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Abstract
Fibrosis is the hyperactivation of fibroblasts that results in excessive accumulation 
of extracellular matrix, which is involved in numerous pathological changes and 
diseases. Adipose-derived stem cells (ASCs) are promising seed cells for 
regenerative medicine due to their bountiful source, low immunogenicity and 
lack of ethical issues. Their anti-fibrosis, immunomodulation, angiogenesis and 
other therapeutic effects have made them suitable for treating fibrosis-related 
diseases. Here, we review the literature on ASCs treating fibrosis, elaborate and 
discuss their mechanisms of action, changes in disease environment, ways to 
enhance therapeutic effects, as well as current preclinical and clinical studies, in 
order to provide a general picture of ASCs treating fibrotic diseases.

Key Words: Adipose-derived stem cells; Fibrosis; Immunomodulation; Modification; 
Therapeutic effect; Clinical trials
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Core Tip: Fibrosis is involved in various diseases. Adipose-derived stem cells (ASCs) 
are promising candidates for regenerative medicine and anti-fibrosis treatment. We 
herein discuss the mechanisms of action, changes in disease environment, ways to 
enhance therapeutic effects, as well as current preclinical and clinical studies of ASCs 
treating fibrotic diseases in order to provide a general picture.
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INTRODUCTION
Fibrosis is a common pathological feature in various diseases. It can involve multiple 
systems and organs, for example, lungs, liver, kidneys, skin, heart and skeletal muscle. 
Fibrosis is characterized by the hyperactivation of fibroblasts, causing them to transit 
into contractile myofibroblasts, as well as increased synthesis of extracellular matrix 
proteins, resulting in excessive deposition of collagen fibers, often in the form of 
abnormally arranged bundles. Macroscopically, fibrosis leads to the stiffening of 
tissues, often accompanied by the loss of normal functions[1-4].

Adipose-derived stem cells (ASCs) are a promising candidate for regenerative 
medicine due to their multifaceted functions, abundance, and lack of ethical problems. 
Numerous studies have looked into the effectiveness and mechanisms of action of 
ASCs in treating fibrosis-related diseases, as well as the ways to boost their functions
[4-7].

In this review, we summarize and discuss recent studies in the hope of providing a 
general picture of the present applications of ASCs in fibrotic diseases.

MECHANISMS OF ACTION
Interactions with the TGF-β/Smad axis
The transforming growth factor-β (TGF-β)/Smad axis is one of the critical players in 
the wound healing cascade, whose dysregulation leads to pathological fibrosis[8]. In 
addition to directly stimulating the synthesis of collagen and fibronectin, TGF-β1 also 
inhibits the extracellular matrix (ECM) decomposing enzyme, matrix metallopro-
teinases (MMPs), as opposed to the anti-fibrotic tissue inhibitor of metalloproteinases 
(TIMPs)[9]. By promoting the synthesis while inhibiting the degradation of ECM, the 
activation of the TGF-β/Smad axis results in excessive accumulation of ECM, which is 
characteristic of fibrosis. Another important feature of fibrosis is the transition from 
fibroblast to myofibroblast, which is also induced by TGF-β1[10]. Various studies[10-
13] have shown that the decreased expression of TGF-β1 is an important effect of ASCs 
in the treatment of fibrosis. In fact, it is one of the most widely used indicators of 
fibrosis treatment.

Paracrine effects
Dysregulation of cytokine secretion and signaling is present during the fibrotic process
[14]. It is well known that adipose-derived mesenchymal stem cells can secrete a large 
number of soluble factors[15]. The anti-fibrotic function of human adipose tissue is 
related to the release of fibroblast growth factor-2 (FGF-2), epidermal growth factor 
(EGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor 
(VEGF), and hepatocyte growth factor (HGF), etc. Those growth factors and cytokines 
are pivotal ways for ASCs to exert their effects, such as pro-angiogenesis and immu-
nomodulation. A study in kidney injury models revealed that an important initiating 
factor of fibrosis is the loss of capillary bed, which leads to hypoxia, oxidative stress, 
inflammation and finally, fibrosis. This could be demonstrated by the overlap between 
low capillary density areas and fibrotic areas. Therefore, since ASCs could secrete 
multiple pro-angiogenic factors including VEGF, they could alleviate fibrosis by 
increasing the density of capillaries, therefore relieving hypoxia and ensuing responses
[6]. HGF has been demonstrated to downregulate TGF-β1 and modulate the 
recruitment of immune cells, which plays an essential role in the ASCs anti-fibrotic 
process[11,16].

Antioxidation
As a result of tissue damage, fibrosis is associated with hypoxic conditions in the 
affected area, leading to the production of reactive oxygen species (ROS). Fibrotic 
tissue is characterized by low capillary density and low oxygen concentration[17]. As a 
result of chronic hypoxia, ROS have a significant effect on the activation of the TGF-β
1/Smad pathway and the accumulation of collagen.

In a study of rat myocardial infarction models, ASCs transplantation significantly 
decreased ROS level and suppressed the activity of nucleotide-binding oligomer-
ization domain like receptor (NLR) pyrin domain containing 3 (NLRP3) inflam-
masome, and cardiac fibrosis was markedly ameliorated[18]. At present, many studies 
have shown that ASCs have powerful antioxidant properties[6,19]. The antioxidative 
activity of paracrine factors, as well as the improvement in microcirculation due to 
increased capillary density, leads to a significant reduction in oxidative stress in the 
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surrounding environment[20].

Immunomodulation
Fibrosis involves the activation of the innate and adaptive immune system[1]. ASCs 
possess immunomodulatory abilities. Studies have shown that ASCs can reduce 
inflammation. ASCs play an important role in regulating the function of macrophages, 
including the conversion from pro-inflammatory M1 subtype to the anti-inflammatory 
M2 subtype and the recruitment of anti-inflammatory macrophages[21-23]. ASCs also 
exert powerful immunosuppressive properties by inhibiting T cell response[13]. Mast 
cells are believed to have a direct effect on stimulating the proliferation of fibroblasts, 
and the positive results of ASCs scar treatment were associated with a decrease in the 
number of mast cells in the histological samples of the treatment group[24].

Apart from regulating immune cells, ASCs can also reduce the level of a variety of 
inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor-alpha 
(TNF-α), and IL-6[13]. The changes in fibrosis and possible mechanisms of action of 
ASCs are summarized in Figure 1.

ALTERED CHARACTERISTICS AND EFFECTS OF ASCS UNDER DISEASE 
ENVIRONMENTS
Scleroderma
ASCs in a distinct disease microenvironment display different characteristics. Taki et al
[25] treated ASCs with systemic sclerosis (SSc) lesion tissue fluid, to comprehensively 
determine the influences of the disease microenvironment on ASCs. Their findings 
support the idea that ASCs are activated by exposure to the disease microenvironment 
and can differentiate into fibrotic cells. In addition, subcutaneous ASCs are another 
potential source of pathogenic myofibroblasts, and multiple factors in the disease 
microenvironment contribute to the fibrotic transformation (Figure 2).

Metabolic syndrome
Adipose tissue in obesity changes into a pro-inflammatory phenotype, fueled by 
altered ASCs. They exhibit decreased pluripotency, increased secretion of multiple 
inflammatory factors, including TNF-α, IL-8, IL-6, etc, while the secretion levels of 
VEGF, FGF, and HGF were reduced. Obese ASCs also synthesize more ROS and 
recruit more immune cells, continuously promoting the development of inflammation
[26]. Over-nutrition also leads to the shortening of telomeres in ASCs, driving them 
toward cellular senescence, and consequently, fibrosis and functional abnormalities of 
adipose tissue[27].

The contents of extracellular vesicles (EVs) undergo changes in addition to ASCs 
themselves. Farahani et al[28] conducted microRNA sequencing on the EVs derived 
from ASCs of lean and metabolic syndrome (MetS) model pigs, and revealed the 
changes of 19 microRNAs which were related to mitochondria. Further tests on 
stenotic kidney injury models uncovered that only MetS EVs failed to improve fibrosis 
or other indicators. Another study also conducted microRNA sequencing on MetS EVs 
and compared the differentially expressed microRNAs between lean and MetS 
individuals, both in pig models and human patients. As a result, there were 57 
overlaps in differentially expressed microRNAs between pig models and patients, 
likely related to MetS-induced changes. In vitro experiments of co-culturing ASCs with 
renal tubular cells demonstrated that MetS ASCs could induce senescence in tubular 
cells. MetS ASCs injection was not able to improve renal fibrosis as effectively as lean 
ASCs[29].

WAYS TO ENHANCE ASCS THERAPEUTIC PERFORMANCE
Pre-conditioning
Multiple studies have shown that pre-conditioning with chemicals or protein factors 
could enhance the therapeutic performance of ASCs. Antioxidants are common sought 
choices. Liao et al[30] pre-treated ASCs with reduced glutathione (GSH) or melatonin, 
both of which are endogenous antioxidants. Pre-treatment enhanced the anti-fibrosis 
and anti-inflammatory effects of transplanted ASCs due to promoted migration and 
survival. The enhanced survival of ASCs could result from increased expression of Bcl-
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Figure 1 Changes in fibrosis and the potential mechanisms of action of ASCs. TGF-β: Transforming growth factor-β; ECM: Extracellular matrix; 
MMPs: Matrix metalloproteinases; FGF-2: Fibroblast growth factor-2; EGF: Epidermal growth factor; PDGF: Platelet-derived growth factor; VEGF: Vascular 
endothelial growth factor; HGF: Hepatocyte growth factor; ROS: Reactive oxygen species; NLRP3: Nucleotide-binding oligomerization domain like receptor pyrin 
domain containing 3.

Figure 2 Ways to enhance adipose-derived stem cells therapeutic performance. GSH: Glutathione; IL-4: Interleukin 4; SDF-1: Stromal derived factor-
1; FBS: Fetal bovine serum; HPL: Human platelet lysate; 3D culture: Three-dimensional culture; ECM: Extracellular matrix; VEGF: Vascular endothelial growth factor; 
GDNF: Glial cell line-derived neurotrophic factor; circRNA: Circular RNA; miRNA: micro RNA; MUSE cells: Multilineage differentiating stress enduring; PRP: Platelet-
rich plasma.

2 and Cyclin-D1 and reduced expression of Bax, that is, antioxidant pre-treatment 
promoted cell proliferation and reduced apoptosis. Ex vivo imaging showed that GSH 
and melatonin pre-treatment promoted ASCs migration into the liver, and allowed 
them to maintain at a relatively high level. Further investigation revealed that the 
amelioration of ROS-induced oxidative stress might be the underlying mechanism of 
action of the antioxidants, and that GSH might be a better choice of pre-conditioning 
compared to melatonin. Resveratrol is a natural antioxidant extracted from plants 
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which has been proved to benefit health and enhance stem cells therapeutic 
performance. Chen et al[5] pretreated ASCs with resveratrol (RSVL-ASCs). Compared 
to untreated ASCs, RSVL-ASCs exhibited a stronger anti-fibrotic effect in diabetes 
mellitus cardiomyopathy.

Fathy et al[31] discovered that eugenol pre-treatment enhanced ASCs’ self-renewal, 
proliferation and migration abilities in vitro, as well as their therapeutic effects in rat 
liver fibrosis models. Compared to untreated ASCs, eugenol treated ASCs (E-ASCs) 
exhibited better homing ability, further decreased the expression level of inflammatory 
factors and increased MMPs expression. Histopathological examination revealed 
similar results.

Zimowska et al[32] studied whether ASCs treated with IL-4 and stromal derived 
factor-1 (SDF-1), both of which enhance skeletal muscle regeneration, had a better 
effect in promoting skeletal muscle regeneration. In vitro treatment of IL-4 and SDF-1 
significantly enhanced ASCs proliferation and migration.

Pre-conditioning with chemicals and protein factors proved to be effective in 
improving the functions of ASCs. However, since there could be residual substances in 
treated cells, it is pivotal to test and determine their safety before application.

Transfection and modification
Modifying ASCs with various factors could boost their therapeutic effects or expand 
their mechanisms of action. VEGF is an essential factor in promoting angiogenesis, and 
is naturally secreted by ASCs. Boosting the concentration of VEGF might result in a 
boosted therapeutic effect. Yu et al[7] studied the pro-angiogenic, anti-fibrotic and 
ability to improve fat graft survival rate of VEGF mRNA modified ASCs in vitro and in 
vivo. Compared to unmanipulated controls, VEGF mRNA modification greatly 
amplified the therapeutic effects, likely due to the increased secretion of VEGF. Glial 
cell line-derived neurotrophic factor (GDNF) is a neuroprotective factor that has also 
been proved to play a critical role in kidney diseases. Li et al[6] transfected GDNF gene 
into ASCs in order to explore whether the modified cells could perform better in 
treating renal interstitial fibrosis. It was discovered that the modified ASCs secreted 
more growth factors, and possessed enhanced abilities in many aspects.

Apart from classical growth factors, N-cadherin is a transmembrane protein that can 
enhance cell-cell adhesion which has only recently attracted attention in the field of 
stem cell biology. In a recent study[33], adult mice-ASCs were transfected with 
adenovirus harboring N-cadherin. N-cadherin overexpression promoted the migration 
and angiogenic properties, and significantly increased the formation of the N-
cadherin/β-catenin complex and the level of active β-catenin in the nucleus, which 
leads to increased expression levels of MMP-10, MMP-13, and HGF, thus exerting their 
anti-fibrosis effect.

Another method of exploration is to first compare the differences between disease 
and normal tissues, identify the genes most likely in play, and adjust ASCs with 
pertinency. Zhu et al[34] compared the circular RNA (circRNA) expression profiles of 
normal and fibrotic liver samples from CCl4 induced liver fibrosis mouse models, and 
discovered that mmu_circ_0000623 was downregulated in fibrotic liver samples. 
Further exploration revealed that mmu_circ_0000623 interacted with miR-125/ATG4D 
and modulated autophagy. ASCs were modified with mmu_circ_0000623 and their 
exosomes were collected. Exosomes from modified ASCs resulted in the best anti-
fibrotic effect in vitro and in vivo, by regulating autophagy.

Micro RNAs (miRNAs, or miRs) are small non-coding RNA molecules (about 22 
nucleotides) that change gene expression at the post-transcriptional level, leading to 
changes in protein synthesis. MiR-150 is a representative anti-fibrotic miRNA, which 
can inhibit the activation of hepatic stellate cells through the inhibition of C-X-C motif 
chemokine ligand 1 (CXCL1), and is a natural component of ASCs EVs[35]. Paik et al
[36] transfected ASCs with miR-150 to explore whether additional miR-150 secretion 
could boost the anti-fibrotic ability. As expected, transfected ASCs better alleviated 
liver fibrosis both in vitro and in vivo, due to elevated secretion of anti-fibrotic miRs
[36].

TNF-α-driven inflammation plays a key role in the occurrence of liver fibrosis. Han 
et al[37] designed genetically engineered ASCs that can produce etanercept (an 
effective TNF-α inhibitor) to play an anti-fibrosis role. They transfected ADSCs with a 
microcirculatory plasmid containing an insert encoding the etanercept gene to 
generate synthetic etanercept ADSCs. The results showed that blocking TNF-α-driven 
inflammation at the appropriate stage of liver fibrosis with the advantage of ADSCs 
may be an effective strategy to prevent fibrosis.
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In summary, genetically manipulated ASCs could be useful in adjusting to different 
disease conditions and boosting therapeutic effects. However, great care must be taken 
when considering administrating them into humans. It is crucial to first make sure that 
the manipulated cells are not tumorigenic or in other ways harmful.

Culture methods
2-dimensional culture remains the primary approach to expand ASCs in vitro. 
However, various materials used in this process increased the risk of contamination 
and immune rejection. For example, xenogeneic fetal bovine serum (FBS) might induce 
immune reactions or transmit bovine diseases. Human platelet lysate (HPL) has been 
proved to be a promising substitute for FBS. Replacing FBS with HPL in ASCs 
expansion medium resulted in better proliferative ability without changing cell surface 
markers. Although TGF-β1-stimulated fibroblasts exhibited improved migration upon 
HPL-cultured ASCs conditioned medium treatment, there were marked reductions in 
TGF-β1 and alpha-smooth muscle actin (α-SMA) expression, indicating that the anti-
fibrotic ability was likely enhanced by HPL culturing. Further investigation by adding 
the HGF neutralizing antibody revealed that the anti-fibrotic effect was at least 
partially related to the increased secretion of HGF[11]. This well-rounded study 
explored the feasibility of substituting FBS with HPL, and paved the way for safer 
clinical application of ASCs.

At present, 3-dimensional (3D) cell culture is a frequently-used method to enhance 
stem cell functions. Transglutaminase cross-linked gelatin (Col-Tgel) is a stiffness-
tunable cell culture medium which exhibits excellent performance in cellular adhesion 
and proliferation and can release entrapped cells. ASCs and Col-Tgel were co-cultured 
in an in vitro 3D system. Compared with ASCs alone, Col-Tgel embedded ASCs 
significantly enhanced the long-term retention rate and cardioprotective effect of ASCs 
in acute myocardial infarction models[2].

Aside from Col-Tgel, various 3D culture methods await exploration. Different target 
diseases and application methods shall require matching characteristics of the culture 
medium. ECM mechanical characteristics could affect ASCs phenotype and secretion 
of cytokines. It has long been known that matrix stiffness is an important influencing 
factor that affects stem cells lineage specification[38]. Dunham et al[39] discovered that 
culturing ASCs in a stiff matrix resulted in a more pro-fibrotic phenotype, including 
increased actin and α-SMA expression and ECM secretion. An adipokine array 
revealed altered expression levels of multiple adipokines, of which endocan, insulin-
like growth factor-binding protein-6 (IGFBP-6), and monocyte chemoattractant 
protein-1 (MCP-1) were increased in the stiff matrix and might play a part in 
environment stiffness induced changes of ASCs. In vivo experiments in post-traumatic 
elbow contracture rat models revealed similar results: ASCs cultured in soft matrix 
had the best therapeutic effects in increasing elbow range of motion and fibrosis, while 
ASCs cultured on tissue culture plastic surface made little difference. It was interesting 
that ASCs transferred from soft matrix into stiff matrix exhibited mechanical memory 
and maintained the soft matrix-induced phenotypes for a week, which may provide 
new methods for enhancing the therapeutic effects while avoiding adverse effects of 
ASCs.

Apart from stiffness, matrix microarchitecture is another factor that influences ASCs 
characteristics. Seo et al[40] investigated the effects of collagen microarchitecture on 
ASCs differentiation towards myofibroblasts. ASCs were cultured in collagen fibers 
that were different in diameter and pore size. Increased contractility, myofibroblast 
differentiation and pro-angiogenic phenotype were detected in ASCs cultured in 
thicker fibers and larger pores. The contractile ASCs in turn re-arranged local collagen 
fibers, therefore increasing local stiffness, and reciprocally, environment stiffness 
would eventually act on ASCs, forming a circuit of action. Notably, these changes 
were independent of collagen concentration and bulk stiffness.

ASCs subgroups
There are subgroups within ASCs that possess varied abilities. Multilineage differen-
tiating stress enduring (MUSE) cells are thought to be early-stage MSCs. They can be 
sorted by severe cellular stress conditions or flow cytometry, using the markers stage-
specific embryonic antigen 3 (SSEA-3) (a marker of human ES cells) and endoglin 
(CD105) (a marker of MSCs). Enhanced pluripotency, paracrine effects, high homing 
ability and low tumorigenicity have been observed in MUSE cells compared to 
unsorted ASCs[41].

Borrelli et al[42] identified a subpopulation of ASCs that were positive for CD74. 
They proved to have enhanced anti-fibrotic abilities both in vitro and in vivo. CD74+ 
ASCs conditioned medium possessed stronger anti-fibrotic ability, possibly through 
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elevated secretion of HGF, FGF2, TGF-β3 and decreased level of TGF-β1. In radiation-
induced fibrosis mouse models, CD74+ ASCs assisted fat graft most significantly, 
reduced dermal thickness and fibrosis, and resulted in the highest fat survival rate.

As ASCs are inherently heterogenous, subgroups are worth studying in the hope of 
discovering suitable subgroups for different diseases and the cells that possess 
maximum healing powers and minimum possibility of inducing adverse effects.

Co-administration
In addition to focusing on ASCs themselves, another way of improving therapeutic 
effects is the combined usage of ASCs and other substances. Evin et al[3] co-
administered ASCs with platelet-rich plasma (PRP) in treating radiation-induced 
fibrosis. The combination of ASCs and PRP rendered the best results, providing 
evidence that PRP could augment the therapeutic effects of ASCs.

APPLICATION IN FIBROSIS-RELATED DISEASES
Muscles
During muscle repair, fibrosis is a common adverse factor as it stiffens and weakens 
the healed muscle, depriving it of normal function. In vivo transplantation of ASCs into 
skeletal muscle injury models resulted in better muscle morphology under the 
microscope, with more regenerated myofibers and less collagen fiber deposition, 
through regulating immune responses[32]. It is worth noting that ASCs exhibited 
better regenerative effects than bone marrow-derived mesenchymal stem cells[43], 
providing evidence for choosing the most suitable cell type for muscle repair.

Many heart diseases are attributed to cardiac fibrosis and remodeling. Clinically, 
thrombolytic therapy and primary percutaneous coronary intervention are the most 
effective treatments for acute myocardial infarction (MI), but due to the limited heart 
regeneration capacity of adult mammals, irreversible heart failure cannot be 
prevented. It is expected that stem-cell based regenerative therapy could benefit 
cardiac fibrosis after infarction. Yan et al[33] aimed to explore whether and how N-
cadherin (NCAD) regulates mesenchymal stem cell retention and cardio-protection 
against ischemic heart failure (IHF). It was found that ASCs transfected with NCAD 
significantly increased mouse left ventricular ejection fractions and reduced fibrosis. 
NCAD overexpression can promote ASCs-cardiomyocyte adhesion and migration, 
and enhance their angiogenesis and cardiomyocyte proliferation abilities. They 
confirmed for the first time that NCAD overexpression can mediate the expression and 
production of MMP-10/MMP-13/HGF through β-catenin to enhance the protective 
effect of ASCs on IHF.

Chen et al[2] delivered the aforementioned Col-Tgel enwrapped ASCs into the heart 
muscle of acute MI models. The results showed that Col-Tgel provided a suitable 
microenvironment for the survival, proliferation, and migration of ASCs into the 
ischemic myocardial tissue, which is essential to exert their regenerative and anti-
fibrotic effect. This method can be used clinically to improve the effective rate and 
reproducibility of cell therapies and heart regeneration research.

EVs deliver genes and proteins to recipient cells and mediate the paracrine activity 
of their parent cells, which also plays a role in the cardioprotective effect of ASCs. In a 
pig model with both MetS and renal artery stenosis (RAS), intrarenal injection of EVs 
derived from ASCs reduced the release of pro-inflammatory cytokines. In MetS+RAS 
patients, intrarenal injection of EVs reduced myocardial damage, which could be 
related to the improvement in renal function and systemic inflammation. Local 
concentrations of inflammatory cytokines such as monocyte chemoattractant protein-1 
(MCP-1), TNF-α, and IL-6 were reduced in the stenotic kidney. EVs derived from ASCs 
improved myocardial fibrosis and remodeling, reduced myocardial hypoxia, 
improved capillary density and microvascular function, and reduced myocardial cell 
senescence, thus improving the diastolic function[44].

The efficacy of ASCs has been known to clinicians for some time. Trials have been 
conducted to explore whether ASCs can safely improve cardiac fibrosis after MI. The 
results were satisfactory, and were thoroughly elaborated by Li et al[45] and Vazir et al
[46].

Although numerous studies support the effectiveness of ASCs in treating cardiac 
fibrosis, negative results exist where ASCs are not as effective as induced pluripotent 
stem cell-derived cardiomyocytes[47]. Therefore, it is necessary to make comparisons 
to understand both the advantages and the disadvantages of ASCs.
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Liver fibrosis
Liver fibrosis is an excessive wound healing process that occurs in response to liver 
injury depending on the underlying cause. Currently, there are no effective treatments 
for liver fibrosis other than liver transplantation. Due to their advantages over stem 
cells from other sources, ASCs have received extensive attention as regenerative drugs 
for the treatment of liver fibrosis[35,48].

Intravenously injected ASCs can migrate into and survive in the fibrotic liver in 
animal models. Fibrosis was significantly reduced 3 wk after ASCs injection. Immuno-
histochemistry assay indicated that ASCs had the potential to differentiate into hepatic 
cells in vivo[48].

However, the inherent limitations of stem cell therapy, such as cell rejection and 
possibility of tumor formation, hinder the clinical application of ASCs-based therapy. 
To overcome these problems, extracellular nanovesicles (ENVs) responsible for the 
treatment of ASCs (A-ENVs) have shown considerable promise as a cell-free treatment 
of liver diseases. Han et al[49] studied the in vivo and in vitro anti-fibrotic effects of A-
ENVs in a thioacetamide-induced liver fibrosis model. A-ENVs significantly down-
regulated the expression of fibrogenesis markers, such as MMP-2, collagen-1, and α-
SMA. Systemic injection of ENVs can accumulate in fibrotic liver tissue and restore 
liver function. These results demonstrate the great potential of A-ENVs as a 
therapeutic method based on ENVs in the treatment of liver fibrosis and possibly other 
difficult chronic liver diseases.

ASCs could also exert their anti-fibrotic function through an EV component, miR-
150-5p and its downstream target, CXCL1, which is related to hepatic stellate cells 
activation and ensuing fibrosis. Du et al[35] demonstrated that the EVs from ASCs 
contain miR-150-5p, and EVs treatment downregulated CXCL1 expression in hepatic 
stellate cells, preventing their activation. In vivo experiments showed reduced fibrosis 
and inflammation in the EVs treated group that correlated with the inhibition of 
CXCL1.

With the developing studies on ASCs derivatives, a question naturally arises: are 
the derivatives as effective as ASCs themselves? Watanabe et al[21] established non-
alcoholic steatohepatitis (NASH) models in mice, tested and compared the therapeutic 
effects of MSCs and their small EVs. Liver fibrosis was significantly reduced after 
MSCs or sEVs treatment. In terms of relieving fibrosis, the effect of 5.0 μg of sEVs was 
equal to that of 1 × 106 MSCs, indicating that although ASCs derivatives possess 
several advantages compared to the direct application of ASCs themselves, a certain 
amount or concentration would have to be reached for them to have a satisfactory 
effect.

In order to enhance treatment effectiveness, various modifications were made, 
including the aforementioned antioxidant and eugenol pre-treatment, modification 
with various factors including mmu_circ_0000623 and etanercept, all exhibited 
enhanced abilities in treating liver fibrosis[30,31,34,37].

Attempts have been made in terms of applying ASCs in treating liver fibrosis 
patients. Huang et al[50] treated liver cirrhosis with GXHPC1, a cell product that 
contains human ASCs in a phase I clinical trial. Previous trials in animal models 
proved GXHPC1 to be effective and safe. In their clinical trial, intrahepatic injection of 
GXHPC1 did not cause any safety problems. The liver function and quality of life of 
liver cirrhosis patients was improved significantly.

Kidney diseases
Fibrosis appears in various kidney diseases, and is an indicator of the degree of renal 
structural damage. Intravenously injected ASCs can migrate into the injured kidney in 
renal interstitial fibrosis mouse models, promote angiogenesis through the PI3K 
(phosphatidylinositol-4,5-bisphosphate 3-kinase)/AKT (v-akt murine thymoma viral 
oncogene homologue) pathway, alleviate oxidative stress and thus significantly reduce 
renal fibrosis[6]. RAS can lead to kidney ischemia and injury. Kim et al[51] demon-
strated that this injury was related to cellular senescence, and that ASCs effectively 
reversed RAS-induced kidney injury and fibrosis, partly through the alleviation of 
cellular senescence.

A comparison between ASCs and their derivatives was also conducted in kidney 
diseases. ASCs and their EVs can both attenuate kidney injury, while focusing on 
different aspects. Both of them improved kidney fibrosis, hypoxia and cellular 
apoptosis levels, but the cells were better at increasing capillary density and reducing 
inflammation, yet their EVs were more efficient in preserving the integrity of kidney 
cells[52]. The differences represent various components and mechanisms awaiting 
exploration, which may guide future therapeutic choices.



Li ZJ et al. Adipose stem cells treating fibrosis

WJSC https://www.wjgnet.com 1755 November 26, 2021 Volume 13 Issue 11

Apart from kidney fibrosis itself, prolonged peritoneal dialysis (PD) can result in 
peritoneal fibrosis (PF), a long-term complication jeopardizing peritoneal membrane 
(PM) function. An intravenous injection of 1 × 106 ASCs proved to not only block the 
development of PF, but also alleviate the fibrosis and inflammation of already formed 
PF in rat models of chronic kidney disease (CKD) combined with PF. ASCs treatment 
significantly downregulated the expression levels of IL-1β, TNF-α, and IL-6, and 
avoided macrophage and T-cell infiltration into the PM in chlorhexidine gluconate 
induced PF in CKD rats[13].

Nevertheless, we should recognize the fact that ASCs are not a panacea. Chen et al
[19] discussed whether adjunct ASCs could facilitate shockwave therapy in treating 
atherosclerotic renal artery stenosis (ARAS). Masson trichrome-staining exhibited a 
similar degree of fibrosis in shockwave therapy alone or shockwave + ASCs; thus, 
adjunct ASCs did not further improve fibrosis in ARAS. However, adjunct ASCs did 
have better performance in retaining more capillaries and reducing oxidative stress, 
which is clearly beneficial to the treatment of kidney diseases.

Skin
One of the major differences between normal and fibrotic skin is that the collagen 
fibers are randomly oriented in normal skin, while arranged in large bundles in 
fibrotic skin, causing it to thicken and stiffen[53]. Various conditions involve fibrosis of 
the skin, such as hypertrophic scars, radiation-induced fibrosis, and scleroderma, etc.

Hypertrophic scarring is caused by hyperactivation of fibroblasts and excessive 
accumulation of extracellular matrix during wound healing. Studies have shown that 
ASCs are capable of preventing hypertrophic scar occurrence and progression[10,54]. 
It has also been observed that ASCs themselves are more effective than their 
conditioned medium, possibly due to insufficient concentration of paracrine factors 
and lack of cell-cell contact induced regulation which would allow ASCs to react 
according to their surrounding environment[55].

Since the concentration of paracrine factors in conditioned medium is rather low, 
lyophilizing is an effective way to condense. Freeze-dried ASCs conditioned medium 
powder could reduce hypertrophic scar fibroblasts activity in vitro in a dose-
dependent manner. In rabbit ear hypertrophic scar models, topical administration of 
lyophilized ASCs conditioned medium significantly reduced hypertrophic scarring. 
The effect is most significant when combining the conditioned medium powder with 
polysaccharide hydrogel, which provided a medium for the sustained release and 
continuous action of paracrine factors[10].

Other skin fibrotic diseases, for example, radiation-induced fibrosis, is not 
uncommon among patients receiving radiotherapy. Subcutaneous injection of ASCs 
alleviated fibrosis, along with other skin complications caused by radiation, and the 
therapeutic effect was amplified by PRP co-administration[3].

SSc is an autoimmune disease that often involves the skin and lungs. Okamura et al
[56] found that ASCs may prove to be a potential therapeutic drug for SSc patients. 
Administration of ASCs alleviated skin and lung fibrosis of bleomycin-induced 
scleroderma and sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) 
model mice. Experimental results showed that ASCs inhibited the infiltration of CD4+ 
T cells, CD8+ T cells, and macrophages in the dermis of bleomycin model mice and 
reduced the mRNA levels of collagen and fibrotic cytokines, such as IL-6 and IL-13.

Fat graft is a frequently used method for treating fibrotic skin diseases such as 
scleroderma. However, the low retention rate had always been a troubling issue. Zhu 
et al[23] applied ASC-EVs to fat grafts in mice, and measured fat graft survival rate at 
up to 12 wk post-surgery. Not only did ASC-EVs improve fat retention, they also 
altered the ratio of M1/M2 macrophages toward an anti-inflammatory state, promoted 
the browning of white adipose tissue, and reduced fibrosis in fat grafts.

Ogino et al[53] studied the therapeutic effects of ASCs transplantation in secondary 
lymphedema, where chronic accumulation of tissue fluid often leads to skin fibrosis. 
Picrosirius red staining revealed that ASCs restored type I collagen orientation and 
increased type III collagen content, thus relieving dermal fibrosis in lymphedema 
mice. Promoted lymphangiogenesis was observed, which is pivotal to the alleviation 
of tissue edema, thereby blocking the development of dermal fibrosis. Since there is a 
lack of effective treatment methods for lymphatic diseases, ASCs serve as a promising 
treatment modality due to their multifaceted functions.

In terms of clinical trials, ASCs were used to treat post-acne scars and SSc (Table 1). 
The hand disability cause by SSc skin lesions is a tricky problem that has significant 
impact on patients’ quality of life and is difficult to treat. As multiple preclinical 
studies have demonstrated the anti-fibrosis effect of ASCs, attempts were made to 
apply ASCs in the treatment of SSc hand disability. Subcutaneous injection of stromal 
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Table 1 Clinical trials of adipose-derived stem cells treating skin fibrotic diseases

Trial 
number Ref. Disease Study type Study 

population 
Cell/derivative 
type Amount Method of 

administration
Outcome 
measurement

Follow-
up 
period

Results Complications

NCT03060551 Park et al[58], 
2020

SSc hand 
disability

Open-label, 
single center 
clinical trial

18 SVF 3.61 × 106 
each 
finger on 
average

Subcutaneous 
injection

Skin fibrosis, hand 
edema, hand disability, 
severity of Raynaud’s 
phenomenon and hand 
pain, quality of life, active 
ulcers, nailfold capillary 
microscopy

6 mo Improved skin fibrosis, 
edema, quality of life, as 
well as other aspects

No serious adverse events 
occurred. Five minor adverse 
events were reported, 
including paresthesia in 
liposuction area, dizziness after 
lidocaine injection, and 
transient pallor that soon 
resolved without sequelae

NCT01813279 Granel et al
[57], 2014; 
Guillaume-
Jugnot et al
[59], 2015

SSc hand 
disability

Open-label, 
single arm 
phase I trial

12 SVF 3.76 ± 1.85 
× 106 each 
finger

Subcutaneous 
injection

Hand disability, fibrosis, 
vascular manifestations, 
pain and quality of life

12 mo Significant improvements 
inskin sclerosis, hand 
function, finger edema and 
quality of life that lasted for 
at least a year

No serious adverse events 
occurred. Four minor adverse 
events were reported that 
spontaneously resolved

Not 
applicable

Abou Eitta et 
al[65], 2019

Post-acne scars A single-
center, split-
face, 
prospective 
clinical trial 

10 SVF 6 × 106 on 
average

Subcutaneous 
injection

The global scoring 
system, TEWL and skin 
hydration

3 mo A significant improvement 
in the degree of scar 
severity, scar area percent, 
skin hydration, and TEWL 

Not mentioned

Not 
applicable

Zhou et al[66], 
2016

Facial atrophic 
acne scars and 
skin 
rejuvenation 

A single-
center, split-
face, 
prospective 
clinical trial 

22 ASC-CM 3 mL Topical application 
on laser treated sites, 
3 sessions at one-
month intervals

The subjective satisfaction 
scale, improvement score, 
biophysical 
measurements, and skin 
biopsies

3 mo Topical application of ASC-
CM can increase the efficacy 
of FxCR treatment of 
atrophic acne scars and skin 
rejuvenation, while 
simultaneously reduces 
adverse reactions post laser 
therapy

No complications reported

SSc: Systemic sclerosis; mRSS: Modified Rodnan skin score; ASC-CM: Conditioned medium of adipose-derived stem cells; FxCR: Fractional carbon dioxide laser resurfacing; TEWL: Trans-epidermal water loss; SVF: Stromal vascular 
fraction.

vascular fraction (SVF) greatly improved fibrosis, hand function, quality of life and 
other aspects[57-59]. ASCs might be the long-expected solution for this debilitating 
condition.

Lung fibrosis
Lung fibrosis is a debilitating condition that can occur in many diseases. Current 
therapies are insufficient, thus posing the demand for better solutions, such as stem 
cell therapy[60].



Li ZJ et al. Adipose stem cells treating fibrosis

WJSC https://www.wjgnet.com 1757 November 26, 2021 Volume 13 Issue 11

Baer et al[61] transplanted ASCs isolated from luciferase transgenic mice (mASCs) 
into Atm-deficient mice which mimic the lung injury in human Ataxia-telangiectasia 
syndrome. Using an in vivo bioluminescence imaging (BLI) system, they found that the 
intravenously injected ASCs migrated into the injured lungs of mouse models, and 
were present for up to 9 to 14 d. Since the in vivo disposition of transplanted ASCs is 
not yet completely clear, BLI might serve as a powerful tool for tracking the 
whereabouts of cells, providing crucial information regarding the safety of cell 
therapy.

A comparison between mesenchymal stem cells (MSCs) from different sources was 
conducted in mouse lung fibrosis models. Among stem cells from adipose tissue 
(ASCs), Wharton’s jelly (WJ-MSCs), chorionic membrane (CSCs) and chorionic villi 
(CVCs), ASCs proved to be the most effective and well-rounded in different 
therapeutic aspects[60]. Another comparison was made in pulmonary hypertension 
(PAH) models. Mesenchymal stem cells from adipose tissue (ASCs), bone marrow 
(BMSCs) and umbilical cord blood (UCB-MSCs) were compared. As a result, UCB-
MSCs proved to be the most effective in treating PAH, exhibiting the greatest 
improvement in cardiac function as well as reductions in fibrosis, inflammation, and 
classic PAH pathways[62]. It is interesting that MSCs from different sources vary so 
much in their effects. Further research is needed to investigate the mechanisms 
involved in order to understand and find the best match between diseases and 
therapeutic cell types.

The functions and mechanisms of ASCs are not singular, but rather intricate. Lim et 
al[12] found that intravenously injected ASCs migrated into the lungs of murine Scl-
GVHD models, but not into the skin. It seems that ASCs exhibited a pro-inflammatory 
effect in the lungs: CD11b monocyte/macrophages and CD4 T cells were recruited, 
expression levels of CC chemokine 1 (CCL1) and multiple chemokines were 
upregulated, and a deterioration in pathological score was observed. Moreover, 
blocking CCL1 exerted protective effects, relieving inflammation and fibrosis in the 
lungs. However, despite the possibly detrimental role ASCs play in the lungs, they 
exhibited anti-inflammatory and anti-fibrotic effects in the skin, which were preserved, 
or even enhanced, after CCL1-blocking antibody treatment. The fact that ASCs 
alleviated skin fibrosis while exacerbating lung injuries in Scl-GVHD posed a potential 
threat to the safety of ASCs therapy. However, CCL1-blocking antibody treatment 
could avoid detrimental effects while preserving or even enhancing the protective 
effects which offered a solution. The combination of stem cells and CCL1-blocking 
antibody provides a new option in exploiting the therapeutic effects of ASCs while 
avoiding the possible adverse effects.

Not all studies yielded positive healing effects. A study in acute respiratory distress 
syndrome (ARDS) mouse models revealed that ASCs treatment inhibited the 
recruitment of neutrophils, reduced short-term lung injury, and alleviated long-term 
fibrosis. However, the level of inflammatory cytokines did not decrease significantly, 
the therapeutic effect was minimal and not clinically significant[63].

Despite the possibly unstable effects shown in preclinical studies, a clinical trial of 
ASCs treating lung fibrosis yielded positive results. Tzouvelekis et al[64] treated 
idiopathic pulmonary fibrosis with ASCs-SVF in a phase Ib clinical trial, in order to 
prove the safety of ASCs treatment. There were no serious adverse events, and 
functional parameters and quality of life indicators did not deteriorate.

CONCLUSION
ASCs are promising candidates for the treatment of various fibrotic diseases. Multiple 
methods could be exploited in order to boost the therapeutic effects of ASCs. 
However, the functions of ASCs are somewhat indeterminate and complicated. The 
effectiveness and safety issues in ASCs therapy, and the most matching diseases 
suitable for ASCs therapy remain to be explored.
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