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Abstract
BACKGROUND 
Liver-secreted hepcidin is the systemic master switch of iron homeostasis and 
decreased levels of hepcidin are considered to cause iron overload not only in 
hereditary hemochromatosis but also in hemolytic anemia and chronic liver 
diseases. The regulation of hepcidin is complex and its response to iron is still not 
completely understood.

AIM 
To study the direct effect of iron on various established hepcidin signaling 
pathways in hepatoma cells or primary hepatocytes.

METHODS 
Hepcidin mRNA expression was studied by quantitative real-time (qRT)-PCR in 
the presence of various forms of iron including ferric ammonium citrate (FAC) in 
hepatoma cells (Huh7), murine primary hepatocytes and an established co-culture 
model of phorbol myristate acetate-differentiated THP-1 monocytes and Huh7 
cells. To analyze hepcidin signaling, the response to bone morphogenetic protein 
6 (BMP6), interleukin (IL)-6, IL-1β, hypoxia and lipopolysaccharide (LPS) were 
studied. Hepcidin and small mothers against decapentaplegic 6 (SMAD6) mRNA 
levels were assessed by qRT-PCR and the expression of phosphorylated signal 
transducer and activator of transcription 3 (phospho-STAT3), STAT3, phospho-
SMAD1/5/8 and SMAD1 proteins were analyzed by western blot.

RESULTS 
All iron III forms including FAC efficiently blocked hepcidin mRNA expression at 
non-toxic dosages in Huh7 cells or primary hepatocytes in a time and dose-
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dependent manner (P < 0.001; P < 0.05). Hepcidin blockage could be efficiently 
blunted by iron chelators salicylaldehyde isonicotinoyl hydrazone (SIH) and 
Desferal (P < 0.001). FAC also inhibited BMP6, hypoxia, IL-1β and IL-6-mediated 
hepcidin induction (P < 0.001; P < 0.001; P < 0.05; P < 0.001), and FAC also 
inhibited LPS-mediated hepatic hepcidin induction in co-culture model (P < 
0.001). Moreover, FAC reduced SMAD6 mRNA and p-SMAD1/5/8 protein 
expression at basal or upon stimulation by BMP6 (P < 0.05; P < 0.01), and FAC 
also reduced SMAD6 and p-SMAD1/5/8 expression under hypoxia (P < 0.01; P < 
0.05). However, FAC has no significant effect on p-STAT3 protein expression at 
basal or upon stimulation by various stimuli. Notably, in the presence of the 
BMP/SMAD signaling pathway inhibitor LDN193189 Hydrochloride (LDN), FAC 
was unable to further decrease hepcidin, SMAD6 and p-SMAD1/5/8 expression 
compared with LDN alone.

CONCLUSION 
Iron directly blocks hepatocellular hepcidin signaling through the BMP/SMAD 
pathway but independent of STAT3. This mechanism may contribute to 
continued iron overload in many pathophysiological conditions ultimately 
causing a vicious cycle of continued hepcidin suppression.

Key Words: Hepcidin/iron metabolism; Iron overload; Inflammation; Hypoxia; 
BMP/SMAD; STAT3

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Hepcidin is paradoxically and strongly suppressed during hemolytic iron 
overload. Although various upstream regulators of hepcidin have been discovered, the 
direct iron sensing mechanisms by hepcidin remain obscure. This study investigated 
the direct effect of iron on hepcidin signaling and for the first time to show that iron 
directly blocks hepcidin transcription via bone morphogenetic protein/small mothers 
against decapentaplegic but not the STAT3 signaling in various established in vitro 
models of hepcidin signaling.

Citation: Yu LN, Wang SJ, Chen C, Rausch V, Elshaarawy O, Mueller S. Direct modulation of 
hepatocyte hepcidin signaling by iron. World J Hepatol 2021; 13(10): 1378-1393
URL: https://www.wjgnet.com/1948-5182/full/v13/i10/1378.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i10.1378

INTRODUCTION
Excess iron causes cancer and severe tissue damage and chronic iron overload is not 
only driving the rather rare hereditary iron overload diseases but also secondary iron 
overload diseases due to hemolysis or common chronic liver diseases such as alcoholic 
liver disease or hepatitis C[1]. In most of these diseases, suppression of hepcidin, the 
systemic master switch of iron homeostasis in mammals, has been identified to play a 
key role. Hepcidin is primarily expressed in hepatocytes as a precursor pro-peptide 
and to a lesser extent in macrophages or cardiomyocytes[2-4]. It is regulated at the 
transcription side, and its mRNA levels correspond well with concentrations of the 
peptide[5]. By binding to and degrading the iron exporter ferroportin 1 (Fpn1) which 
is localized at the basolateral membranes of duodenal enterocytes, macrophages and 
hepatocytes[6], circulating hepcidin efficiently blocks iron absorption, iron recycling 
and iron storage[7,8]. Consequently, its overexpression leads to hypoferremia and 
anemia[9], while the reduction of hepcidin levels causes iron overload[10,11].

The regulation of hepcidin is complex and the direct mechanisms of iron sensing are 
still not completely understood. Bone morphogenetic protein 6 (BMP6) released from 
endothelial cells (ECs) can efficiently induce hepcidin transcription via the SMAD 
pathway[12]. BMP6 binds to the BMP receptor on the liver cell membrane and its co-
receptor hemojuvelin to promote the phosphorylation of the receptor-associated 
proteins small mothers against decapentaplegic (SMAD) 1/5/8. The latter interacts 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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with SMAD4 to form the SMAD complex, translocates into the nucleus and binds to 
the hepcidin promoter[13]. In addition, inflammation mediators (e.g., IL-6, IL-1β, 
hypoxia or ROS/H2O2) can also induce hepcidin transcription by promoting the 
phosphorylation of STAT3 to initiate STAT3-mediated hepcidin signaling[14]. 
Cytokines namely IL-6 and microbial molecules such as lipopolysaccharide (LPS) 
represent an important evolutionary conserved mechanism during infection/inflam-
mation to strongly induce hepatic hepcidin secretion leading to a rapid decrease of 
serum iron, which is thought to function as anti-bacterial defense mechanism[15]. 
More recently, the central redox signaling molecule H2O2 has been also identified as a 
potent inducer of hepcidin[16] with hypoxia further enhancing hepcidin-expression via 
the STAT3 signaling pathway[17]. Further data suggest that intracellular oxidases such 
as NOX4 may play an important upstream role in controlling hepcidin via the STAT3 
pathway[17].

C/EBPα, BMP6, SMAD 1, 5, 8 and 4, TMPRSS6, IL-6, CREBH, CHOP and TLR4), an 
overall and conclusive regulatory network regarding the control of iron is not yet fully 
understood. This includes the experimental and clinical finding that hepcidin responds 
differentially to iron overload in vitro and in vivo[18-20]. Although recent data suggest 
important intercellular crosstalks e.g., between hepatocytes and endothelial cells or 
macrophages[14,21-23], the direct iron sensing mechanisms by hepcidin remain 
obscure. It has been reported that TfR1, ERFE or GDF15 overexpression contributes to 
iron overload by suppressing hepcidin in vivo[24-28]. However, there are examples 
that the seemingly paradox direct negative impact of iron on hepcidin, identified in 
vitro[19], may have direct clinical implications. For instance, in the most common 
human liver disease, alcoholic liver disease[29], hepatic iron overload is one of the key 
factors that drive the diseases and determine survival[30] with alcohol directly 
suppressing hepcidin[31]. In thalassemia, hepcidin is also strongly suppressed during 
hemolysis. While repetitive blood transfusions have been long thought to cause iron 
overload[32], a recently established thalassemia mouse model could demonstrate that 
hepatic iron overload occurs without additional blood supply through suppressed 
hepcidin levels[33].

These considerations prompted us to study the direct effect of iron in an in vitro 
setting on various established hepcidin signaling pathways including the BMP/SMAD 
signaling pathway and STAT3-mediated hepcidin signaling via cytokines, hypoxia, 
and LPS using a recently established macrophage-hepatocyte co-culture model[14]. 
Our data show that iron inhibits primarily the BMP/SMAD pathway but does not 
affect the STAT3 pathway. In conclusion, direct exposure of hepatocytes to pathophy-
siological iron deposits is a strong suppressor of BMP-mediated hepcidin signaling 
that could initiate a vicious cycle of continued hepcidin suppression.

MATERIALS AND METHODS
Cell culture
Huh7 cells from the Japanese Cancer Research Resources Bank (JCRB, Tokyo, Japan) 
were grown under standard conditions using Dulbecco's modified Eagle medium 
(Sigma-Aldrich, Taufkirchen, Germany), 25 mmol/L glucose and 10% fetal calf serum 
under 210 mL/L O2 (21% O2) and 50 mL/L CO2 (5% CO2)[16]. Murine primary 
hepatocytes kindly provided by Dr. Sai Wang (University of Heidelberg, Germany) 
were grown under standard conditions using Williams’ medium (Sigma-Aldrich, 
Taufkirchen, Germany), 10% fetal bovine serum, 1% P/S (Penicillin and Strep-
tomycin), 1% L-Glutamine, 0.5% ITS (Insulin-Transferrin-Selenium), 0.1% Dexame-
thasone, and were seeded at a cell density of 2 x 105 cell/well in 12-well plates for 
experiment. The immortalized human monocyte THP-1 cells from the American Type 
Culture Collection (ATCC, Manassas, VA, United States) were grown in RPMI-1640 
medium with 25 mmol/L glucose (Gibco, Thermo Fisher Scientific, Waltham, MA, 
United States) Supplementary Figureed with 10% fetal bovine serum. THP-1 cells were 
seeded in 12-well plates and treated with phorbol myristate acetate (PMA) at 100 
ng/mL for 24 h to induce differentiation. After differentiation, cells were washed and 
incubated in fresh media for 24 h before experiment[14].

Chemicals and reagents
PMA, LPS, LDN, FAC, FeCl3, FC, FeSO4, Hemin, Desferal, human recombinant IL-6 
were all purchased from Sigma-Aldrich. Ferrlecit (sodium ferric gluconate) was 
obtained from a commercial pharmacy in its retail packaging. Human recombinant IL-
1β was purchased from Enzo Lifesciences (Lörrach, Germany) and human 
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recombinant BMP6 was purchased from R&D, Germany. SIH was a gift of Dr. P. 
Ponka (McGill University, Montreal, Canada).

Macrophage differentiation and co-culture
THP-1 monocytes were differentiated to macrophages and co-cultured as described 
recently[14]. Briefly, THP-1 cells were seeded for differentiation with PMA (100 
ng/mL) at a density of 0.25 × 105 cells/well in 12-well plates. After 48 h of differen-
tiation, Huh7 cells were seeded on the top of macrophages at a density of 0.7 × 105 
cells/well and incubated overnight for attachment. The co-culture was conditioned to 
LPS (0.5 μg/mL) and/or FAC (50 μmol/L) under 21% O2 and 5% CO2 for 24 h. Aiming 
at studying the effects of macrophage-conditioned medium, differentiated THP-1 
macrophages were conditioned to LPS and/or to FAC for 24 h. Huh7 cells were 
exposed to the macrophage-conditioned medium for 24 h. In the co-culture 
experiments, a pathophysiological hepatocytes-to-macrophages ratio of 4 to 1 was 
used as described previously[14].

Hypoxia experiments
Huh7 cells were seeded at a cell density of 0.7 x 105 cell/well in 12-well plates. Huh7 
cells were treated with or without FAC. Hypoxia was induced as described recently 
using a hypoxia chamber[14]. Briefly, cell culture plates were placed in the hypoxia 
chamber and flushed with a gas mixture of 1% O2, 5% CO2 and 940 mL/L N2 (94% N2) 
for 3 min and incubated at 37 °C for 24 h[16].

RNA isolation, cDNA synthesis and quantitative real-time PCR analysis
Total RNA was isolated with Trifast (Peqlab biotechnology GmbH, Erlangen, 
Germany) according to the manufacturer specifications. Reverse transcription and 
quantitative real-time PCR (qRT-PCR) reactions were performed as previously 
described[16]. Primers and probes were designed using the Probefinder software 
(Roche, Mannheim, Germany) and the sequences are shown in Table 1. Primarily, 
levels of hepcidin mRNA were assessed since they correspond well to the levels of the 
propeptide. The levels of secreted peptide are only used in clinical studies where liver 
biopsies are not available[5].

Immunoblotting
Cells were washed in ice-cold 1xPBS and harvested in RIPA buffer plus 1 × Complete® 
protease inhibitor with EDTA (Roche Applied Sciences, Penzberg, Germany) on ice. 
Western Blotting was performed as described previously[16]. Following the transfer, 
the proteins immobilized on nitrocellulose membranes were incubated overnight with 
the antibodies anti-pSTAT3, anti-STAT3 (1:1000 dilution; Cell Signaling Technology, 
Frankfurt am Main, Germany); anti-pSMAD1/5/8, anti-SMAD1 (1:1000 dilution; Cell 
Signaling Technology, Frankfurt am Main, Germany) or anti-GAPDH (1:2000 dilution; 
Cell Signaling Technology, Frankfurt am Main, Germany). After incubation with the 
IRDye-conjugated 680 anti-mouse or 800 anti-rabbit antibodies (1:10000 dilutions; LI-
COR, Inc., Lincoln, NE, United States), the membranes were scanned using an infrared 
imaging system (Odyssey CLx; LI-COR, Inc., Lincoln, NE, United States).

Statistical analysis
All the data were expressed as mean ± SD. Significant differences (P < 0.05) between 
means of data sets were assessed by one-way ANOVA with Tukey's test or two-way 
ANOVA with Sidak's test using GraphPad Prism 6 software.

RESULTS
Efficient suppression of hepatocellular hepcidin by higher iron levels
Although iron injection in vivo causes strong induction of hepcidin[34,35], direct 
exposure of isolated hepatoma cells or murine primary hepatocytes to various forms of 
iron causes an efficient suppression of hepcidin mRNA expression (Figure 1A and B; P 
< 0.001 and P < 0.05 vs control). The inhibiting effect of iron was observed over a wide 
concentration range (Supplementary Figure 1) and could be efficiently blocked by two 
iron chelators (SIH and Desferal) (Figure 1C; P < 0.001 vs FAC group). While this 
“paradox” response towards iron may be explained by the absence of co-factors or 
other neighboring cells in vitro, the direct inhibition of hepcidin by iron may have 
important pathophysiological implications for hepatic iron overload in the context of 

https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
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Table 1 Primer list of the genes analyzed by quantitative real-time polymerase chain reaction

Gene Primer sequence

forward: 5’-tga ctt tgt cac agc cca aga ta-3’

reverse: 5’-aat cca aat gcg gca tct tc-3’

human β2-mg 

probe: FAM-tga tgc tgc tta cat gtc tcg atc cca-TAM

forward: 5′-gaa ggt gaa ggt cgg agt-3’

reverse: 5′-gaa gat ggt gat ggg att tc-3’

human GAPDH

probe: FAM-caa gct tcc cgt tct cag cc-TAM

forward 5′-cag gac aga gct gga gcc a-3′

reverse: 5′-gca gca cat ccc aca ctt tg-3′

human hepcidin

probe: FAM-ctg ctg cgg ctg ctg tca tcg a-TAM

forward: 5′-tgc aac ccc tac cac ttc a-3′

reverse: 5′-cga gga gac agc cga gag t-3′

human SMAD6

probe UPL # 10 (Roche)

forward: 5′-ggt cca ttc cta tga ctg tag att tt-3′

reverse: 5′-caa tca aga cgt tct ttc cag tt-3′

mouse HPRT

probe UPL # 22 (Roche)

chronic liver diseases or due to hemolysis. We further demonstrate that the 
suppression of hepcidin mRNA expression is not due to toxic or subtoxic effects as 
even five times higher FAC concentration did not affect growth or cell division (see 
Supplementary Figure 2A). Moreover, a significant suppression of hepcidin mRNA 
expression by FAC was observed at 6 h and continued over the observed time interval 
of 24 h (Supplementary Figure 2B; P < 0.001 vs control). In summary, in vitro exposure 
of hepatocytes to high levels of iron suppresses hepcidin, which may have important 
pathophysiological implications by initiating a vicious iron overloading cycle. Further 
experiments were carried out with FAC as a standard model for iron exposure.

Iron efficiently blocks BMP6 to induce hepatocellular hepcidin
We next studied the influence of iron (FAC) on BMP6-mediated hepcidin signaling, 
one of the major pathways in basal and iron-responsive expression of hepcidin. As 
shown in Figure 2A, recombinant BMP6 efficiently increased hepcidin mRNA levels 
by almost four times (P < 0.001 vs control). However, the presence of iron FAC not 
only blocked basal hepcidin expression under control conditions but completely 
inhibited BMP6-mediated hepcidin induction (Figure 2A; P < 0.001 vs BMP6 group). In 
fact, even in the presence of BMP6, FAC inhibited hepcidin mRNA levels by ca. 50% 
(Figure 2A; P < 0.05 vs control). Notably, BMP6 was unable to induce SMAD6 mRNA 
and p-SMAD1/5/8 protein expression under FAC conditions (Figure 2B, C and D; P < 
0.01 vs BMP6 group), while no effect on p-STAT3 protein expression was seen 
(Figure 2E and F). In conclusion, in vitro, external iron has a profound inhibitory effect 
of basal hepcidin expression and completely abolished BMP6-mediated hepcidin 
signaling through SMAD but not the STAT3 pathway.

FAC inhibits hypoxia-mediated hepcidin induction in a STAT3-independent manner
Recently, hypoxia and hydrogen peroxide have been identified as important 
modulators of hepcidin expression predominantly through the STAT3 pathway and 
involving oxidase enzymes of the NOX family[16,17]. To avoid direct interactions 
between iron and e.g., peroxide, we therefore next focused on hypoxia to study the role 
of FAC in a STAT3-mediated hepcidin signaling. In confirmation of previous 
experiments[14], Figure 3A demonstrates that hypoxia is able to significantly increase 
hepcidin mRNA levels (P < 0.05 vs normoxia control). However, hypoxia was unable 
to induce hepcidin mRNA expression under FAC conditions (Figure 3A; P < 0.01 vs 
normoxia control and P < 0.001 vs hypoxia control). Expectedly, hypoxia did not have 
any significant effect on SMAD6 mRNA and p-SMAD1/5/8 protein expression 
(Figure 3B, C and D), but efficiently upregulated p-STAT3 protein expression as 
shown previously (Figure 3E and F; P < 0.05 vs normoxia control). In contrast, FAC 

https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
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Figure 1 Efficient suppression of hepcidin by higher iron levels. A: Huh7 cells were treated with 50 μmol/L of FAC, FeCl3, FC, ferrlecit, hemin or FeSO4 
for 24 h; B: Murine primary hepatocytes were treated with FAC (50 μmol/L) for 24 h; C: Huh7 cells were treated with FAC (50 μmol/L) in the presence or absence of 
SIH (100 μmol/L) or Desferal (50 μmol/L) for 24 h. Total RNA was extracted from Huh7 cells or murine primary hepatocytes. Hepcidin mRNA levels were determined 
by quantitative real-time PCR, normalized to glyceraldehyde 3-phosphate dehydrogenase or hypoxanthine phosphoribosyltransferase or β2mg. Data are presented 
as mean ± SD. aP < 0.05, bP < 0.001 vs control; dP < 0.001 vs FAC group. FAC: Ferric ammonium citrate; FeCl3: Ferric chloride; FC; Ferric citrate; FeSO4: Ferrous 
sulfate; SIH: Salicylaldehyde isonicotinoyl hydrazine; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; β2mg, β2-microglobulin; HPRT: Hypoxanthine 
phosphoribosyltransferase.

still decreased SMAD6 mRNA and p-SMAD1/5/8 protein expression under hypoxia 
(Figure 3B, C and D; P < 0.01 and P < 0.05 vs hypoxia control), but had no effect on p-
STAT3 protein expression even under hypoxia (Figure 3E and F). These results 
demonstrate that FAC also and primarily affects hepcidin even in a typical STAT3-
signaling setting through basal modulation of the SMAD pathway.

FAC efficiently blocks cytokine-mediated hepcidin expression
Cytokines such as IL-6 and IL-1β are important upstream regulators of hepcidin 
playing an important role in the so-called anemia of chronic disease response[36]. For 
instance, they are primarily responsible for the general hypoferremia observed during 
infections[37,38]. To study the effect of iron on cytokine signaling, hepatoma cells were 
exposed to FAC and/or IL-1β or IL-6 in vitro for 24 h and hepcidin mRNA was 
assessed by qRT-PCR. As shown in Figure 4A and B, both cytokines efficiently 
increased hepcidin mRNA levels while FAC blocked IL-1β-mediated induction by 
about 50% and IL-6-mediated induction completely (P < 0.05 vs IL-1β group and P < 
0.001 vs IL-6 group). FAC not only decreased the basal but also the SMAD6 mRNA 
and p-SMAD1/5/8 protein expression induced by IL-1β (see Supplemen-

https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
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Figure 2 Ferric ammonium citrate profoundly blocks bone morphogenetic protein 6-mediated hepcidin signaling. Huh7 cells were treated with 
or without bone morphogenetic protein 6 (BMP6) (40 ng/mL) in the presence or absence of ferric ammonium citrate (FAC) (50 μmol/L) for 24 h. Total RNA and protein 
were extracted from Huh7 cells. A: FAC decreased the hepcidin mRNA expression in the presence or absence of BMP6; B: FAC decreased small mothers against 
decapentaplegic 6 (SMAD6) mRNA expression in the presence or absence of BMP6; C, D: FAC decreased p-SMAD1/5/8 protein expression in the presence or 
absence of BMP6; E, F: Both BMP6 and FAC have no significant effect on phosphorylated signal transducer and activator of transcription 3 (p-STAT3) protein 
expression. SMAD1, p-SMAD1/5/8, STAT3, p-STAT3 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein levels were determined by Western blotting. 
Hepcidin and SMAD6 mRNA levels were determined by qRT-PCR, normalized to GAPDH. Western Blots are representatives of three independent experiments. Data 
are presented as mean ± SD. aP < 0.05, bP < 0.01, cP < 0.001 vs control; dP < 0.01, eP < 0.001 vs BMP6 group. FAC: Ferric ammonium citrate; BMP6. Bone 
morphogenetic protein 6; p-: Phospho-; SMAD: Small mothers against decapentaplegic; STAT3: Signal transducer and activator of transcription 3; GAPDH: 
Glyceraldehyde 3-phosphate dehydrogenase.

tary Figure 3A). FAC still decreased the SMAD6 mRNA and p-SMAD1/5/8 protein 
expression in the presence of IL-6 (see Supplementary Figure 4A). In addition, while 
both cytokines induced p-STAT3 protein expression (see Supplementary Figure 3B or 
Supplementary Figure 4B; P < 0.01 vs IL-1β group or IL-6 group), FAC had significant 
effect on p-STAT3 protein expression neither in the presence nor absence of IL-1β or 
IL-6. Notably, IL-6 was still able to induce hepcidin under FAC conditions (See 
Figure 4B). Taken together, these findings suggest that the presence of FAC 
significantly attenuates hepcidin response to cytokines, which is SMAD dependent but 
does not involve STAT3.

https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
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Figure 3 Ferric ammonium citrate efficiently inhibits hypoxia-mediated hepcidin response independent of signal transducer and activator 
of transcription 3. Huh7 cells were exposed to normoxia (210 mL/L O2, 21% O2) or hypoxia (10 mL/L O2, 1% O2) in the presence or absence of ferric ammonium 
citrate (FAC) (50 μmol/L) for 24 h. Total RNA and protein were extracted from Huh7 cells. A: FAC decreased the basal and hypoxia-induced hepcidin mRNA 
expression; B: Hypoxia has no obvious effect on small mothers against decapentaplegic 6 (SMAD6) mRNA expression, but FAC decreased SMAD6 mRNA 
expression in the presence or absence of hypoxia; C, D: Hypoxia has no significant effect on p-SMAD1/5/8 protein expression, while FAC decreased p-SMAD1/5/8 
protein expression in the presence or absence of hypoxia; E, F: Hypoxia increased phosphorylated signal transducer and activator of transcription 3 (p-STAT3) 
protein expression, while FAC has no significant effect on p-STAT3 protein expression in the presence or absence of hypoxia. SMAD1, p-SMAD1/5/8, STAT3, p-
STAT3 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein levels were determined by Western blotting. Hepcidin and SMAD6 mRNA levels were 
determined by qRT-PCR, normalized to GAPDH. Western Blots are representatives of three independent experiments. Data are presented as mean ± SD. aP < 0.05, 
bP < 0.01, cP < 0.001 vs control (21% O2); dP < 0.05, eP < 0.01, fP < 0.001 vs control (1% O2). FAC: Ferric ammonium citrate; O2: oxygen; p-: Phospho-; SMAD: Small 
mothers against decapentaplegic; STAT3: Signal transducer and activator of transcription 3; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase.

Inhibition of hepatocellular hepcidin by FAC requires BMP/SMAD signaling
We next studied the role of BMP/SMAD signaling in the modulation of hepatocellular 
hepcidin by FAC using a BMP/SMAD signaling inhibitor LDN193189 (LDN)[39]. LDN 
suppressed the basal hepcidin mRNA expression (Figure 5A; P < 0.001 vs control), 
while FAC in combination with LDN could not further suppress hepcidin mRNA 
expression compared with LDN alone (Figure 5A). FAC in combination with LDN 
could not further suppress SMAD6 mRNA and p-SMAD1/5/8 protein expression 
compared with LDN alone (Figure 5B, C and D). Neither FAC nor LDN had a 
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Figure 4 Ferric ammonium citrate efficiently blocks cytokine-mediated hepcidin expression. Huh7 cells were treated with or without IL-1β (10 
ng/mL) or IL-6 (10 ng/mL) in the presence or absence of ferric ammonium citrate (FAC) (50 μmol/L) for 24 h. Total RNA was extracted from Huh7 cells. A: FAC 
significantly decreased IL-1β-induced hepcidin mRNA expression; B: FAC efficiently blocks IL-6-induced hepcidin mRNA expression. Hepcidin mRNA levels were 
determined by qRT-PCR, normalized to glyceraldehyde 3-phosphate dehydrogenase. Data are presented as mean ± SD. bP < 0.01, cP < 0.001 vs control; dP < 0.05, e

P < 0.001 vs IL-6 group. IL-1β: Interleukin 1β; IL-6: Interleukin 6; FAC: Ferric ammonium citrate; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase.

significant effect on p-STAT3 protein expression (Figure 5E and F). In conclusion, these 
data suggest that the BMP/SMAD signaling is necessary for FAC to inhibit hepcidin 
expression.

FAC decreases hepatic hepcidin expression induced by LPS in a macrophage-
hepatocyte co-culture model
We finally studied the effect of FAC on a more complex and recently established co-
culture model of macrophages and hepatocytes to mimic an inflammatory bacterial 
response by LPS under crosstalk conditions of both cell lines. Human THP-1 
monocytes were differentiated into macrophages using PMA as described recently
[40]. We examined the effect of LPS on hepatocellular hepcidin mRNA expression in 
the presence or absence of macrophages. A co-culture model of macrophages and 
hepatocytes was established according to the cell ratio of 4 to 1 of hepatocytes to 
macrophages in order to mimic pathophysiological cell ratios in the liver microenvir-
onment[14]. In a normal experimental setting, THP-1 monocytes were differentiated 
with PMA for 24 h, washed with PBS, and then cultured in fresh medium for another 
24h followed by co-cultivation for another 24h with huh7 cells. Huh7 cells were treated 
by LPS for 24h, and Huh7 cells were co-cultured with THP-1 macrophages in the 
presence of LPS or exposed to LPS-conditioned macrophage medium for 24 h. LPS 
slightly induced hepcidin mRNA expression in Huh7 cell monoculture. Co-culture 
with macrophages induced hepcidin mRNA expression (Figure 6A; P < 0.001 vs Huh7 
control), which was further enhanced by LPS (Figure 6A; P < 0.001 vs co-culture 
control) in line with recent studies[14,41]. Notably, the effects of macrophages on 
hepcidin mRNA expression are even stronger than direct LPS-stimulation (Figure 6A; 
P < 0.001 vs Huh7 LPS group). FAC also significantly decreased hepatic hepcidin 
mRNA expression in our co-culture model (see Figure 6B; P < 0.05 vs control), and the 
presence of FAC also significantly attenuated the LPS-mediated expression of hepatic 
hepcidin mRNA in our co-culture model (see Figure 6B; P < 0.001 vs LPS group). As 
demonstrated in Supplementary Figure 5A, FAC decreased the LPS-induced SMAD6 
mRNA and p-SMAD1/5/8 protein expression (P < 0.05 vs LPS group). Moreover, LPS 
induced p-STAT3 protein expression (see Supplementary Figure 5B; P < 0.05 vs 
control), while FAC had no significant effect on p-STAT3 (see Supple-
mentary Figure 5B). Similar results to the directly co-culture model were also observed 
by using the macrophage-conditioned medium (data not shown). In conclusion, iron 
also significantly blocks hepcidin expression in a more complex macrophage-
hepatocyte co-culture model upon LPS stimulation in SMAD but not STAT3 
dependent fashion.

DISCUSSION
We here show that iron suppresses hepatocellular hepcidin signaling directly under in 

https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/4b4c795f-e6f6-405c-a132-e876210c7615/WJH-13-1378-supplementary-material.pdf
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Figure 5 Inhibition of hepatocellular hepcidin by ferric ammonium citrate requires bone morphogenetic protein/small mothers against 
decapentaplegic signaling. Huh7 cells were treated with or without ferric ammonium citrate (FAC) (50 μmol/L) in the presence or absence of LDN193189 
Hydrochloride (LDN) (20 nmol/L) for 24 h. Total RNA and protein were extracted from Huh7 cells. A: FAC or LDN decreased the basal hepcidin mRNA expression, 
but FAC in combination with LDN did not further suppress hepcidin mRNA expression compared with LDN alone; B-D: FAC or LDN decreased the basal small 
mothers against decapentaplegic (SMAD)6 mRNA and p-SMAD1/5/8 protein expression, but FAC in combination with LDN did not further suppress SMAD6 and p-
SMAD1/5/8 expression compared with LDN alone; E, F: Both FAC and LDN had no significant effect on phosphorylated signal transducer and activator of 
transcription 3 (p-STAT3) protein expression. SMAD1, p-SMAD1/5/8, STAT3, p-STAT3 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein levels 
were determined by Western blotting. Hepcidin and SMAD6 mRNA levels were determined by qRT-PCR, normalized to GAPDH. Western Blots are representatives of 
three independent experiments. Data are presented as mean ± SD. aP < 0.05, bP < 0.01, cP < 0.001 vs control. FAC: Ferric ammonium citrate; LDN: LDN193189 
Hydrochloride; p-: Phospho-; SMAD: Small mothers against decapentaplegic; STAT3: Signal transducer and activator of transcription 3; GAPDH: Glyceraldehyde 3-
phosphate dehydrogenase.

vitro conditions. By exploring several established in vitro models of hepcidin signaling, 
we further demonstrate that this direct inhibitory effect of iron on hepcidin 
transcription unanimously affects the BMP-SMAD pathway but not the STAT3 
pathway. Since iron-mediated blockage of hepcidin mRNA expression is also observed 
in primary hepatocytes at higher iron dosages and can be prevented by iron chelators, 
we suggest that this mechanism could contribute to hepcidin suppression in various 
iron overload diseases including hemolytic iron overload.
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Figure 6 Ferric ammonium citrate decreases hepatic hepcidin expression induced by lipopolysaccharide in a macrophage-hepatocyte 
co-culture model. Huh7 cells were treated with or without lipopolysaccharide (LPS) (500 ng/mL) for 24 h. Huh7 cells were directly co-cultured with THP-1 
macrophages according to pathophysiological macrophage/hepatocyte cell ratio (1:4) and then treated with or without LPS (500 ng/mL) for 24 h in the presence or 
absence of ferric ammonium citrate (FAC) (50 μmol/L). Total RNA was extracted from Huh7 cells or Huh7 cells and THP-1 macrophages. A: Hepcidin mRNA levels 
were slightly increased by LPS in monoculture of Huh7 cells, and macrophages increased hepcidin mRNA levels compared with monoculture control and the 
presence of LPS further markedly increased hepcidin mRNA levels; B: FAC decreased the basal and LPS-induced hepcidin mRNA levels in the co-culture model. 
Hepcidin mRNA levels were determined by qRT-PCR, normalized to glyceraldehyde 3-phosphate dehydrogenase. Data are presented as mean ± SD. aP < 0.05, bP < 
0.001 vs Huh7 control; dP < 0.001 vs Huh7 LPS group; eP < 0.05, fP < 0.01, gP < 0.001 vs co-culture control; hP < 0.001 vs co-culture LPS group. LPS: 
Lipopolysaccharide; FAC: Ferric ammonium citrate.

Although not widely gained attention, it has already been known for many years 
that hepatocellular hepcidin rapidly loses its responsiveness to iron under cultured 
conditions[19,41]. While this could be due to the loss of serum factors, the “in vivo liver 
microenvironment”, altered oxygen conditions or loss of metabolic demand ex vivo, 
the absence of an essential intercellular crosstalk could be another explanation. 
Namely with the identification of the BMP6-SMAD pathway, the role of endothelial 
released BMP6 has been identified as a major upstream event of the hepcidin response
[23,26]. Indeed, and also shown here, exposure of cultured hepatocytes to recombinant 
BMP6 is able to efficiently recover the hepcidin response.

On the other hand, such paradox responses of hepcidin towards iron levels have 
been also well documented in patients with severe thalassemia. These patients show 
pronounced hemolytic anemia and require repeated blood transfusion[32]. Patients 
with severe disease typically show progressive liver damage and cirrhosis due to 
serious iron toxicity[42]. The recent establishment of a murine thalassemia model 
clearly demonstrates that hepatic iron overload occurs also in the absence of additional 
blood supply under continued hemolysis-mediated suppression of hepcidin[33].

The mechanisms behind this hepcidin suppression in hemolytic diseases are still 
controversially discussed. Erythropoietin (EPO) has been proposed as an important 
factor although the underlying mechanisms are not completely understood and cannot 
be recapitulated by direct exposure of hepatocytes to EPO[43]. The recent identi-
fication of bone marrow-derived erythroferrone (ERFE) and Growth Differentiation 
Factor-15 (GDF15) in response to EPO stimulation suggests that these factors at least 
partly contribute to hepcidin suppression during hemolysis[28,44-46]. However, our 
data on the direct inhibiting effect of iron on hepcidin signaling in vitro suggest that 
iron per se could also contribute to hepcidin suppression.

Chronic liver diseases represent another important model of chronic iron overload 
and ca. 50% of chronic liver diseases show hepatic iron overload with an inadequate 
hepcidin response[30]. While primary liver damage either through alcohol damage or 
viral replication could account for the total loss of hepcidin response[47-49], iron itself 
could also play a regulatory role. In our various in vitro models of hepcidin signaling, 
we here demonstrate that iron efficiently blocks hepcidin response primarily through 
the SMAD pathway. Although this seems rather counteractive towards the iron-
mediated BMP-hepcidin response, this experiment deserves serious consideration 
especially during pathophysiological conditions such as severe hemolysis or damage 
to the liver sinus-endothelial layer. It may explain why continued hepatic iron 
overload would initiate a vicious cycle of hepcidin suppression and further iron 
uptake through the duodenal brush border[50]. It would also implicate that besides 
pharmacological approaches to re-introduce hepcidin or increase hepcidin peptide 
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Figure 7 Scheme of iron-mediated blockage of hepcidin transcription via bone morphogenetic protein/small mothers against decapenta-
plegic but independent of signal transducer and activator of transcription 3 signaling. Iron (ferric ammonium citrate) primarily blocks hepcidin 
transcription via the bone morphogenetic protein (BMP)/small mothers against decapentaplegic pathway while no effect on signal transducer and activator of 
transcription 3 signaling was observed. The scheme also shows all studied hepcidin signaling pathways including BMP6, interleukin (IL)-6, IL-1β, hypoxia or a 
complex co-culture model with macrophages. IL-1β: Interleukin 1β; IL-6: Interleukin 6; BMP6: Bone morphogenetic protein 6; FAC: Ferric ammonium citrate; IL-1R: 
IL-1 receptor; IL-6R: IL-6 receptor: NOX4: NADPH Oxidase 4; BMPR: BMP receptor; p-STAT3: Phosphorylated signal transducer and activator of transcription 3; p-
SMAD1/5/8: Phosphorylated small mothers against decapentaplegic 1/5/8.

levels (e.g., mini hepcidins), removal of iron remains the cornerstone of the treatment. 
Not only would it remove the primary toxic agent iron but it would interrupt the 
suppressing effect of hepcidin on iron. It may also stimulate a mechanistic discussion 
on the therapeutic usage of iron chelators vs phlebotomy.

Although our data clearly show an exclusive effect of in vitro iron on the SMAD 
signaling cascade, the direct molecular mechanisms still remain elusive. Notably, 
hepcidin signaling was inhibited by iron in all explored models including the co-
culture model with macrophages. Even in primary STAT3-mediated processes such as 
cytokines, hypoxia or LPS, iron efficiently blocked hepcidin transcription underlining 
the important role of the SMAD pathway for basal hepcidin expression. In line with 
this is the observation that efficient SMAD blockage by the SMAD inhibitor LDN 
could not be further enhanced by iron. Second, experiments with membrane 
permeable or non-permeable iron chelators (SIH or Desferal) show that iron chelators 
efficiently counteract the inhibitory effect of iron on hepcidin. Although do not 
provide definite answers to the underlying mechanisms of the iron-mediated hepcidin 
inhibition, the almost immediate effect restricted to the SMAD pathway and the fact 
that only oxidized forms of iron are effective suggests to us that iron may directly act 
through the BMP receptor or associated molecules such as TfR1 or TfR2[30].

On a final note, we were surprised not to see any interaction of iron with the STAT3 
pathway. Since STAT3 is responsive to peroxide and iron and H2O2 are known for 
decades to chemically interfere via the Fenton chemistry[30], it would have been no 
surprise to see direct effects on hepcidin transcription. However, it remains open 
whether compensating mechanisms exist to counteract decreased peroxide levels e.g. 
by upregulating oxidases etc.

In summary, to our knowledge, this work is the first to show that iron directly 
blocks hepcidin transcription, at baseline or upon stimulation by different stimuli, 
through the BMP/SMAD but not STAT3 signaling in vitro. A summarizing scheme is 
shown in Figure 7. We think that in addition to potential hepcidin suppressing factors 
such as GDF15 or ERFE, iron could directly block hepcidin transcription under 
conditions of either excess iron or a liver endothelial fenestration with larger access to 
the hepatocellular membrane. Specifically under pathological conditions such as 
severe hemolysis or chronic iron overload as observed in alcoholic liver disease, this 
novel mechanism may contribute to further iron overload and initiate a vicious cycle. 
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To interrupt this cycle, the removal of iron should be the most efficient therapeutic 
goal. It will not be an easy task to validate this concept in in vivo models since iron 
levels in the direct environment of hepatocytes are not easy to quantitate.

CONCLUSION
In conclusion, iron including FAC per se, directly blocks hepcidin transcription and 
the inhibitory effect could be observed over a large concentration range involving all 
forms of iron-III, which was not caused by toxicity or inhibition of cell growth. FAC 
has a profound inhibitory effect on hepcidin expression at baseline or upon 
stimulation by stimuli in various cell models, which was controlled through the 
BMP/SMAD pathway but independent of STAT3. We suggest that this mechanism 
may contribute to continued iron overload in many pathophysiological conditions 
ultimately causing a vicious cycle of continued hepcidin suppression. Anyway, this 
study provides a new idea for in-depth exploration of iron overload diseases and 
provides an experimental basis for the underlying therapeutic goal.

ARTICLE HIGHLIGHTS
Research background
Excess iron causes cancer and severe tissue damage and chronic iron overload is not 
only driving the rather rare hereditary iron overload diseases but also secondary iron 
overload diseases due to hemolysis or common chronic liver diseases such as alcoholic 
liver disease or hepatitis C. In most of these diseases, suppression of hepcidin, the 
systemic master switch of iron homeostasis in mammals, has been identified to play a 
key role. Hepcidin is primarily expressed in hepatocytes as a precursor pro-peptide 
and to a lesser extent in macrophages or cardiomyocytes. Elevated hepcidin causes 
hypoferremia and anemia by efficiently blocking iron absorption, iron recycling and 
iron storage by binding to and degrading the major iron export pump ferroportin 1.

Research motivation
The direct iron sensing mechanisms by hepcidin remain obscure and seemingly 
paradox response of hepcidin have been observed in various clinical scenarios. Thus, 
direct intravenous injection of iron causes rapid induction of hepcidin, iron release in 
the context of hemolytic diseases such as thalassemia efficiently block hepcidin 
expression and cause further detrimental iron accumulation. Moreover, it still remains 
largely unexplained why hepatocellular hepcidin is downregulated under in vitro 
conditions. These observations prompted us to study in detail the direct effect of iron 
in cultured hepatocytes.

Research objectives
The authors here aimed to study the direct effect of iron on various established 
hepcidin signaling pathways including the bone morphogenetic protein (BMP)/small 
mothers against decapentaplegic (SMAD) signaling pathway and signal transducer 
and activator of transcription 3 (STAT3)-mediated hepcidin signaling via cytokines, 
hypoxia, and lipopolysaccharide (LPS) using a recently established macrophage-
hepatocyte co-culture model.

Research methods
Hepcidin mRNA expression in presence of various forms of iron was studied, using 
hepatoma cells (Huh7), murine primary hepatocyte and a co-culture model of phorbol 
myristate acetate-differentiated THP-1 monocytes and hepatoma cells. The response to 
BMP6, interleukin (IL)-6, IL-1β, hypoxia and LPS were studied in order to analyze 
hepcidin signaling. Hepcidin and SMAD6 mRNA levels were assessed and the 
expression of phospho-STAT3, STAT3, phospho-SMAD1/5/8 and SMAD1 proteins 
were analyzed.

Research results
All iron III forms including ferric ammonium citrate efficiently blocked hepcidin 
mRNA expression at non-toxic dosages in hepatoma cells or primary hepatocytes. 
Using iron chelators, the blockage of hepcidin by iron could be efficiently blunted. Iron 
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also had a profound inhibitory effect of basal hepcidin expression and completely 
abolished BMP6-mediated hepcidin signaling through SMAD but not the STAT3 
pathway. Iron also and primarily affected hepcidin even in a typical STAT3-signaling 
setting through basal modulation of the SMAD pathway and iron significantly 
attenuated hepcidin response to cytokines, which is SMAD dependent but does not 
involve STAT3. In the co-culture model, iron inhibited LPS-mediated hepcidin 
induction.

Research conclusions
In conclusion, iron directly blocks hepatocellular hepcidin transcription involving all 
forms of iron III and the effect was not caused by toxicity or reduced cell growth. Iron 
also inhibits hepcidin upregulation in various models of hepcidin stimulation 
primarily through the BMP/SMAD pathway but independent of STAT3 signaling. We 
propose that his mechanism may contribute to continued iron overload at least under 
pathophysiological conditions of iron release ultimately causing a vicious cycle of 
continued hepcidin suppression and further iron overload.

Research perspectives
This study provides a new concept for better understanding the seemingly paradox 
response of hepcidin in in vivo and in vitro settings. Moreover, understanding the 
direct inhibitory effects of iron on hepcidin signaling at the hepatocellular side could 
help to identify novel molecular targets for future therapies.
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