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Abstract
BACKGROUND 
Esophageal cancer (ESCA) is the sixth most common malignancy in the world, 
and its incidence is rapidly increasing. Recently, several microRNAs (miRNAs) 
and messenger RNA (mRNA) targets were evaluated as potential biomarkers and 
regulators of epigenetic mechanisms involved in early diagnosis. In addition, 
computed tomography (CT) radiomic studies on ESCA improved the early stage 
identification and the prediction of response to treatment. Radiogenomics 
provides clinically useful prognostic predictions by linking molecular character-
istics such as gene mutations and gene expression patterns of malignant tumors 
with medical images and could provide more opportunities in the management of 
patients with ESCA.

AIM 
To explore the combination of CT radiomic features and molecular targets 
associated with clinical outcomes for characterization of ESCA patients.

METHODS 
Of 15 patients with diagnosed ESCA were included in this study and their CT 
imaging and transcriptomic data were extracted from The Cancer Imaging 
Archive and gene expression data from The Cancer Genome Atlas, respectively. 
Cancer stage, history of significant alcohol consumption and body mass index 
(BMI) were considered as clinical outcomes. Radiomic analysis was performed on 
CT images acquired after injection of contrast medium. In total, 1302 radiomics 
features were extracted from three-dimensional regions of interest by using 
PyRadiomics. Feature selection was performed using a correlation filter based on 
Spearman’s correlation (ρ) and Wilcoxon-rank sum test respect to clinical 
outcomes. Radiogenomic analysis involved ρ analysis between radiomic features 
associated with clinical outcomes and transcriptomic signatures consisting of 
eight N6-methyladenosine RNA methylation regulators and five up-regulated 
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miRNA. The significance level was set at P < 0.05.

RESULTS 
Of 25, five and 29 radiomic features survived after feature selection, considering 
stage, alcohol history and BMI as clinical outcomes, respectively. Radiogenomic 
analysis with stage as clinical outcome revealed that six of the eight mRNA 
regulators and two of the five up-regulated miRNA were significantly correlated 
with ten and three of the 25 selected radiomic features, respectively (-0.61 < ρ < -
0.60 and 0.53 < ρ < 0.69, P < 0.05). Assuming alcohol history as clinical outcome, 
no correlation was found between the five selected radiomic features and mRNA 
regulators, while a significant correlation was found between one radiomic 
feature and three up-regulated miRNAs (ρ = -0.56, ρ = -0.64 and ρ = 0.61, P < 
0.05). Radiogenomic analysis with BMI as clinical outcome revealed that four 
mRNA regulators and one up-regulated miRNA were significantly correlated 
with 10 and two radiomic features, respectively (-0.67 < ρ < -0.54 and 0.53 < ρ < 
0.71, P < 0.05).

CONCLUSION 
Our study revealed interesting relationships between the expression of eight N6-
methyladenosine RNA regulators, as well as five up-regulated miRNAs, and CT 
radiomic features associated with clinical outcomes of ESCA patients.

Key Words: Esophageal cancer; Radiogenomics; Computed tomography; Radiomics; 
MicroRNAs; N6-methyladenosine

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This is a retrospective study aiming at investigating the relationship between 
the expression levels of transcriptomic features (eight N6-methyladenosine RNA 
methylation regulators and five up-regulated microRNAs) and radiomic features 
extracted from computed tomography images that were significantly associated to 
clinical outcomes (stage, alcohol history, body mass index) in patients with esophageal 
cancer . Radiogenomic analysis revealed significant correlations between the 
expression of the N6-methyladenosine RNA regulators, as well as five up-regulated 
microRNAs, and several computed tomography radiomic features associated with three 
investigated clinical outcomes of esophageal cancer patients.

Citation: Brancato V, Garbino N, Mannelli L, Aiello M, Salvatore M, Franzese M, Cavaliere C. 
Impact of radiogenomics in esophageal cancer on clinical outcomes: A pilot study. World J 
Gastroenterol 2021; 27(36): 6110-6127
URL: https://www.wjgnet.com/1007-9327/full/v27/i36/6110.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i36.6110

INTRODUCTION
Esophageal cancer (ESCA) is one of the most common malignancies and ranks sixth as 
a cause of lethal cancer worldwide[1]. Despite the different types of treatment, ESCA 
remains a devastating pathology with an overall 5-year survival rate of 15%–25%. The 
main issue related to ESCA is that, given the late symptoms manifestation, most 
patients are diagnosed with advanced-stage ESCA characterized by unresectability or 
metastatic disease, for which the best treatment choices are palliative interventions 
such as concurrent chemoradiotherapy and combination chemotherapy[2,3]. The 
majority of ESCAs fall into two main histologic subtypes: Esophageal adenocarcinoma 
and esophageal squamous cell carcinoma (ESCC)[4]. Imaging plays a key role in each 
step of the management of ESCA. Computed tomography (CT) plays an important role 
in the diagnosis, staging and treatment guidance of ESCA. This imaging technique 
allows to evaluate the loco-regional extension of ESCA by showing the extent of 
involvement of the esophageal wall by tumor, as well as the tumor invasion of the 
peri-esophageal fat[5]. Moreover, it is also useful to detect the presence of distant 
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metastases[6,7]. However, CT has several limitations associated with the ability to 
evaluate the intra-tumor heterogeneity of the ESCA, as well as in visually distin-
guishing the post-treatment residual tumor[8,9].

Therefore, since it is well-recognized that information arising from images may be 
substantially enhanced by quantitative imaging analysis, the radiomics role has 
rapidly increased in the last decade for cancer applications, including those related to 
ESCA[10-12]. Radiomics is evolving as medical technology and is currently one of the 
most interesting research fields. Through radiomics, quantitative data can be 
extrapolated from diagnostic images, and these extracted parameters (radiomic 
features) have the potential to identify tumor characteristics[10,11,13]. The innovative 
field of radiomics could provide opportunities in the management of ESCA patients 
for improvements in every step of ESCA management[12,14]. Recent studies on CT 
radiomics in ESCA analyzed CT radiomics features for several steps of ESCA 
management, such as preoperative stage identification[15] and prediction of response 
to treatment[3,16].

On the other hand, the emerging clinical relevance of genomics in cancer medicine 
by applying the next generation sequencing technologies has provided unprecedented 
opportunities to understand the biological basis of different cancer types, identify 
genomic biomarkers in carcinogenesis, identify potential bio-molecular targets for 
drug response and resistance and to guide clinical decision-making regarding the 
personalized medicine and the clinical practice[17,18].

Gene expression profiling can improve knowledge about the molecular alterations 
during carcinogenesis. Biomarkers of these molecular alterations, in turn, may be 
useful in diagnosing cancers, particularly early, curable cancers. Recently, results from 
gene expression data analyses have made it possible to investigate the complex 
pathological mechanisms involved in ESCA, with the aim to discover novel molecular 
markers for tumor diagnosis and to customize therapy based on an individual tumor 
genetic composition[19-21]. Several microRNA (miRNA), such as miR-93, miR-21, 
miR-4746 and miR-196a, were evaluated as potential biomarkers for the early 
diagnosis of cancer, highlighting their diagnostic values[22]. Recently, several studies 
also suggested that N6-methyladenosine (m6A) methylation can play a crucial role in 
cancer progression by regulating biological functions that affect noncoding RNA 
expression[23,24] In particular, a recent study[25] highlighted the role of m6A 
methylation regulators aberrantly expressed in ESCA to predict clinical outcomes.

Combining radiomic features with molecular and genomic characteristics can 
provide insights to characterize tumor phenotype[26]. In this direction, radiogenomics, 
as a new field that provides clinically useful prognostic predictions by linking 
molecular characteristics such as gene mutations and gene expression patterns of 
malignant tumors with medical images, could provide more opportunities in the 
management of patients with ESCA for improvements in staging, predicting treatment 
response and survival[7,21]. Based on promising results obtained from preliminary 
CT-based radiomics studies on ESCA[16,27] and considering the capability of miRNAs 
as potential biomarkers able to characterize differential expression of different cancer 
tissues, as well as the critical role of m6A as epigenetic regulator in cancer biology, we 
aimed to combine these findings in a radiogenomic study, using appropriate variables 
as clinical endpoints. Specifically, we used the preoperative ESCA stage as a clinical 
outcome, since the survival of ESCA patients with early stage (stage I−II) could be up 
to 85%[28]. Additionally, surgical resection, chemoradiation or other optimal 
therapeutic approaches depend on accurate preoperative staging. Therefore, accurate 
preoperative staging is important for predicting prognosis and choosing a suitable 
therapeutic strategy for patients with ESCA[15]. We also used the history of significant 
alcohol consumption as a clinical outcome, since this is considered as one of the major 
risk factors for ESCA[29]. Lastly, we evaluated body mass index (BMI) as a clinical 
outcome, due to its association with increased risk of ESCA[30,31].

Using publicly available integrated ESCA cohort from The Cancer Genome Atlas 
(TCGA) and The Cancer Imaging Archive (TCIA)[32,33], we aimed at investigating 
possible relationships between CT-radiomic features associated with the three above-
mentioned clinical outcomes and correlated with esophageal up-regulated miRNAs, 
which were in silico-validated from Zeng et al[22], in order to evaluate potential 
biomarkers for the early diagnosis of ESCA. Furthermore, we evaluated if the same 
CT-radiomics features could be associated with epigenetic signatures, considering 
m6A RNA methylation regulators-based prognostic signature for ESCA from Xu et al
[25] in order to support important information for developing diagnostic and 
therapeutic strategies.
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MATERIALS AND METHODS
Patient population and definition of clinical outcomes
The study was conducted in accordance with the Declaration of Helsinki, and the 
study protocol was approved by the Ethics Committee of the Istituto Nazionale 
Tumori “Fondazione G. Pascale (protocol number 1/20). Sixteen patients with 
diagnosed ESCA were extrapolated by combining the public databases TCIA-TCGA 
and included in this study[32,33]. All subjects performed CT investigation with 
iodized contrast medium injection. Of 16 patients, one was excluded due to the 
presence of artifacts on acquired images. Due to their availability for all 15 patients, 
the transcriptome profiling and the following clinical variables were extracted and 
considered as outcomes for this study: Cancer stage, history of significant alcohol 
consumption and BMI value. We did not perform analyses on smoking measurements 
(tobacco history, age at starting smoking, pack-year smoked) due to the incomple-
teness of these data. To perform radiogenomic analyses, we divided patients into two 
groups according to stages I−II or III−IV, making stage outcome binary. Refer to 
Table 1 for clinical characteristics and outcomes of included patients.

Image acquisition and processing
CT examinations were acquired on GE Medical Systems (9 patients) and Siemens (6 
patients) CT scanner, with slice thickness ranging from 1.25 mm to 2.5 mm and pixel 
size varying from 0.67 to 0.9. three-dimensional (3D) regions of interest (ROIs) 
encompassing the tumor were manually delineated slice-by-slice by using ITK-SNAP 
(version 3.6.0, http://www.itksnap.org) on the post-administration of contrast agents 
CT images. The tumor localization was divided into three regions: 7 patients presented 
lesions at the middle level, 2 subjects in the middle/distal area and 6 patients in the 
distal esophagus.

Gray-levels normalization was not performed, since CT gray values reflect absolute 
world values (Hounsfield units) and should be comparable between scanners. To 
correct variability from parameters related to voxel size and so unify voxel size across 
the cohort, radiomics data were extracted from images resampled to isotropic voxels of 
1 × 1 × 1 mm3 using B Spline interpolator.

Radiomic analysis
Radiomic features extraction: A total of 1302 radiomics features were extracted from 
segmented ROIs by using the open source Python package PyRadiomics (
https://pyradiomics.readthedocs.io/en/Latest/). The extracted radiomics features 
were categorized into five groups: (1) Shape features (n = 14); (2) First-order features 
including 18 intensity statistics; (3) 74 multi-dimensional texture features including 23 
gray level co-occurrence matrix (GLCM), 16 gray level size zone matrix (GLSZM), 16 
gray level run length matrix (GLRLM), 14 gray level dependence matrix (GLDM) and 
5 neighboring gray tone difference matrix (NGTDM) features; 1196 transformed first-
order and textural features including; (4) 736 wavelet features in frequency channels 
LHL, LLH, HHH, HLH, HLL,HHL, LHH and LLL, where L and H are low- and high-
pass filters, respectively; and (5) 460 LoG filtered features with sigma ranging from 1.0 
and 5.0, with step size = 1. Features of groups (2) and (3) were grouped together and, 
from now on, this group will be referred to as “original features”. The extracted 
radiomics features grouped by similarity in four categories are listed in the 
Supplementary Table 1. The computing algorithms can be found at www.radiomics.io 
and the image biomarker standardization initiative presented a document to 
standardize the nomenclature and definition of radiomic features[34].

Radiomic features selection: Features selection was performed separately for shape 
features, original features, wavelet features and LoG filtered features in two steps, 
followed by a third step involving the whole set of features passed through the step I 
and II. In the first step, a correlation filter based on the absolute values of pairwise 
Spearman’s correlation (ρ) coefficient was used to reduce feature redundancy. 
Threshold for ρ was set to 0.8. Briefly, if two features had ρ > 0.8, the function looks at 
the mean absolute correlation of each variable and the variable with the largest mean 
absolute correlation is removed. The second step varied according to the type of 
outcome variables. For binary outcomes, a further feature restriction through a 
univariate analysis was performed by using non-parametric Wilcoxon rank-sum test to 
investigate the statistical significance with respect to the outcome. Statistical 
significance was set to P < 0.05. The significantly different features were then selected 
and further reduced in the third step. For continuous outcomes, the second step 

http://www.itksnap.org
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Table 1 Characteristics of included patients

Clinical characteristic Value

Age (mean ± SD) 56.8 ± 8.65

Sex, n (%)

Male 12 (20)

Female 3 (80)

Histologic diagnosis, n (%)

EAC 2 (13.3)

ESCC 13 (86.7)

Cancer stage, n (%)

I-II 4 (26.7)

III-IV 11 (73.3)

TNM staging

Primary tumor (T)

T1 3 (20)

T2 2 (13.3)

T3 8 (53.4)

T4 2 (13.3)

Regional lymph nodes (N)

N0 4 (26.7)

N1 6 (40)

N2 3 (20)

N3 2 (13.3)

Distant metastases (M)

M0 12 (80)

M1 3 (20)

Alcohol history, n (%)

Yes 8 (53)

No 7 (47)

Smoking history, n (%)

Lifelong non-smoker 1 (6.6)

Current smoker 7 (46.6)

Current reformed smoker 2 (13.3)

Current reformed smoker for > 15 yr 1 (6.6)

NA 4 (26.6)

Age at starting smoking

Under 18 yr old 6 (40)

Over 18 yr old 3 (20)

NA 6 (40)

Pack-year smoked

Under 10 6 (40)

Over 10 3 (20)

NA 6 (40)
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BMI (mean ± SD) 20.8 ± 3.55

BMI: Body mass index; EAC: Esophagus adenocarcinoma; ESCC: Esophagus squamous cell carcinoma; TNM: tumor, node, and metastasis classification 
(classification of malignant tumors).

consisted of computing ρ between each feature selected through the step I and the 
reference outcome. Then, all features with a significant ρ > 0.5 and P value < 0.05 were 
considered. In order to check for redundancies among features belonging to the 
different four groups, the third step consisted in applying the correlation filter 
described in step I to the whole feature set passed through step II. All steps were 
implemented using Matlab R2020a (The MathWorks Inc., Natick, MA, United States).

Predictive models building and analysis for stage assessment: In order to evaluate 
the predictive power of CT radiomic features taken by them for ESCA staging, a fourth 
step of feature selection was performed for features that were associated with stage. 
The latter step consisted in ranking the remaining features based on the mutual 
information (MI) between the distribution of the values of a certain feature and the 
membership to a particular class. Features were evaluated independently, and the 
final feature selection occurred by aggregating the five top ranked ones[35-37]. For the 
binary stage I-II/stage III-IV classification task, the reduced feature set was used to 
build logistic regression models of order from 1 to 5 that would best predict ESCA 
stage by using an imbalanced-adjusted bootstrap resampling (IABR) approach on 1000 
bootstrap samples[38]. Specifically, the training set was made up 1000 bootstrap 
samples randomly drawn with replacement from the available dataset. The testing set 
consisted of the instances that did not belong to the bootstrap sample. Then, 
application of the imbalance-adjustment step made the probability of picking a 
positive and a negative instance in the bootstrap sample the same[39-41].

For each model order, the combination of features maximizing the 0.632+ area 
under the receiver operating characteristic curve (AUC) within 1000 bootstrap training 
and testing samples was identified. Finally, IABR on 1000 samples was performed 
again for all models to assess prediction performances[38,42].

Additional analyses were performed starting from the first two, three and four 
features surviving after the MI-based feature selection step (which was used to build 
logistic regression models of order from 1 to 2, 1 to 3 and 1 to 4, respectively) that 
would best predict ESCA stage. Moreover, given that the overall stage is determined 
after the cancer is assigned categories describing the tumor (T), node (N) and 
metastasis (M) categories, we tested the capability of these features for predicting T 
and N status. Analyses assuming M status as clinical outcome were not performed due 
to the extremely unbalanced sample. Patients were divided into two groups according 
to T1-T2 or T3−T4 tumor status, making T stage outcome binary. Similarly, we 
evaluated if CT radiomic features could assess N status by dividing patients into two 
groups according to the absence (N0) or presence (N1-N2-N3) lymph node status[43].

Transcriptomic data collection 
RNA-Seq and miRNA-Seq data of esophageal carcinoma of tumor tissues were 
downloaded from the GDC Data Portal (https://gdc-portal.nci.nih.gov/) considering 
for TCGA-ESCA project only patients with associated imaging data from TCIA 
database (see Supplementary Tables 2 and 3 for Clinical and Transcriptomic data, 
respectively). The mRNAs expression levels were considered as read count based on 
gene length and the total number of mapped reads (FPKM values). Moreover, miRNA 
expression quantification was downloaded and normalized counts in reads-per-
million-miRNA-mapped were considered.

Radiogenomic analysis
An integrative study design was defined (see Figure 1 for the flowchart reporting the 
organization of data and analyses in the study) and reported as radiogenomic 
workflow in Figure 2 in order to evaluate potential association between significant 
radiomic features according to selected clinical variables (stage, history of significant 
alcohol consumption and BMI) with biomarkers and RNA regulators characterizing 
esophageal cancer. For this purpose, a Spearman’s correlation analysis was invest-
igated between radiomic features selected after the three features selection steps 
described above and transcriptomic signatures suggested by Zeng et al[22] and Xu et al
[25]. Specifically, we calculated ρ between the whole selected feature set and the eight 

https://gdc-portal.nci.nih.gov/
https://f6publishing.blob.core.windows.net/271c2684-8d71-4f10-8eb6-cd7039d17d2a/WJG-27-6110-supplementary-material.pdf
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Figure 1 Flowchart reporting the organization of data and analyses in the study. BMI: Body mass index; CT: Computed tomography; TCGA: The 
Cancer Genome Atlas; TCIA: The Cancer Imaging Archive.

Figure 2 Workflow of radiogenomic analysis implemented in the study. On the first row the radiomic analysis steps. On the second row the 
radiogenomic analysis for each clinical outcome. BMI: Body mass index; miRNA: MicroRNA; mRNA: Messenger RNA.

m6A RNA methylation regulators (KIAA1429, HNRNPC, RBM15, METTL3, WTAP, 
YTHDF1, YTHDC1, YTHDF2), as well as ρ between the whole selected feature set and 
the five up-regulated miRNAs (miRNA-93, miRNA-21, miRNA-4746, miRNA-196a-1, 
miRNA-196a-2). The significance level was set to 0.05. All analyses were performed 



Brancato V et al. Radiogenomics in ESCA

WJG https://www.wjgnet.com 6117 September 28, 2021 Volume 27 Issue 36

using Matlab R2020a. The statistical methods of this study were reviewed by our 
bioinformatics and biostatistics group of our research support center.

RESULTS
Radiomic analysis
Radiomic feature selection: None of the 14 shape features passed the step II of 
features selection, both considering binary outcomes (namely stage and alcohol 
history) and BMI. So, radiogenomic analysis was not performed for this feature group. 
Concerning original, wavelet and Log sigma feature groups, the step I of feature 
selection reduced the feature sets from 92, 736 and 460 to 23, 127 and 65, respectively. 
Concerning stage analysis, Wilcoxon rank-sum test used in step II of feature selection 
revealed significant results for 26 radiomic features, of which 25 belonging to the 
wavelet feature set and the remaining one was the original first order maximum value. 
However, the latter feature did not pass the second correlation filter of step III (refer to 
Table 2). Considering the presence of alcoholic history as clinical outcome, Wilcoxon 
rank-sum test revealed significant results for five features, of which one belonging to 
original feature set (Kurtosis) and the remaining ones to wavelet feature set. These five 
features passed step III, since Kurtosis showed a correlation lower than 0.8 with all 
four wavelet features (refer to Table 2). Lastly, considering BMI as the clinical 
outcome, 26 wavelet and three LoG sigma features were selected due to a significant ρ 
> 0.5 (P < 0.05) with BMI. In total, 29 radiomic features (see Table 3) survived after the 
second correlation filter and were associated with the three examined clinical 
outcomes.

Predictive models building and analysis for stage assessment: The top five features 
selected after the MI-based feature selection step were wavelet LLH GLDM high gray 
level emphasis, LLH NGTDM complexity, HHH GLCM joint entropy, HLH entropy 
and HLL GLCM cluster prominence. Prediction performances of multivariable logistic 
regression models for the stage I-II/stage III-IV classification task were very high for 
both five model orders. However, by inspecting prediction performances values in 
Table 4, we determined that the simplest multivariable model with the best prediction 
performances were reached by the second order model (AUC = 87%, sensitivity = 64%, 
specificity = 83% and accuracy = 79%), which was based on wavelet LLH NGTDM 
complexity and HHH GLCM joint entropy. These results were also confirmed by 
additional analyses (Supplementary Tables 4-6). The top five features were also found 
to be able to predict T and N staging, with best AUCs (0.79 and 0.80, respectively) 
reached by second order models (see Supplementary Tables 7 and 8 for analyses 
involving five features). Results of additional analyses for T and N prediction by using 
two, three and four features are reported in Supplementary Tables 9-11 (T staging) and 
Supplementary Tables 12-14 (N staging).

Radiogenomic analysis 
Stage: Overall, radiogenomic analysis revealed that six of the eight mRNA regulators 
were significantly correlated with 10 of the 25 selected radiomic features, which were 
all belonging to the wavelet group. In particular, HRNPC and WTAP were positively 
correlated with wavelet HHL NGTDM strength (ρ = 0.61, ρ = 0.61, P < 0.05, 
respectively); METTL3 was positively correlated with wavelet LHL GLDM high gray 
level emphasis, HLL GLRLM gray level variance, HLL GLDM dependence entropy 
and LLL GLDM small dependence high gray level emphasis (ρ = 0.54, ρ = 0.53, ρ = 
0.56, ρ = 0.6, P < 0.05, respectively) and negatively correlated with wavelet HLL GLCM 
inverse variance (ρ = -0.6, P < 0.05); YTHDF1 reported a positive and significant 
correlation with the wavelet feature HLL GLCM maximum probability (ρ = 0.6, P < 
0.05) and a negative correlation with HLL 90th percentile (ρ = -0.61, P < 0.05); YTHDF2 
was positively correlated with the wavelet feature HHH GLCM contrast and HHH 
GLSZM zone percentage (ρ = 0.57, ρ = 0.56, P < 0.05, respectively); the latter feature 
was also positively correlated with YTHDC1 (ρ = 0.6, P < 0.05). Moreover, correlation 
analysis with the five up-regulated miRNA revealed a significant positive correlation 
between miRNA-93 and two radiomic features, namely wavelet LHL GLDM high gray 
level emphasis (ρ = 0.69, P < 0.05) and HHH GLCM joint entropy (ρ = 0.58, P < 0.05). 
Notably, HHH GLCM joint entropy contributed to building the best predictive models 
for stage assessment, as well as T and N assessment. Finally, a positive correlation 
between miRNA-4746 and HHL GLCM cluster shade was found (ρ = 0.53, P < 0.05). 
The radiogenomic results for stage are shown through a heatmap in the Figure 3.

https://f6publishing.blob.core.windows.net/271c2684-8d71-4f10-8eb6-cd7039d17d2a/WJG-27-6110-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/271c2684-8d71-4f10-8eb6-cd7039d17d2a/WJG-27-6110-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/271c2684-8d71-4f10-8eb6-cd7039d17d2a/WJG-27-6110-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/271c2684-8d71-4f10-8eb6-cd7039d17d2a/WJG-27-6110-supplementary-material.pdf
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Table 2 Selected radiomic features after the three feature selection steps for binary outcomes

Selected radiomic features, stage Stage I-II, mean ± SD Stage III-IV, mean ± SD P value

Wavelet-HLH first order entropy 0.62 ± 0.13 0.21 ± 0.31 0.031

Wavelet-LHL GLDM high gray level emphasis 0.59 ± 0.32 0.21 ± 0.21 0.044

Wavelet-HLL GLDM high gray level run 
emphasis

0.67 ± 0.37 0.2 ± 0.18 0.019

Wavelet-HLL GLDM gray level variance 0.74 ± 0.29 0.22 ± 0.29 0.007

Wavelet-HLL GLDM cluster prominence 0.59 ± 0.36 0.14 ± 0.3 0.019

Wavelet-HLL GLDM inverse variance 0.27 ± 0.3 0.68 ± 0.23 0.028

Wavelet-HLL GLDM maximum probability 0.14 ± 0.17 0.58 ± 0.32 0.042

Wavelet-HLL GLDM dependence entropy 0.78 ± 0.18 0.42 ± 0.25 0.028

Wavelet-HLL GLDM dependence variance 0.2 ± 0.21 0.48 ± 0.26 0.044

Wavelet-HLL GLSZM size zone non uniformity 0.69 ± 0.39 0.15 ± 0.15 0.028

Wavelet-HLL GLSZM small area low gray level 
emphasis

0.02 ± 0.03 0.24 ± 0.33 0.041

Wavelet-HLL first order 90 percentile 0.55 ± 0.39 0.17 ± 0.16 0.029

Wavelet-HHH GLRLM gray level non uniformity 
normalized

0.39 ± 0.27 0.87 ± 0.19 0.007

Wavelet-HHH GLCM joint entropy 0.68 ± 0.22 0.2 ± 0.27 0.021

Wavelet-HHH GLCM Contrast 0.78 ± 0.19 0.45 ± 0.25 0.021

Wavelet-HHH GLSZM gray level variance 0.91 ± 0.11 0.3 ± 0.39 0.021

Wavelet-HHH GLSZM zone percentage 0.83 ± 0.13 0.35 ± 0.34 0.029

Wavelet-HHH first order 10 percentile 0.11 ± 0.08 0.46 ± 0.35 0.029

Wavelet-HHL NGTDM strength 0.66 ± 0.3 0.28 ± 0.3 0.044

Wavelet-HHL GLCM cluster shade 0.51 ± 0.49 0.04 ± 0.03 0.007

Wavelet-HHL first order Entropy 0.68 ± 0.33 0.27 ± 0.21 0.029

Wavelet-HHL first order mean absolute deviation 0.66 ± 0.35 0.25 ± 0.18 0.029

Wavelet-LLH NGTDM complexity 0.23 ± 0.13 0.13 ± 0.29 0.044

Wavelet-LLH GLDM high gray level emphasis 0.34 ± 0.23 0.14 ± 0.29 0.044

Wavelet-LLL GLDM small dependence high gray 
level emphasis

0.67 ± 0.32 0.25 ± 0.22 0.029

Selected radiomic features (alcohol history) No alcohol history (mean ± SD) Alcohol history (mean ± SD) P value

Original first order kurtosis 0.37 ± 0.32 0.12 ± 0.12 0.037

Wavelet-LHH first order interquartile range 0.24 ± 0.24 0.5 ± 0.25 0.049

Wavelet-LHH first order mean 0.94 ± 0.04 0.75 ± 0.31 0.013

Wavelet-HHL first order median 0.62 ± 0.2 0.37 ± 0.19 0.026

Wavelet-LLH first order uniformity 0.68 ± 0.27 0.41 ± 0.26 0.037

The first column includes the two binary clinical outcomes investigated in this study (stage, alcohol history). GLCM: Gray level co-occurrence matrix; 
GLDM: Gray level dependence matrix; GLRLM: Gray level run length matrix; GLSZM: Gray level size zone matrix; H: High-pass filter; L: Low-pass filter; 
NGTDM: Neighboring gray tone difference matrix; SD: Standard deviation.

Alcohol history: From the integrated analysis, none of the five selected radiomic 
features was significantly correlated with any of eight RNA regulators (data not 
shown). Conversely, correlation analysis with the five up-regulated miRNA revealed a 
significant correlation between the wavelet feature LHH first order Mean and three 
up-regulated miRNA, namely miRNA-21 (ρ = -0.56, P < 0.05), miRNA-4746 (ρ = 0.64, P 
< 0.05) and miRNA-93 (ρ = 0.61, P < 0.05), as reported in the heatmap in Figure 4.
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Table 3 Selected radiomic features after the three feature selection steps for body mass index

Selected radiomic features mean ± SD ρ P value

Wavelet-HLH GLCM IMC2 0.46 ± 0.31 0.6 0.017

Wavelet-HLH GLCM MCC 0.33 ± 0.27 0.67 0.006

Wavelet-HLH first order median 0.59 ± 0.28 -0.56 0.029

Wavelet-HLH first order entropy 0.32 ± 0.33 0.63 0.013

Wavelet-HLH first order root mean squared 0.44 ± 0.31 0.71 0.003

Wavelet-HLH first order skewness 0.5 ± 0.33 0.52 0.049

Wavelet-HLH first order mean absolute deviation 0.54 ± 0.29 0.62 0.013

Wavelet-LHL GLCM IDN 0.77 ± 0.29 0.58 0.023

Wavelet-LHL GLDM high gray level emphasis 0.31 ± 0.29 0.54 0.039

Wavelet-HLL GLRLM high gray level run emphasis 0.32 ± 0.32 0.54 0.038

Wavelet-HLL GLRLM gray level variance 0.36 ± 0.37 0.62 0.014

Wavelet-HLL GLCM cluster prominence 0.26 ± 0.36 0.6 0.018

Wavelet-HLL GLCM inverse variance 0.57 ± 0.3 -0.58 0.022

Wavelet-HLL GLCM maximum probability 0.47 ± 0.35 -0.53 0.043

Wavelet-HLL GLDM dependence variance 0.41 ± 0.27 -0.6 0.018

Wavelet-HLL GLSZM size zone non uniformity 0.29 ± 0.33 0.57 0.028

Wavelet-HHH GLRLM gray level non uniformity 
normalized

0.74 ± 0.3 -0.54 0.039

Wavelet-HHH GLCM difference average 0.64 ± 0.31 0.56 0.03

Wavelet-HHH GLCM contrast 0.53 ± 0.28 0.64 0.009

Wavelet-HHH GLSZM small area emphasis 0.55 ± 0.33 0.69 0.005

Wavelet-HHH GLSZM small area low gray level emphasis 0.55 ± 0.33 0.59 0.022

Wavelet-HHL first order entropy 0.38 ± 0.3 0.57 0.025

Wavelet-HHL first order mean 0.64 ± 0.28 0.59 0.02

Wavelet-HHL first order mean absolute deviation 0.36 ± 0.29 0.55 0.032

Wavelet-LLH NGTDM complexity 0.16 ± 0.26 0.53 0.044

Wavelet-LLL GLDM small dependence high gray level 
emphasis

0.36 ± 0.3 0.56 0.031

Log-sigma-1-0-mm-3D first order root mean squared 0.43 ± 0.26 -0.51 0.049

Log-sigma-5-0-mm-3D GLRLM short run low gray level 
emphasis

0.22 ± 0.25 -0.52 0.047

Log-sigma-5-0-mm-3D first order 10 percentile 0.48 ± 0.39 -0.59 0.02

GLCM: Gray level co-occurrence matrix; GLDM: Gray level dependence matrix; GLRLM: Gray level run length matrix; GLSZM: Gray level size zone 
matrix; H: High-pass filter; L: Low-pass filter; NGTDM: Neighboring gray tone difference matrix; SD: Standard deviation.

BMI: Overall, radiogenomic analysis revealed that four of the eight mRNA regulators 
were significantly correlated with 10 of the 29 selected radiomic features, of which five 
belonging to wavelet group and three belonging to LoG sigma group as reported in 
Figure 5. In particular, METTL3 was positively correlated with HLH median, LHL 
GLDM high gray level emphasis, HLL GLRLM gray level variance and LLL GLDM 
small dependence high gray level emphasis (ρ = 0.71, ρ = 0.54, ρ = 0.53, ρ = 0.6, P < 
0.05, respectively) and negatively correlated with HLL GLCM inverse variance and 
LoG sigma 10th percentile calculated with sigma = 5.0 (ρ = -0.6, ρ = -0.66, P < 0.05, 
respectively); YTHDF1 was positively correlated with wavelet feature HLL GLCM 
maximum probability (ρ = 0.6, P < 0.05), whereas YTHDC1 was positively correlated 
with the wavelet HHH GLCM difference average (ρ = 0.67, P < 0.05) and inversely 
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Table 4 Results of multivariate analysis for the stage I-II/stage III-IV classification task

Model order Features involved AUC ± SE Sens ± SE Spec ± SE ACC ± SE

1 Wavelet-HHH GLCM joint entropy 0.896 ± 0.005 0.513 ± 0.021 0.865 ± 0.007 0.77 ± 0.006

2 Wavelet-LLH NGTDM complexity; Wavelet-HHH GLCM 
joint entropy

0.869 ± 0.008 0.643 ± 0.021 0.834 ± 0.008 0.79 ± 0.006

3 Wavelet-LLH NGTDM complexity; Wavelet-HHH GLCM 
joint entropy; Wavelet-HLH first order entropy

0.826 ± 0.009 0.523 ± 0.023 0.815 ± 0.009 0.744 ± 0.006

4 Wavelet-HLL GLCM cluster prominence; Wavelet-HHH 
GLCM joint entropy; Wavelet-LLH NGTDM complexity; 
Wavelet-HLH first order entropy

0.799 ± 0.009 0.668 ± 0.022 0.766 ± 0.009 0.752 ± 0.007

5 Wavelet-LLH GLDM high gray level emphasis; Wavelet-
HHH GLCM joint entropy; Wavelet HLL GLCM cluster 
prominence; Wavelet HLH entropy; Wavelet LLH NGTDM 
complexity

0.724 ± 0.011 0.516 ± 0.025 0.762 ± 0.01 0.708 ± 0.008

For each model (from order 1 to 5), area under the receiver operating characteristic curve, sensitivity, specificity and accuracy were reported with the 
standard error on a 95%CI over all bootstrap sample. AUC: Area under the receiver operating characteristic curve; GLCM: Gray level co-occurrence matrix; 
GLDM: Gray level dependence matrix; GLRLM: Gray level run length matrix; GLSZM: Gray level size zone matrix; H: High-pass filter; L: Low-pass filter; 
NGTDM: Neighboring gray tone difference matrix; SE: Standard error.

Figure 3 Radiogenomic analysis using stage as clinical outcome. Heatmap depicting the correlation matrix between transcriptomic features and 
radiomic features significantly associated with stage. GLCM: Gray level co-occurrence matrix; GLDM: Gray level dependence matrix; GLRLM: Gray level run length 
matrix; GLSZM: Gray level size zone matrix; H: High-pass filter; L: Low-pass filter; NGTDM: Neighboring gray tone difference matrix.

correlated with and LoG sigma root mean squared calculated with sigma = 1.0 (ρ = -
0.67, P < 0.05); similarly, YTHDF2 was positively correlated with the wavelet HHH 
GLCM contrast (ρ = 0.57, P < 0.05) and inversely with the LoG sigma 10th percentile 
calculated with sigma = 5.0 (ρ = -0.56, P < 0.05). Moreover, correlation analysis with 
the five up-regulated miRNA revealed a significant correlation only between miRNA-
93 and two radiomic features as reported in Figure 5 and in particular with the wavelet 
feature LHL GLRLM high gray level run emphasis (ρ = 0.69, P < 0.05) and the LoG 
sigma 10th percentile calculated with sigma = 5.0 (ρ = -0.54, P < 0.05).

DISCUSSION
Several studies reported that some miRNAs, such as miR-21, miR-183, miR-574-5p and 
miR-601, can regulate the pathways in esophageal carcinogenesis by their altered 
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Figure 4 Radiogenomic analysis using alcohol history as clinical outcome. Heatmap depicting the correlation matrix between transcriptomic features 
and radiomic features significantly associated with alcohol history. H: High-pass filter; L: Low-pass filter; miRNA: MicroRNA.

Figure 5 Radiogenomic analysis using body mass index as clinical outcome. Heatmap depicting the correlation matrix between transcriptomic 
features and radiomic features significantly associated with body mass index. GLCM: Gray level co-occurrence matrix; GLDM: Gray level dependence matrix; 
GLRLM: Gray level run length matrix; GLSZM: Gray level size zone matrix; H: High-pass filter; L: Low-pass filter; miRNA: MicroRNA; mRNA: Messenger RNA; 
NGTDM: Neighboring gray tone difference matrix.

expression associated with the increasing of risks factors, including dietary, smoking 
and drinking habits[44]. Moreover, a recent study, through an integrated approach, 
evaluated how dysregulated miRNAs by regulating RNA targets changed the relative 
miRNA-mRNA expression to survival and clinical characteristics[45]. In addition, 
miRNAs, more generally noncoding RNAs, have the ability to regulate m6A modific-
ations, thereby affecting gene expression in cancer progression. Previous studies 
highlighted a strong relation between RNA methylation and breast cancer. In 
particular, Zhang et al[46] reported significant difference in expression levels and 
prognostic value of five m6RNA regulators (YTHDF3, ZC3H13, LRPPRC, METTL16, 
RBM15B) in breast cancer. Furthermore, in a recent study, Zhao et al[47] showed that 
m6A regulator genomic aberration is associated with prognosis of ESCA patients.

It is recognized that the use of CT radiomics is rapidly increasing in the field of 
ESCA management, playing an important role in preoperative nodal staging, 
diagnosis and prognosis and for predicting treatment response to chemoradiotherapy
[3,48-52]. Wu et al[15] showed that CT radiomic features were able to discriminate 
between stage I-II and III-IV ESCA. In a study by Yang et al[45], predictive models 
based on CT radiomic features were able to predict complete pathologic response after 
neoadjuvant chemoradiotherapy of ESCA patients. CT texture features were also 
found to be independent predictors of survival[48], while CT wavelet features were 
associated with the 3-year overall survival after chemoradiotherapy in a study 
involving 165 patients performed by Larue et al[51].
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In our pilot study, we examined the relationship between the expression levels of 
eight m6A RNA methylation regulators (KIAA1429, HNRNPC, RBM15, METTL3, 
WTAP, YTHDF1, YTHDC1, YTHDF2), as well as five up-regulated miRNAs (miRNA-
93, miRNA-21, miRNA-4746, miRNA-196a-1 and miRNA-196a-2) and radiomic 
features extracted from CT images that were significantly associated to clinical 
outcomes (stage, alcohol history, BMI) in patients with ESCA belonging to the public 
integrated datasets TCGA/TCIA. We decided to evaluate by combining radiomic and 
transcriptomic data the above-mentioned m6A RNA methylation regulators and up-
regulated miRNA since previous studies on gene expression in ESCA found 
interesting results on specific mRNAs associated with tumor stage through epigenetic 
regulation and miRNAs signature as a prognostic biomarker[22,25].

Interestingly, both considering binary clinical outcomes (namely stage and alcohol 
history) and BMI, CT radiomic features that survived after radiomic feature selection 
were mostly belonging to the wavelet group, while only histogram Kurtosis and three 
LoG sigma features (one textural and two histogram features) survived after feature 
selection for alcohol history and BMI analysis, respectively. Wavelet features were also 
able to differentiate between stage I-II and III-IV ESCA, with an AUC superior to 80%. 
Similar performances were achieved when using the same features for predicting T 
and N, and this could be because T and N assignments contribute to determine the 
overall ESCA stage[43]. These results are in line with those found by Liu et al[53], even 
if they did not include textural features from wavelet CT images.

These results were in line with previous radiomics studies, in which CT imaging 
features describing tumor heterogeneity also were shown to have prognostic value in 
esophageal cancer[51,54]. Wavelet radiomic features from pretreatment CT were 
found to be useful to predict overall survival of ESCA patients after chemoradio-
therapy in a study by Larue et al[51]. Moreover, in the work by Qiu et al[54], wavelet 
features resulted predominant in the radiomic-based predictive model developed to 
estimate recurrence-free survival in ESCA patients achieving a pathologic complete 
response.

Radiogenomic analysis performed for stage assessment revealed significant correl-
ations between 10 wavelet textural features and six of the eight m6A RNA methylation 
regulators (HRNPC, WTAP, METTL3, YTHDF1, YTHDF2, YTHDC1). Moreover, 
correlation analysis with the five up-regulated miRNA revealed a significant positive 
correlation between miRNA-93 and two radiomic wavelet features, namely LHL 
GLDM high gray level emphasis and HHH GLCM joint entropy. It is worth to note 
that the wavelet feature HHH GLCM joint entropy was positively correlated with 
miRNA-93 and contributed to building the best predictive models for the overall stage 
assessment and for the assessment of the T and N categories. From the literature, miR-
93 is reported to be associated in various tumors and it is recently found to regulate 
mechanisms of drug resistance in triple negative breast cancer[55]. Moreover, Ansari et 
al[56] evaluated miR-93 as potential deregulated biomarker for early detection of 
ESCA. Based on these considerations, combining genomic features with radiomic ones 
might be of further added value for ESCA staging, thereby influencing the person-
alized medicine workflow in the field of ESCA. Concerning radiogenomic analysis 
performed using alcohol history as clinical outcome, there were no significant associ-
ations between selected CT features and the eight m6A RNA methylation regulators, 
while the correlation analysis with the five up-regulated miRNA revealed a significant 
correlation between the wavelet feature LHH first order mean and three up-regulated 
miRNA, namely miRNA-21, miRNA-4746 and miRNA-93. Finally, the radiogenomic 
analysis on BMI revealed a significant correlation between wavelet and LoG sigma 
features and METTL3, YTHDF1, YTHDC1 and YTHDF2. Wavelet and LoG sigma 
features were also associated with miRNA-93 in radiogenomic analysis involving the 
five up-regulated miRNAs.

In addition, a recent study has experimentally verified that overexpression of 
METTL3 in tumor tissues of ESCA patients compared with normal condition from 
adjacent tissues is associated with metabolic status, highlighting a significant 
correlation with tumor size and histological differentiation; this result suggests that 
MTLL3 may become a possible pathological index for diagnosis and a potential 
therapeutic target[57].

However, to our knowledge, this is the first ESCA radiogenomic study investigating 
the association with clinical staging and potential risk factors. Although previous 
radiogenomic studies were performed on ESCA[21,49,58], the strength of our study 
was that this is the first radiogenomic study investigating the association with stage, 
alcohol history, and BMI. Moreover, is not to be neglected that it is a radiogenomic 
study on an unexplored cancer type such as ESCA.
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However, several limitations are worth noting. First, due to the extremely small 
sample size and the retrospective nature of the study, our results remain to be 
validated with a larger and prospective patient sample in the future. Second, the small 
sample size may have affected also prediction model performances. Therefore, a larger 
and more balanced study group is needed to conduct better a radiomic analysis and 
build more robust prediction models. In particular, although the IABR strategy we 
used for model building is a common reliable approach in case of small and 
imbalanced datasets, a larger sample size would allow using part of the dataset for the 
training and part for testing and validating the performance of the classifier with 
external datasets. In addition, it should be considered that the availability of the eight 
m6A RNA methylation regulators and the five up-regulated miRNAs only for a small 
population has prevented us from investigating other clinical outcomes, which were 
missing for the investigated patients. It would have been interesting to perform similar 
analyses considering smoking variables as clinical outcomes. In fact, in addition to 
alcohol, tobacco is an established risk factor for ESCA and has been proven to act 
synergically with alcohol to increase the risk of ESCA[59,60]. However, we could not 
perform analyses involving outcomes associated with smoking due to the 
incompleteness of these data for the included patients’ cohort.

CONCLUSION
In conclusion, our preliminary study revealed interesting relationships between the 
expression levels of eight m6A RNA methylation regulators, as well as the five up-
regulated miRNAs, and CT radiomic features that were significantly associated with 
clinical outcomes. Our results strengthen the role of miRNA overexpression and the 
possible characterization of biomarkers from liquid biopsy for ESCA assessment and 
staging, introducing new insights for omics integration toward a personalized 
medicine approach. Further prospective and retrospective studies involving larger 
groups of patients are essential to validate obtained results and perform in-depth 
analyses.

ARTICLE HIGHLIGHTS
Research background
Esophageal cancer (ESCA) is the sixth most common malignancy in the world, and its 
incidence is rapidly increasing. Radiogenomics provides clinically useful prognostic 
predictions by linking molecular characteristics such as gene mutations and gene 
expression patterns of malignant tumors with medical images and could provide more 
opportunities in the management of patients with ESCA.

Research motivation
Recently, several microRNAs (miRNAs) and messenger (RNA) targets were evaluated 
as potential biomarkers and regulators of epigenetic mechanisms involved in ESCA. In 
addition, the use of computed tomography (CT) radiomics is rapidly increasing in the 
field of ESCA and plays an important role in different ESCA management steps. 
Moreover, there are no previous radiogenomic studies on ESCA investigating the 
association with clinical staging and potential risk factors. This has motivated us to 
investigate on the relationship between the expression levels of eight N6-methyl-
adenosine (m6A) RNA methylation regulators, as well as the five up-regulated 
miRNAs, and radiomic features extracted from CT images that were significantly 
associated to clinical outcomes.

Research objectives
To explore the combination of CT radiomic features and molecular targets associated 
with clinical outcomes for characterization of ESCA patients.

Research methods
Fifteen patients with diagnosed ESCA were included in this study, and their CT 
imaging and transcriptomic data were extracted from The Cancer Imaging Archive 
and gene expression data from The Cancer Genome Atlas, respectively. Cancer stage, 
history of significant alcohol consumption and body mass index (BMI) were 
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considered as clinical outcomes. Radiomic analysis was performed on CT images 
acquired after injection of contrast medium. In total, 1302 radiomics features were 
extracted from three-dimensional regions of interest by using PyRadiomics. 
Radiogenomic analysis involved Spearman’s correlation (ρ) analysis between radiomic 
features associated with clinical outcomes and transcriptomic signatures consisting in 
eight m6A RNA methylation regulators and five up-regulated miRNA.

Research results
Radiogenomic analysis with stage as clinical outcome revealed that six of the eight 
mRNA regulators and two of the five up-regulated miRNA were significantly 
correlated with 10 and three of the 25 selected radiomic features, respectively. 
Assuming alcohol history as clinical outcome, no correlation was found between the 
five selected radiomic features and mRNA regulators, while a significant correlation 
was found between one radiomic feature and three up-regulated miRNA. 
Radiogenomic analysis with BMI as clinical outcome revealed that four mRNA 
regulators and one up-regulated miRNA were significantly correlated with 10 and two 
radiomic features, respectively.

Research conclusions
Our study revealed interesting relationships between the expression of eight m6a RNA 
regulators, as well as five up-regulated miRNAs, and CT radiomic features associated 
with clinical outcomes of ESCA patients.

Research perspectives
This preliminary study revealed interesting associations between m6a RNA regulators, 
as well as miRNAs, and CT radiomic features associated with clinical outcomes of 
ESCA patients. Further investigations on different ESCA omics data are required. 
Moreover, multimodal data combined with artificial intelligence techniques character-
istics are desirable.
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