatory process against H. pylori involves a wide range of mechanisms such 
as the activation of pattern recognition receptors and intracellular pathways 
resulting in the production of proinflammatory cytokines by gastric epithelial 
cells. This process culminates in the establishment of distinct immune response 
profiles that result from the cytokine-induced differentiation of T naïve cells into 
specific T helper cells. Cytokines released from each type of T helper cell 
orchestrate the immune system and interfere in the development of gastric cancer 
in idiosyncratic ways. Moreover, variants in genes such as single nucleotide 
polymorphisms have been associated with variable predispositions for the 
occurrence of gastric malignancy because they influence both the intensity of gene 
expression and the affinity of the resultant molecule with its receptor. In addition, 
various repercussions related to some H. pylori virulence factors seem to substan-
tially influence the host immune response against the infection, and many of them 
have been associated with gastric tumorigenesis.
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Core Tip: Gastric cancer affects more than 1 million people yearly, and Helicobacter 
pylori (H. pylori) infection is the main risk factor for that malignancy. Moreover, the 
immune response against the infection seems to play a pivotal role in gastric carcino-
genesis. This article provides a broad and updated overview on the main aspects 
regarding H. pylori infection, immune response, and gastric cancer development.

Citation: de Brito BB, Lemos FFB, Carneiro CDM, Viana AS, Barreto NMPV, Assis GAS, 
Braga BDC, Santos MLC, Silva FAFD, Marques HS, Silva NOE, de Melo FF. Immune 
response to Helicobacter pylori infection and gastric cancer development. World J Meta-Anal 
2021; 9(3): 257-276
URL: https://www.wjgnet.com/2308-3840/full/v9/i3/257.htm
DOI: https://dx.doi.org/10.13105/wjma.v9.i3.257

INTRODUCTION
About 1 million people are diagnosed with gastric cancer and more than 700000 
individuals die from this neoplasm every year[1]. That incidence makes gastric 
adenocarcinoma the fifth most common malignancy and the third cause of cancer-
related death worldwide[2]. Among the multiple factors that influence the 
development of this disease, Helicobacter pylori (H. pylori) infection stands out. Gastric 
colonization by this gram-negative, spiral-shaped microorganism is the main risk 
factor for the occurrence of gastric adenocarcinoma, and worryingly it infects more 
than half of the world population[3]. In that context, studies have emphasized the 
critical role of the interplays between H. pylori and host immune system in carcino-
genesis[4].

The immune response activation by H. pylori infection in the gastric mucosa occurs 
mainly through the triggering of pattern recognition receptors (PRRs), which leads to 
the activation of intracellular cascades that culminate in the secretion of proinflam-
matory cytokines[5]. The events taking place in the initial phase of infection lead to the 
recruitment of T cells, and the establishment of specific immune response profiles by T 
helper (Th) cells is determinant for the development of H. pylori-related gastric 
disorders[6]. H. pylori has several virulence factors that favor its perpetuation in the 
gastric hostile environment. Some mechanisms triggered by these bacterial products 
play pivotal roles in the regulation of the host immune response and seem to influence 
the genesis of gastric neoplasms[7]. On the other hand, specific host polymorphisms in 
genes that encode cytokines also interfere in the risk of developing the disease by 
altering the expression pattern of these mediators as well as the intensity of the signals 
that they activate[8].

Given the background, this article aims to provide a broad and updated review on 
how the immune response against H. pylori infection influences in the development of 
gastric adenocarcinoma, discussing the main bacterial and host variables that interfere 
in the pathophysiology of the disease.

IMMUNE RESPONSE ACTIVATION BY H. PYLORI INFECTION
Complex host immune responses involving innate and adaptive mechanisms are 
induced by H. pylori infection[9-11]. Gastric epithelium plays a pivotal role in the 
innate immune response to the bacterium because its cells make up the only cell 
phenotype in direct contact with the pathogen in conditions in which tissue damage is 
absent yet[12,13]. The initial contact of the gastric epithelial cells with the pathogen 
activates pathogen-associated molecular pattern receptors including NOD1 and toll-
like receptors (TLRs). These innate host defense mechanisms trigger cell signaling 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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pathways that induce the activation of nuclear factor kappa B (NF-κB), activating 
protein-1, and interferon regulatory factors[14]. Concerning the TLRs, it has been 
reported that gastric epithelial cells express TLR1, TLR2, TLR4, TLR5, TLR9, and 
TLR10, which interact with various H. pylori antigens such as lipoteichoic acid, 
lipoproteins, lipopolysaccharide, flagellin, HSP-60, neutrophil-activating protein A, 
DNA, and RNA[5,15,16]. These receptors are very important to the induction of the 
expression of proinflammatory and antibacterial factors[5]. For example, the translo-
cation of NF-κB to the nucleus, aiming at activating the expression of genes associated 
with the inflammatory process, is directly associated with the engagement of TLRs, 
particularly TLR2, in a myeloid differentiation primary response 88-dependent process
[17]. Myeloid differentiation primary response 88 is a key TLR adapter protein used by 
all TLRs, except TLR3, and transmits signals that result in the induction of inflam-
matory cytokines[5]. However, although TLRs are the most studied receptors, H. pylori 
promotes the activation of PRRs other than TLRs. For instance, H. pylori pepti-
doglycan, delivered into host cells by the type IV secretion system or through outer 
membrane vesicles secreted from the bacterium, is recognized by NOD1[18-21]. As a 
result, the interaction between H. pylori and PRRs leads to the expression of inflam-
matory cytokines, antimicrobial peptides, and type 1 interferon (IFN) by gastric 
epithelial cells[14]. Subsequently, these cytokines and inflammatory mediators 
stimulate the recruitment of both polymorphonuclear and mononuclear cells into the 
gastric mucosa[22,23]. Lastly, it is important to mention that there are other cell 
components that also act in the induction of this inflammatory process. Recent reports 
have led to the conclusion that micro RNAs act as modulators of H. pylori infection and 
concomitantly have their expression affected by the bacterium[24].

This inflammatory response is characterized by the chemotaxis of monocytes/ 
macrophages, dendritic cells (DCs), B and T cells, and in particular, neutrophils, whose 
main chemoattractant is the interleukin (IL)-8 secreted by gastric epithelial cells as a 
result of the engagement of NOD1, for instance[25,26]. Neutrophils are recruited to the 
lamina propria at the beginning of H. pylori infection, and several specific H. pylori 
factors are known to interact with these cells and modulate their responses[27,28]. One 
of these factors is a protein produced by H. pylori known as neutrophil-activating 
protein (HP-NAP or neutrophil-activating protein A). HP-NAP can promote 
chemotaxis, endothelial adhesion, and production of reactive oxygen intermediates by 
neutrophils[29-31]. Incubation of these cells with HP-NAP results in significant 
production of cytokines such as IL-12 and IL-23. The same effects of HP-NAP on 
cytokine secretion were also observed in macrophages and DCs. Therefore, it is 
possible to conclude that this protein acts on both neutrophils and monocytes, 
inducing the production of cytokines[30].

Mononuclear infiltration in the lamina propria is also characteristic of H. pylori-
induced chronic infection[13]. Human monocytes and macrophages are important 
coordinators of the immune response to H. pylori-derived products and signals from 
epithelial cells in direct contact with the bacterium on the surface of the mucosa[15]. In 
this infection, both monocytes and macrophages, alongside the DCs, act as activators 
of adaptive immunity, because they are antigen-presenting cells, capable of expressing 
class II MHC molecules that activate CD4+ T cells[32]. Furthermore, monocytes and 
macrophages also produce factors such as IL-12, responsible for inducing a polarized 
Th1 immune response, IL-1β, IL-6, IL-10, and tumor necrosis factor alpha (TNF-α), 
which, except for IL-10, induce the amplification of the inflammatory response[16]. 
Moreover, it is important to note that macrophages are also effector cells that are able 
to produce nitric oxide derived from the enzyme-inducible nitric oxide synthase 
(iNOS, NOS2) and reactive oxygen species, both associated with cellular damage[33].

Although in smaller numbers, DCs are also important in the immune response to H. 
pylori infection, especially because they represent an important bridge between the 
innate and adaptive immunities[26]. These cells express a broad spectrum of PRRs, 
which enables them to capture antigens at the periphery and induce T naive cells to 
direct T cell differentiation[34]. This role is played through three main signals: (1) 
presentation of foreign antigens in the form of peptides bound to class II MHC 
molecules to T cells; (2) costimulation of T cell differentiation; and (3) secretion of 
cytokines, particularly IL-6, IL-8, IL-10, IL-12, IL-1β, and TNF-α[35]. Both aforemen-
tioned antigen-presenting cells exhibit remarkable secretion of IL-12, which enables 
the induction of a Th1-polarized immune response, responsible for the secretion of 
INF-γ and low amounts of cytokines characteristic of Th2 responses, such as IL-4 and 
IL-5[36-40].

Finally, mast cells represent an additional innate cell phenotype that is found within 
the H. pylori-infected gastric mucosa. These cells can be activated by various H. pylori 
components. For instance, the bacterial virulence factor VacA can induce mast cells to 
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express multiple inflammatory cytokines, including IL-1, TNF, IL-6, IL-23, and IL-10
[41,42]. Upon the stimulation of epithelial cells, macrophages, and DCs by H. pylori 
bacterial factors, CD4+ and CD8+ T cells are recruited to the gastric mucosa, with 
preferential activation of CD4+ T cells in detriment to CD8+ cells[43-46].

IMMUNE RESPONSE PROFILES IN H. PYLORI INFECTION AND GASTRIC 
CANCER
As aforementioned, the triggering of an immune response against H. pylori involves 
the activation of CD4+ and CD8+ T cells and their migration to the gastric 
environment[47]. Among the cytokines expressed in that context, those inducing the 
differentiation of naïve T cells into Th1 (e.g., IL-12), Th17 [e.g., transforming growth 
factor β (TGF-β), IL-23, and IL-6], and regulatory T cells (Treg) (e.g., IL-2 and TGF-β) 
cells stand out[48].

The establishment of a proinflammatory Th1 response in the H. pylori infection is 
associated with the development of corpus gastritis. Depending on further host and 
environmental variables, the aforementioned condition can result in gastric atrophy 
and intestinal metaplasia, which are well-known precancerous lesions[48,49]. Of note, 
our group previously demonstrated that Th1 response varies according to the age 
among H. pylori-positive individuals. In that study, we observed higher gastric concen-
trations of Th1-related cytokines IL-2, Il-12p70, and INF-γ in adults than in children. 
Moreover, the levels of Th1 cytokines were directly correlated with the severity of 
gastric inflammation[50].

Regarding Th17 response, although other cytokines such as TGF-β and IL-6 are 
strongly related to this immune profile, current evidence emphasizes the pivotal role 
of IL-23 in its induction in the setting of H. pylori infection[51,52]. A study found that 
chronically infected IL-23(p19)-/- mice had reduced gastric expression of IL-17A as well 
as milder gastric inflammation and higher levels of H. pylori colonization compared to 
wild-type H. pylori-positive mice[53]. The IL-17A, in its turn, promotes the migration 
of polymorphonuclear leukocytes to the infection site and is an important component 
in the control of H. pylori gastric infection[54]. Previous studies using mice have shown 
that IL-17A-/- as well as IL-17RA-defficient individuals have a milder gastric 
neutrophil infiltration against H. pylori infection than wild-type mice. Interestingly, the 
mice lacking IL-17RA signaling had an enhanced chronic inflammation with intense 
infiltration of B and CD4+ T cells into the gastric mucosa[55].

Dual roles have been attributed to Th17 responses in cancer settings. On one hand, 
this immune profile seems to be important in the immunosurveillance against 
malignant cells because it stimulates the migration of leukocytes into tumors and 
promotes the activation of antitumor CD8+ T cells. Intratumoral Th17 cells induce the 
expression of CCL20, a chemokine that attracts DCs to the tumor environment, as 
shown in a recently published paper by Chen et al[56]. Subsequently, DCs phagocytose 
tumor material and migrate to lymph nodes, contributing to the activation of CD8+ T 
cells that migrate to the tumor environment through their chemotaxis to the Th17-
induced CXCL9 and CXCL10[57]. Moreover, studies have shown that Th17 cells can 
convert into Th1 lymphocytes in vivo, enhancing their antitumor effectiveness[58,59]. 
When stimulated by IL-23 and IL-12 in an environment with absent or low TGF-β, 
Th17 cells are able to express IFN-γ and T-bet, important Th1-related molecules. 
Interestingly, Th17-derived Th1 cells have a more effective antitumor activity 
compared to other Th1 lymphocytes, and this may be due to the prolonged survival 
and superior functionality of the former compared to the latter[60].

On the other hand, the Th17 profile is involved in various protumor activities. First, 
IL-17 seems to promote angiogenesis because elevated intratumoral levels of that 
cytokine are associated with high expression of vascular endothelial growth factor and 
increased tumor vascular density[61]. Complementally, the aforementioned cytokine 
stimulates cancer cells to release IL-6, which besides promoting vascular endothelial 
growth factor production enhances signal transducer and activator of transcription 3 
activation, increasing the survival of malignant cells by suppressing apoptosis[62]. 
Moreover, studies have described the existence of FOXP3+ CD4+ Th17 cells, which may 
play regulatory, protumor roles in cancer contexts. This phenomenon seems to occur 
along with low levels of Il-6 and IL-23 as well as with the presence of TGF-β, which 
activates FOXP3 expression[63].

A study carried out by Su et al[62] showed that IL-17 and RORγt (the main IL-17A 
transcription factor) were highly expressed in both tumor microenvironment and 
peripheral blood mononuclear cells (PBMCs) of gastric cancer patients, mainly among 
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those with metastasis. This data suggests that the presence of Th17 cells is directly 
associated with the occurrence of gastric cancer and with the severity of the disease. 
Indeed, a recently published study embracing stage IV gastric cancer patients from 
four cohorts have reinforced that theory because it found abnormally high levels of 
Th17 cell differentiation and activation of IL-17 pathways among patients with severe 
disease[64]. Interestingly, another study evaluating the percentages of Th17 cells in 
PBMCs among gastric cancer patients before and after tumor resection observed a 
significant drop in the proportion of Th17 cells after the treatment[65]. Of note, IL-27 
has been highlighted as a crucial cytokine that plays dual roles in the regulation of the 
immune system. As far as this cytokine enhances T-bet expression through IL-27/IL-
27Rα signaling and subsequent signal transducer and activator of transcription 1 
phosphorylation leading to Th1 cell differentiation, IL-27 impairs Th17 responses by 
downregulating RORγT[66,67]. In a recently published study, our group showed that 
H. pylori-infected individuals have higher IL-27 levels in their serum and gastric 
mucosa than non-infected individuals. In contrast, there was a lack of IL-27 in both 
serum and gastric environment of gastric cancer patients, who also showed a 
remarkable Th17-polarized inflammatory pattern[68].

The Treg cells might play pivotal roles in H. pylori-induced gastric adenocarcinoma 
by favoring infection perpetuation and by repressing immune responses against 
malignant cells through the secretion of regulatory cytokines. Indeed, studies have 
observed that Treg cells are positively correlated with increased bacterial colonization
[69], being also increased among gastric cancer patients[70,71]. Three types of Treg 
cells have been described by studies: IL-10-secreting Tr1 cells, TGF-β1-producing Tr3 
cells, and FOXP3-expressing CD4+CD25high Treg cells[72]. The latter is a pivotal 
component in the scenario of H. pylori colonization, favoring the pathogen persistence 
in the gastric environment by suppressing the immune responses. A study 
demonstrated that FOXP3, TGF-β1, and IL-10 are highly expressed during H. pylori 
infection, and the density of FOXP3+ Treg cells was higher in the gastric mucosa of 
infected individuals than in H. pylori-negative people. These cells have been associated 
with increased bacterial density among individuals with gastritis[73].

Advances in the understanding of the interplays between Treg responses and the 
development of gastric cancer have been achieved. Interestingly, a recent study 
including gastric cancer patients in various stages of the disease showed that high 
infiltration of FOXP3+ Treg cells was associated with poor outcomes among 
individuals with advanced disease, but it was a predictor of better prognosis among 
patients with early-phase disease[74]. Current evidence emphasizes the role of Wnt/β-
catenin signaling in gastric carcinogenesis because 70% of gastric cancer patients have 
dysregulation in pathways associated with this signaling[75]. β-catenin induces gastric 
cancer cells to produce CCL28, which strongly attracts Treg cells to the tumor 
environment. In this sense, a recently published study using Helicobacter felis-colonized 
mice with gastric cancer found the block of β-catenin-induced CCL28 through anti-
CCL28 antibodies leads to the suppression of gastric cancer progression by inhibiting 
Treg cells infiltration[76].

A surface glycoprotein known as neuropilin-1 seems to be crucial for the immunore-
gulatory events taking place in the tumor environment. The role of that molecule had 
already been well described in other malignancies, being related to cell migration, 
angiogenesis, and invasion[77]. In a new investigation by Kang et al[78], the expression 
of neuropilin-1 was associated with increased levels of the regulatory cytokines IL-35, 
IL-10, and TGF-β1 as well as with increased infiltration of Treg cells and M2 
macrophages in gastric cancer. Moreover, its expression was positively correlated to 
poorer outcomes, which indicates that neuropilin-1 has the potential to be used as a 
prognostic factor in gastric cancer patients.

Besides the aforementioned roles of Treg cells in gastric cancer development, Liu et 
al[79] found that these cells promote the expression of leucine-rich repeat containing G 
protein-coupled receptor 5 by tumor cells via TGF-β1 and TGF-β1 signaling pathway, 
probably involving the aforementioned Wnt/β-catenin signaling. The leucine-rich 
repeat containing G protein-coupled receptor 5 is a global stem cell marker whose 
overexpression is observed in gastric cancer, and it has also been positively correlated 
with tumor invasion, metastasis, and poor prognosis among individuals with that 
malignancy[80]. Figure 1 summarizes the roles played by Th cells in the setting of 
gastric carcinogenesis.
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Figure 1 Interplays between Helicobacter pylori, immune response, and gastric cancer. DCs: Dendritic cells; IL: Interleukin; Lgr5: Protein-coupled 
receptor 5; NapA: Neutrophil-activating protein A; STAT3: Signal transducer and activator of transcription 3; TGF-β: Transforming growth factor β; Th: T helper; 
VEGF: Vascular endothelial growth factor.

POLYMORPHISMS IN GENES THAT ENCODE CYTOKINES AND GASTRIC 
CANCER
IL-1
The interleukin-1 family has 11 molecules that are able to interact with almost all 
human cells[81]. Among these, the proinflammatory IL-1β and the antagonist receptor 
of IL-1 (IL-Ra) have been associated with an increased risk of developing gastric cancer
[82-85]. The genes encoding IL-1β and IL-1Ra are called IL1B and IL1RN, respectively
[86]. Single nucleotide polymorphisms (SNPs) found in these genes alter the inflam-
matory response of these cytokines. The SNPs identified in the coding of IL-1B have a 
C-T transition base at -511, -31, or +3954 positions. For IL-Ra, the allele 2 (IL-RN*2) has 
been associated with inflammatory responses that increase the risk of disease 
development[87].

In the presence of any of the three aforementioned SNPs in the sequences that 
encode IL-1β, the production of this cytokine can be enhanced. This overexpression 
has been associated with the development of hypochlorhydria and atrophy of the 
gastric corpus, in addition to an increased risk for gastric cancer, especially on H. pylori 
positive subjects[88-98]. The production of IL1-Ra is mediated by a diversity of 
cytokines such as IL-1β, and the antagonistic function of the former controls the 
inflammatory response of the later. In this sense, the SNP IL-1RN*2 has been linked to 
an increased secretion of IL-1β[99-102].

IL-8
IL-8, also known as CXCL8, is a proinflammatory chemokine from the alpha subfamily 
(CXC)[103]. It can be produced by several cells such as epithelial and endothelial cells, 
monocytes, macrophages, and tumor cells[104,105]. Increased expression of IL-8 is 
promoted by various stimuli, including the initiation, modulation, and maintenance of 
the host inflammatory response against H. pylori infection[106,107]. This molecule 
induces the migration and proliferation of endothelial cells, contributing to 
angiogenesis and tumorigenesis, being related to increased cell migration, invasion, 
and metastasis[108].

The CXCL8 gene is located in chromosome 4q12-21 and possesses three introns, four 
exons, and a proximal promoter region[109]. The genetic polymorphism IL8-251T> A 
(rs4073) has been associated with variations in the expression of IL-8 and increased 
risk of gastric cancer development mainly in Brazilian, Chinese, and Korean 
populations[110]. Curiously, that polymorphism was not significantly associated with 
a higher risk of gastric cancer in the Japanese population, which might be related to 



de Brito BB et al. Immunology, H. pylori, and gastric cancer

WJMA https://www.wjgnet.com 263 June 28, 2021 Volume 9 Issue 3

specific environmental factors and genetic background[103].

IL-10
As previously discussed in this review, IL-10 is an anti-inflammatory cytokine; 
therefore, it inhibits the activity of some defense cells and limits the production of 
proinflammatory cytokines[111]. Polymorphisms -1082, -592 and, less frequently, -819, 
can modulate IL-10 transcription, decreasing the expression of this cytokine, which can 
initiate a hyperinflammatory response that increases the risk of gastric lesions and 
cance[112-116]. Therefore, these polymorphisms have been associated with a possible 
higher risk of gastric cancer, mainly in Asian populations but also in a study 
conducted with American subjects[117-120].

IL-2
IL-2 is a cytokine that plays proinflammatory and anti-inflammatory roles and is 
encoded by a gene located in chromosome 4q21. Among other repercussions, this 
molecule contributes to the proliferation of T regulatory cells and regulates the 
expansion and apoptosis of activated T cells[25,39]. The IL2 GG variant genotype 
–330T> G in H. pylori-positive Asians and Brazilians as well as the SNP IL-2 + 114T> G 
and 330g/+ 114T haplotype in H. pylori-positive Brazilians have been associated with 
an increased risk of developing gastric cancer[121].

IL-4 
Similar to IL-2, IL-4 also plays dual roles in the immune system, being encoded by a 
gene in chromosome 5q31.1[108]. Its function in tumor progression is mainly related to 
the inhibition of proinflammatory cytokines in the setting of antitumor immune 
responses, favoring the perpetuation of malignant cells[107]. Polymorphisms in IL4
-590C/T rs2243250 CC, genotype CT + CC, and IL4 haplotypes have been found to be 
associated with a higher risk of developing gastric cancer in the Chinese population
[122].

IL-6
IL-6 is a cytokine that plays roles as an proinflammatory immune mediator and as an 
endocrine regulator[79]. This protein is encoded by a gene located in chromosome 7 
and has been found to be increased in H. pylori-positive individuals[108]. 
Polymorphisms in the IL6-174C allele and IL6-174CC genotype are associated with an 
enhanced prevalence of diffuse-type gastric cancer, whereas the IL6-174CG has been 
related to intestinal-type gastric cancer[106]. In addition, the IL6 SNP -572 (G> C, 
rs1800796) has been emphasized as a potential genetic biomarker for increased gastric 
cancer risk in Asian populations[110].

IL- 22
IL-22 is an anti-inflammatory cytokine that belongs to the IL-10 family. It participates 
in mucosal repair and epithelial immunity processes[123]. Chinese individuals with 
the SNP rs1179251 (allele G) encoding IL-22 showed a higher risk of developing gastric 
cancer associated with H. pylori[124]. Some SNPs of this cytokine have also been found 
in Chinese patients with increased risk for MALT gastric lymphoma induced by H. 
pylori (alleles C in rs2227485; A in rs4913428; A in rs1026788 and T in rs7314777)[125].

H. PYLORI VIRULENCE FACTORS, IMMUNE RESPONSE, AND GASTRIC 
CARCINOGENESIS
CagA
Infection with cagA-positive H. pylori strains is the main risk factor for the 
development of gastric cancer[126-129]. CagA is a multifunctional, pore-forming 
protein that induces vacuolization, cell necrosis, and cell apoptosis in gastric epithelial 
cells[130-134]. Of note, this virulence factor appears to induce an important 
modulation of the host immune system[135,136]. A recently published study by He et 
al[137] using mice revealed that CagA suppresses the expression of proinflammatory 
cytokines induced by H. pylori infection through the inhibition of the mitogen-
activated protein kinase and NF-κB pathways. In addition, the study has shown, for 
the first time, that this virulence factor downregulates the posttranslational modif-
ication of TRAF6, obstructing the transmission of a signal downstream responsible for 
promoting the release of proinflammatory mediators.
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Studies have described that H. pylori has a molecular mechanism of CagA expansion 
through which its number of copies expands, consequently enhancing its virulence
[138,139]. The analysis of the PMSS1 H. pylori strain showed that bacteria that carry 
more CagA copies also produce more toxin, leading to enhanced cell elongation and 
IL-8 induction[140,141]. Yamaoka et al[142]. proposes that the levels of IL-8 of the 
gastric mucosa are related to the presence of CagA and OipA. Both molecules seem to 
be involved in the induction of interferon regulatory factors and play a role in the 
complete activation of the IL-8 promoter, using different convergence pathways[143].

VacA
Vacuolating cytotoxin A (VacA) is a protein encoded by a monocistronic gene known 
as vacA. Secreted VacA molecules are 140 kDa initially, but they are rapidly cleaved 
into a 10 kDa domain (p10) to produce a mature 88 kDa protein[144,145]. Generally, 
they are secreted as soluble proteins in the extracellular space; however, they are 
found on the bacterial surface as well[146]. Moreover, this virulence factor is expressed 
by almost all H. pylori strains[147].

VacA inhibits activation and proliferation of T and B cells, a process that induces the 
apoptosis of macrophages mainly through the inhibition of INF-β signaling. Moreover, 
this virulence factor induces an excessive release of IL-8[148]. Specifically in T cells, 
VacA inhibits the production of IL-2, in addition to regulating the surface expression 
of the IL2-α receptor. This process is possibly due to the ability of VacA to inhibit the 
activation of the nuclear factor of activated T-cells, a global transcription factor that 
regulates immune response genes for T cell activation. The mechanism by which VacA 
inhibits activation of nuclear factor of activated T-cells is uncertain; however, it is 
believed that this virulence factor influences the calcium flow in the extracellular 
medium, which inhibits the calcineurin-dependent Ca2+-calmodulin complex[149]. 
Other effects on these cells include the activation of intracellular signaling through 
MAP kinases, such as MKK3/6 and p38 as well as the Rac/Vav-specific nucleotide 
exchange factor[145]. Studies with primary CD4+ T cells in humans have 
demonstrated that VacA inhibits the proliferation of activated T cells through a 
mechanism that is independent of the effect of VacA on nuclear factor of activated T-
cells activation and IL-2 expression[150,151]. In antigen presenting cells, VacA seems 
to interfere with the formation of vesicular compartments in macrophages infected 
with H. pylori causing homotypic vacuolar fusion and consequent changes in their 
physiological properties. It has also been reported that VacA can interfere with the 
antigen presentation of B lymphocytes by interfering in the MHC II of these cells. 
Finally, blocking the activation and proliferation of this set of cells helps H. pylori to 
resist the host immune response, establishing a persistent infection and with worse 
clinical outcomes[146].

The various positive VacA-linked bacterial genotypes are associated with a higher 
prevalence of malignant gastric lesions, in addition to a greater severity of inflam-
mation induction by the pathogen. VacA is the most studied toxin in H. pylori due to 
its versatility in relation to different receptors in different cell types and functions. 
VacA is directly involved in the formation of intracellular vacuoles, which provide the 
survival of the bacteria in the gastric environment, even after drug treatment. 
Therefore, other studies need to be developed with VacA in order to better understand 
the persistence of the pathogen in the gastric environment[152].

Duodenal ulcer promoter A
The duodenal ulcer promoter A (DupA) protein is an H. pylori virulence factor whose 
gene is located in the plasticity zone of the bacterial genome[153]. The DupA gene 
contains two overlapping open reading frames (jhp0917 and jhp0918) that form a 
continuous locus[154]. Of note, only strains that harbor both aforementioned segments 
are able to produce the DupA protein[155].

The initial studies on DupA show that its pathogenicity is closely linked to the 
development of duodenal ulcer[154]. Based on in vitro and in vivo studies, such an 
outcome is believed to be due to the role of the DupA gene in the activation of NF-κB 
and activating protein-1, which enhance the infiltration of neutrophils with consequent 
expression of IL-8 in the antrum that promotes risk of these injuries[156,157]. These 
findings have shown that predominant antral gastritis often leads to a reduction in 
somastatin, greater gastrin secretion, and consequently greater release of gastric acid 
and formation of duodenal ulcer[158]. In this context, DupA expression is negatively 
correlated with the risk of gastric atrophy, intestinal metaplasia, and gastric cancer
[159,160]. However, it has to be emphasized that DupA has not been associated with 
the development of duodenal ulcers in western populations[161,162].
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OipA
The 34 kDa external inflammatory protein A (OipA), encoded by the hopH gene 
(hp0638), located approximately 100kb from the Cag Pathogenicity Island, belongs to 
the family of External Membrane Proteins. This protein is associated with gastric 
inflammation, being one of the main H. pylori virulence factors[163].

The attachment of gastric epithelial cells through OipA occurs with the induction of 
cellular apoptosis via the Bcl-2 pathway, increased levels of Bax, and cleaved caspase 3
[164]. Notably, several studies have shown that positive OipA has been more frequent 
in individuals with precancerous lesions than those with gastritis alone[149,165-167].

The OipA-positive H. pylori strains are more prone to gastric colonization, being also 
associated with a higher risk of peptic ulcer disease and gastric cancer. This molecule 
strongly induces inflammation, and the infiltration of neutrophils as well as the 
production of IL-8 are significantly higher in oipA-positive strains compared to the 
negative ones[168]. Some studies indicate that OipA induces the interferon regulatory 
factors 1, which binds and activates the element similar to the response element 
stimulated by IFN, to induce the genetic transcription of IL-8 and its production[153]. 
In addition, NF-κB and activating protein-1 are also involved in the genetic 
transcription and production of IL-8 by gastric epithelial cells infected with H. pylori
[169].

Other proinflammatory cytokines may also be present in H. pylori infection caused 
by the presence of OipA, such as IL-1, IL-6, IL-8, IL-11 IL-17, matrix metalloproteinase-
1, TNF-α, or CC chemokine ligand 5[170]. This is similar to a response linked to the 
Cag Pathogenicity Island[8]. However, depending on the OipA states in different 
strains of H. pylori, the secretion of these cytokines may not be observed[171-173].

The genes that express functional OipA are strong factors of bacterial virulence and 
are linked to the genotypes VacA s1, VacA m1, blood group antigen-binding adhesin 
2, and the Cag Pathogenicity Island gene and can act synergistically with each other to 
induce worse clinical outcomes of diseases caused by H. pylori[155].

IceA
The gene induced by contact with epithelium A (iceA) is a virulence marker still poorly 
described. The functions related to this virulence factor remain unclear and it 
possesses two variants: IceA1 and IceA2. H. pylori has only one iceA locus from which 
the protein can be expressed. Therefore, the presence of both aforementioned 
variations indicates an infection by different strains of the pathogen[149].

The IceA relationship and the clinical outcomes of gastric diseases are still contro-
versial[174]. However, studies have emphasized that strains positive for this gene 
induce the release of the proinflammatory cytokines IL-6 and IL-8 more intensely than 
negative strains[175,176]. Feliciano et al[177] demonstrated the possible role of IceA1 in 
the development of gastric cancer but not in peptic ulcers. In addition, Yakoob et al
[178] demonstrated that iceA2-positive H. pylori strains were more often associated 
with chronic active inflammation, gastric ulcer, and gastric adenocarcinoma. Studies 
indicate that IceA has its function preserved regardless of the presence of other H. 
pylori virulence factors[179-181].

To date, there seems to be a consensus that the global prevalence of IceA1 is higher 
than IceA2[174]. However, although there is a greater expression of IceA1 than IceA2, 
the latter is associated with greater granulocytic and lymphocytic infiltration as well as 
atrophic gastritis[182]. Abu-Taleb et al[183] demonstrated in their study that H. pylori-
infected individuals who express IceA1 or IceA2 alone do not develop gastric 
carcinoma. On the other hand, 75% of the patients who had both alleles (IceA1/IceA2) 
concomitantly developed gastric carcinoma. Strains that have positive IceA2 tend to 
stimulate IL-1, resulting in an increased risk of precancerous lesions in the gastric 
mucosa. This process can become worse if associated with the concomitant effects of 
other virulent factors, worsening inflammatory processes. Taken all together, the iceA 
gene is an important marker of severe gastric diseases that must be taken into account
[149].

BabA
The mechanisms related to the BabA pathogenicity are still poorly elucidated. 
Nonetheless, studies have shown that BabA-dependent H. pylori cell adhesion have 
great relevance in the initial colonization of the pathogen[184]. Moreover, BabA works 
by facilitating the entry of CagA and VacA into host cells[185]. BabA-negative H. pylori 
strains have been associated with the development of mild gastric lesions and are 
rarely associated with gastric cancer. This means that BabA positivity might increase 
the risk of serious gastric lesions and carcinomas[186].
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Table 1 Roles of Helicobacter pylori virulence factors on host immune response

Virulence 
factor Effects over immune response Ref.

CagA IL-8 stimulation; Suppression of proinflammatory cytokines through the inhibition of 
MAPK and NF-κB

Schumacher and Schwarz[81] and 
Garlanda et al[83]

VacA Inhibition of activation and proliferation of T and B cells; Induction of the apoptosis of 
macrophages (inhibition of INF-β signaling); IL-8 stimulation; Inhibition of IL-2 production 
by inhibiting NFAT; Impairment of antigen presentation by B lymphocytes

Drici et al[86] Dinarello[89], Hollegaard 
and Bidwell[90], Sicinschi et al[91] and 
Garza-González et al[92]

DupA Promotion of neutrophilic infiltration Zeng et al[94]

OipA Promotion of neutrophilic infiltration; Stimulation of IL-1, IL-6, IL-8, IL-11, IL-17, MMP-1, 
TNF-α, and IRF-1

Gehmert et al[97]

IceA Stimulation of IL-1, IL-6, and IL-8 Abbasian et al[101]

BabA Stimulation of IL-33 Xue et al[108]

BabA: Blood group antigen-binding adhesin; DupA: Duodenal ulcer promoter A; IL: Interleukin; INF-β: Interferon-beta; IRF-1: Interferon regulatory factor 
1; MAPK: Mitogen-activated protein kinase; MMP-1: Matrix metalloproteinase-1; NF-κB: Nuclear factor-κB; NFAT: Nuclear factor of activated T-cells; 
OipA: External inflammatory protein A; TNF: Tumor necrosis factor; VacA: Vacuolating cytotoxin A.

A study showed a greater expression of IL-33 mRNA in biopsies from patients 
infected with H. pylori compared to noninfected individuals. Interestingly, a direct 
relationship was observed between blood group antigen-binding adhesin 2 and 
increased gastric levels of that cytokine[187]. IL-33 plays an important role in immune 
regulation, providing protection after damage to epithelial cells[188]. It also has the 
potential to reduce colonization in gastrointestinal infections[189]. In addition, recent 
studies emphasize its likely role in the development of tumorigenesis[190].

Sialic acid A adhesin
Sialic acid A adhesin (SabA) is an H. pylori membrane protein whose expression has 
been explored as a biomarker for increased risk of developing gastric cancer[191,192]. 
Yamaoka et al[193] demonstrated that SabA is positively associated with gastric cancer, 
intestinal metaplasia, and body atrophy and is negatively associated with duodenal 
ulcer. H. pylori uses SabA to recognize the Lewis X antigen from gastric epithelial cells, 
and this virulence factor has been associated with non-opsonic activation of human 
neutrophils[194,195]. SabA mediates antigen binding to sialyl-Lewis, which is an 
established tumor and gastric dysplasia marker[196]. The available data on this issue 
highlights how harmful such adhesion can be to the gastric epithelium; however, 
further studies are needed to better understand the underlying immune system 
responses related to this molecule[197]. Table 1 shows how the H. pylori virulence 
factors interact with the immune system.

Heat-shock protein 60
Heat-shock protein 60 (hsp60) is known to have substantial immunogenic properties. 
Studies have demonstrated that hsp60 promotes cell signaling upon myeloid and 
vascular endothelial cells[198]. H. pylori-expressed hsp60 seems to play a role in 
bacterial adhesion to gastric epithelial cells and mucin[199]. In addition, that virulence 
factor has been shown to effectively inhibit human PBMCs. A study by Maguire et al
[200] demonstrated that the inhibitor effect over human PBMCs was more potent with 
hsp60 from H. pylori than hsp60 from Chlamydia pneumoniae or human mitochondria. 
Evidence has shown that hsp60 also promotes immune system responses through the 
activation of TLRs in human gastric epithelial cells and induces IL-8 expression 
through TLR-2 and mitogen-activated protein kinase pathways in human monocytes
[201,202]. Another study evaluating the effects of hsp60 over human monocytes 
demonstrated that it seems to promote an upregulation of cytokines such as IL-1a, IL-
8, IL-10, IFN-γ, TNF-α, and TGF-β[203]. Regarding the oncogenic roles related to this 
molecule, an enhanced gastric cancer cell and promotion of tube formation by 
umbilical vein endothelial cells have been positively associated with hsp60, but effects 
on cell proliferation and cell death prevention have not been attributed to the protein
[204].
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CONCLUSION
The knowledge on the relationship between H. pylori infection, the immune system, 
and oncogenesis is crucial for the understanding of the mechanisms involved in the 
onset and progression of gastric cancer. Although considerable advances have been 
achieved in this research field, much has to be done in order to describe underlying 
mechanisms related to the H. pylori-related carcinogenesis. A better comprehension on 
this issue could be useful for the development of tools that may aid in the prevention 
as well as in the prognostic prediction and treatment of such an important disease. 
Here, we gathered data showing that H. pylori infection promotes multiple immune 
response activities, such as Th cell polarizations that are closely related to mechanisms 
associated with gastric carcinogenesis.
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