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Abstract
Non-alcoholic fatty liver disease (NAFLD) prevalence has increased drastically in 
recent decades, affecting up to 25% of the world’s population. NAFLD is a 
spectrum of different diseases that starts with asymptomatic steatosis and 
continues with development of an inflammatory response called steatohepatitis, 
which can progress to fibrosis. Several molecular and metabolic changes are 
required for the hepatocyte to finally vary its function; hence a “multiple hit” 
hypothesis seems a more accurate proposal. Previous studies and current 
knowledge suggest that in most cases, NAFLD initiates and progresses through 
most of nine hallmarks of the disease, although the triggers and mechanisms for 
these can vary widely. The use of animal models remains crucial for under-
standing the disease and for developing tools based on biological knowledge. 
Among certain requirements to be met, a good model must imitate certain aspects 
of the human NAFLD disorder, be reliable and reproducible, have low mortality, 
and be compatible with a simple and feasible method. Metabolism studies in these 
models provides a direct reflection of the workings of the cell and may be a useful 
approach to better understand the initiation and progression of the disease. 
Metabolomics seems a valid tool for studying metabolic pathways and crosstalk 
between organs affected in animal models of NAFLD and for the discovery and 
validation of relevant biomarkers with biological understanding. In this review, 
we provide a brief introduction to NAFLD hallmarks, the five groups of animal 
models available for studying NAFLD and the potential role of metabolomics in 
the study of experimental NAFLD.

https://www.f6publishing.com
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Core Tip: Non-alcoholic fatty liver disease (NAFLD) is a spectrum of different diseases that starts with 
asymptomatic steatosis, continues with steatohepatitis, and can progress to fibrosis. Current knowledge 
suggests that NAFLD initiates and progresses through most of nine hallmarks. Animal models remain 
crucial for understanding the disease and for developing tools based on biological knowledge. 
Metabolomics seems a valid tool for studying metabolic pathways and organ crosstalk in NAFLD. In this 
review, we provide a brief introduction to NAFLD hallmarks, the five groups of animal models available 
for studying NAFLD and the potential role of metabolomics in the study of experimental NAFLD.

Citation: Martin-Grau M, Marrachelli VG, Monleon D. Rodent models and metabolomics in non-alcoholic fatty 
liver disease: What can we learn? World J Hepatol 2022; 14(2): 304-318
URL: https://www.wjgnet.com/1948-5182/full/v14/i2/304.htm
DOI: https://dx.doi.org/10.4254/wjh.v14.i2.304

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) prevalence has increased drastically in the last decades, 
affecting up to 25% of the world’s population[1]. The rise of disorders such as obesity and type 2 
diabetes mellitus, as well as changes in lifestyle and diet composition, have led to a worldwide increase 
in the incidence of NAFLD[2-5]. Given that NAFLD reduces life expectancy by four years and triggers 
the appearance of different comorbidities such as cardiovascular disease, kidney damage or 
osteoporosis[3-5], it seems vital for specialists to establish accurate and precise guidelines or strategies 
to address the disease[6]. Assuming that the first stages of NAFLD are reversible[2] and to control the 
disease worldwide, there is a need for new non-invasive methods based on diagnostic and predictive 
biomarkers to help diagnose NAFLD in these early stages and avoid of the biopsy, which remains the 
gold standard diagnostic method[7,8]. The use of animal models remains crucial for understanding the 
disease[9] and for developing tools based on biological knowledge. In this review, we will provide an 
updated summary on NAFLD development, the importance of experimental animals uses, the rodent 
models currently applied, and use of metabolomics as a new methodology for improving understanding 
and management of NAFLD.

NAFLD DISEASE
NAFLD is a spectrum of different diseases that starts with asymptomatic steatosis (NAFL) and 
continues with onset of an inflammatory response called steatohepatitis (NASH), which can progress to 
fibrosis. This hepatic fibrosis may produce cirrhosis and eventually, hepatocellular carcinoma (HCC)[2]. 
The first theory to explain NASH development, proposed in 1998, was known as the “two hits” 
hypothesis[10]. The first hit was fat storage in the hepatocytes, which would induce steatosis, the second 
hit being increased oxidative stress in the hepatocytes which would stimulate lipid peroxidation. It was 
believed this double hit was necessary to induce disease onset[10]. Currently, the “two hits” concept is 
considered old-fashioned by many experts. The hepatocyte needs several molecular and metabolic 
changes for its function to finally vary. Instead, it seems more precise to propose a “multiple hit” 
hypothesis[11]. This premise is intended to provide greater insight into NAFLD pathology and 
considers the different events that can take place in predisposed subjects during development of the 
disorder. Fat accumulation and synthesis of reactive oxygen species are essential events, yet other 
phenomena are also important and can be considered hallmarks of NAFLD initiation and progression 
(Figure 1).

Environmental factors
Among environmental factors, the most prominent are dietary habits, physical activity, and socio-
economic aspects. Increased calories intake, and consumption of high-sugar and high-fat diets increases 
the risk of developing not only NAFLD but also conditions such as obesity and type 2 diabetes mellitus
[4,8,12]. Hallsworth et al[13] was the first to show an association between sedentary behavior and 
physical activity levels in patients with NAFLD, finding that these patients were on average more 
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Figure 1 Hallmarks of non-alcoholic fatty liver disease. Previous studies and current knowledge suggest that in most cases, non-alcoholic fatty liver 
disease initiates and progresses through most of these nine hallmarks, although the triggers and mechanisms for them can be diverse. NAFLD: Non-alcoholic fatty 
liver disease.

sedentary, walked less and spent less time on physical activity. Furthermore, it has been demonstrated 
that lifestyle interventions in diet and physical activity could improve the disease prognosis[12]. Finally, 
regarding socio-economic aspects, the role of educational level and family economic status in 
development of NAFLD is still under debate[4].

Intracellular factors
At the cellular level, important events such as mitochondrial dysfunction[14], endoplasmic reticulum 
(ER) stress[15,16], and activation of the inflammasome[17] contribute to fat accumulation in cells 
(steatosis) and inflammation. Genetic variants and epigenetic factors must also be taken into account in 
NAFLD progression[11,18]. A decade ago, PNPLA3 I148M was the first genetic variant reported to be 
associated with NAFLD. Currently, 13 genetic variants have been linked to increased risk of NAFLD or 
NASH, with the exception of the variant UCP2 866, which reduces the risk of NASH[18]. Some of these 
variants, such as TM6SF2, PNPLA3, NCAN, and PPP1R3B, have been linked to inherited NAFLD[8].

Extracellular factors
As a complete organ, the liver includes many non-parenchymal cells besides hepatocytes which 
contribute to the proper functioning of the organ. Among these are liver sinusoidal endothelial cells 
(LSECs), hepatic stellate cells (HSCs) and several immune cells, such as Kupffer cells[19,20]. Most of 
these cell types are essential to maintain homeostasis in the liver at the extracellular level, and alteration 
in their function has been associated with the NAFLD progression. LSECs maintain portal pressure and 
inhibit HSCs and Kupffer cells activation. During the first reversible stage of NAFLD, LSECs lose their 
functions, and, in turn, induce inflammation and fibrosis[21,22]. HSCs contribute to initiation and 
progression of liver fibrosis[19,23,24], one of the hallmarks of NAFLD evolution. Immune cells can be 
activated during liver disease creating a pro-inflammatory environment in the organ which contributes 
to NASH, fibrosis, cirrhosis, and HCC progression[19,25].

Organ crosstalk
NAFLD illness is not limited to hepatic disease: the NAFLD liver interacts with other organs, creating 
an organ crosstalk[26], which provides further support for the “multiple hits” hypothesis. As a first 
example, adipose tissue (AT) dysfunction is related to NAFLD disease[11,26]. Excess fat consumption 
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produces hypertrophy in adipocytes. AT can release several hormones or cytokines called adipokines 
which generate a pro-inflammatory environment[27]. This inflammatory state occurs first in the AT, 
then in the liver[28]. Furthermore, noncoding RNA[29] and extracellular vesicles[26,30] from the AT are 
linked to development of NAFLD and cell-to-cell communication. In the context of NAFLD, the gut-
liver axis refers to the relationship between gut integrity, gut microbiota, and the liver[11,26,31]. Both 
organs are directly connected by the portal vein. In general, the gut presents different kinds of barriers 
and mechanisms to maintain its integrity. One function of these barriers is to control the passage of 
substances into the portal vein and the liver[31,32]. Further evidence suggests that the intestinal barriers 
are altered, and intestinal permeability is increased in NAFLD disease. Taking advantage of this altered 
permeability, bacteria can translocate more easily into the blood, enter the portal vein and finally reach 
the liver[32]. Increased gut permeability and bacterial translocation are associated with liver cirrhosis
[31]. The gut microbiota is also altered in NAFLD due to intestinal microbial dysbiosis[33]. It has been 
shown that bacteria phyla are modified under high-fat diet-induced liver steatosis in rodent models[34] 
and human studies of NAFLD, NASH, and cirrhosis[35]. Variations in bacteria composition lead to 
altered concentration of some metabolites. This phenomenon, added to reduced permeability, triggers 
the arrival of molecules such as lipopolysaccharides in the systemic circulation and activation of Toll-
like receptor in cells. Moreover, metabolism of trimethylamine which can be oxidized in the liver 
ultimately forming trimethylamine N-oxide, has been linked to NAFLD progression and cardiovascular 
disease[33]. Additionally, the liver has been associated with the brain[26]. The arcuate nucleus of the 
hypothalamus regulates satiety. In 2005, De Souza et al[36] proved that a high-fat diet caused several 
proinflammatory-related changes in mRNA expression in the hypothalamus of Wistar. Furthermore, 
cirrhotic patients can develop hepatic encephalopathy, a neurological comorbidity associated with 
NAFLD disease[37,38]. Finally, the kidney and the liver have also been linked. The study of Musso et al
[39] in 2014 revealed that NAFLD severity was correlated with severity of chronic kidney disease 
(CKD). Many pathways are shared between NAFLD and CKD, so progression of NAFLD will 
contribute to CKD progression and vice versa[40].

Sexual dimorphism
NAFLD affects more men than women[41,42], due to the protective role of estrogens against disease 
development[43-46]. Nonetheless, in women of a certain age and under certain risk factors, incidence is 
higher than in men and they experience a more aggressive disease course. These risk factors are: (1) 
Earlier age of menarche; (2) Polycystic ovary syndrome; (3) Gestational diabetes; and (4) Menopause[46-
49]. Interestingly, sex differences extend beyond incidence rates: NAFLD appears to develop in distinct 
ways in males and females[50-54]. However, further studies on about molecular processes are needed 
for enhanced insight into sexual dimorphism in NAFLD[55].

RODENT MODELS IN NAFLD
NAFLD is a complex disease which affects many hepatic parameters, as well as functions of other 
organs. With current methodologies, it is virtually impossible to study the “multiple hits” hypothesis of 
NAFLD as a whole in humans, because this requires access to multiple tissues, biofluids, and controlled 
environments. Animal models therefore remain essential for studying initiation and progression of 
NAFLD, and present various advantages over clinical research: (1) The possibility to obtain multiple 
samples and carry out longitudinal studies; (2) Shorter time to disease onset; (3) The possibility of 
controlling the variables of our model; and (4) Use of genetically modified animals to study a specific 
gene or metabolic pathway alteration. Compared to in vitro studies, animal models can be used to study 
the whole liver and organ crosstalk between the liver and other organs[56].

Nevertheless, a perfect animal model[9,57] providing information on all potential triggers and causes 
of NAFLD is elusive. Therefore, it is vital to know the stage of the disease to be studied and which 
model reproduces the physiopathological characteristics we want to study. Focusing on model selection, 
among key common characteristics, a good model must imitate certain aspects of the human NAFLD 
disorder, be reliable and reproducible, have low mortality, and be compatible with simple and viable 
methods[9]. Development of obesity or insulin resistance, AT inflammation, alterations of intestinal 
physiology, and a specific liver phenotype (Table 1) are traits that mimic human NAFLD[58,59]. Several 
animal models can be used to study metabolic diseases, including NAFLD, but rodents are the most 
commonly used. Rodent models are preferred because they easily develop obesity, type 2 diabetes 
mellitus, and NAFLD[60]. In mice, the ideal model genetic background is the strain C57BL/6, and 
specifically the substrain C57BL/6J, as C57BL/6J mice are more insulin resistant than C57BL/6N mice
[61], which allows for better isolation of the NAFLD process from other metabolic alterations. For rat 
models, Wistar or Sprague Dawley rats are usually chosen, although other models besides rats and 
mice, such as New Zeland white rabbits, Guinea pigs, or Tree shrews, have also been used[60]. Rabbits, 
and many non-rodent models like pigs, have the important advantage of longer pre-pubertal stages, 
which allow them to mimic the subclinical NAFLD situation in children with greater precision than 
would be possible with mice or rats[59,62]. Also, pigs are anatomically and metabolically more similar 
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Table 1 Summary of existing rodent models of non-alcoholic fatty liver disease

Rodent models Obesity Insulin resistance Steatosis NASH Fibrosis HCC
Dietary

Deficient diet

MCD No Hepatic IR Yes Yes Yes No

CDAA No No Yes Yes Yes Yes

High-amount diet

HFD Yes Yes Yes Yes Yes No

HFHS Yes Yes Yes Yes Yes No

High fructose diet No Yes Yes No No No

HFHC Yes Yes Yes Yes Yes No

Atherogenic diet 
(cholesterol + cholate)

No Hepatic IR Yes Yes Yes No

Cafeteria diet or Western 
diet

Yes Yes Yes Yes No -

ALIOS Yes Yes Yes Yes Yes Yes

AMLN Yes Yes Yes Yes Yes No

DIAMOND Yes Yes Yes Yes Yes Yes

Genetic

ob/ob Yes Yes Yes No No No

db/db Yes Yes Yes No No No

KK-Ay Yes Yes Yes No No No

foz/foz Yes Yes Yes No No No

fa/fa Yes Yes Yes No No No

PTEN knockout No No Yes Yes Yes Yes

PPAR-α knockout No No Yes No No No

SREBP-1c transgenic No Yes Yes No No No

Chemicals

Tetracycline No No Yes Yes Yes -

CCl4 No No Yes Yes Yes Yes

TAA - - Yes Yes Yes Yes

STZ - - - Yes - -

DMN - - No Yes Yes Yes

DEN No - Yes Yes Yes Yes

Porphyrinogenic agents 
(DDC or GF)

- - Yes Yes - -

MSG Yes Yes Yes Yes No Yes

Tunicamycin - - Yes Yes - -

Surgical

CBDL - - Yes Yes Yes -

Combined models

ob/ob + MCD diet Yes - Yes Yes No No

db/db + MCD diet Yes Yes Yes Yes Yes No

HFD + thermoneutral 
housing at 30 ºC

- - - Yes Yes -
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HFD + CCl4 No - Yes Yes Yes Yes

HFD + DEN Yes - Yes Yes Yes Yes

CDAA + CCl4 No - Yes Yes Yes Yes

STAM model No - Yes Yes Yes Yes

ALIOS: American lifestyle-induced obesity syndrome model (high-fat + trans-fat + fructose); AMLN: Amylin liver NASH model; CBDL: Common bile duct 
ligation; CCl4: Carbon tetrachloride; CDAA: Choline-deficient, L-amino defined diet; DDC: 3,5-diethoxycarbonly-1,4-dihydrocollidine; DEN: 
Diethylnitrosamine; DIAMOND: Diet-induced animal model of non-alcoholic fatty liver disease mice; DMN: Dimethylnitrosamine; GF: Griseofulvin; HCC: 
Hepatocellular carcinoma; HFD: High-fat diet; HFHC: High-fat high-cholesterol diet; HFHS: High-fat high-sugars diet (mainly fructose or sucrose); MCD: 
Methionine and choline deficient diet; MSG: Monosodium glutamate; NASH: Non-alcoholic steatohepatitis; STZ: Streptozotocin; STAM: Stelic animal 
model of NASH (STZ + HFD); TAA: Thioacetamide.

to humans than rodent models. Nonetheless, these non-murine species have some drawbacks, such as 
they involve more complicated and less generally established genetic approaches, and housing larger 
animals can be more difficult from a logistic and economic point of view[59]. Models of smaller size and 
shorter lifetimes than mice and rats have also been explored. For example, use of zebrafish as a NAFLD 
model is recently increasing an inexpensive model in which NAFLD develops quickly[63].

Despite the wide variety of models, rodents are still the preferred species for experimental NAFLD 
research because of their small size, ease of maintenance, short life span, and available genetic resources. 
The current rodent models used in NAFLD can be stratified into five main groups, depending on the 
disease inducer: dietary, genetic, chemical, surgical, and combined (mix of different models). 
Pathological characteristics of these rodent models are summarized in (Table 1).

Dietary models
Dietary models, which can be classified as deficient or high amount diets, are an excellent option for 
studying NAFLD disease. Deficient diets are not generally found in humans, as they are based on 
absence of essential elements. However, in animals, methionine and choline-deficient diet (MCD) or 
choline-deficient, L-amino defined diet are effective in generating liver damage[64,65]. The diets most 
closely resembling humans experience are the high amount calorie diets with an excessively high 
amount of specific nutrients, mainly fats and sugars[9,57,59,66]. Different diets can be defined by the 
high concentration of nutrients or how they are combined. Among these are high-fat diets, high-
cholesterol and cholate diets (atherogenic diet), high-fat high-cholesterol diets, high-sugar diets based 
on fructose or sucrose, and high-fat high-sugar diets. Their effects on NAFLD development are shown 
in (Table 1). Lastly, there are different animal models of NAFLD based on diets that promote NASH in a 
short period: (1) American lifestyle-induced obesity syndrome model (ALIOS model); (2) Amylin liver 
NASH model (AMLN model); and (3) Diet-induced animal model of NAFLD mice (DIAMOND model)
[57]. The ALIOS model is based on a high-fat diet (45% fats, 2% trans fats), drinking water with fructose 
and glucose, and a sedentary behavior (cages without wire racks), promoting obesity[67]. The AMLN 
model is based on a high-fat (40% fats, 18% trans fats), high-fructose (22%) and cholesterol (2%) diet[68,
69]. ALIOS and AMLN are very similar, but with different fat percentages, and in the AMLN model 
fructose is given in pellet form rather than in drinking water[68]. A variant of the AMLN model called 
the Gubra amylin NASH (GAN) diet is currently used, with the same composition, but trans-fat-free 
diet and with increased saturated fatty acids[70]. The DIAMOND model is based on a high-fat (42%), 
high-carbohydrate and cholesterol (0.1%) diet but with an added high-fructose and glucose solution
[71]. All these models are modified Western or Cafeteria diets (combination of fat and sugars) 
presenting more or less the same composition but in different proportions[63,72].

Genetic models
Genetic models allow us to study genetic and pathophysiological consequences of alterations in certain 
genes potentially involved in NAFLD development. These models are based on mechanistic hypotheses 
and have the main limitation that every specific mutation in a single gene is not usually found in 
humans[9]. Nevertheless, they provide two major advantages over other models: first, the means to 
study disease mechanisms in NAFLD, and second, the opportunity to improve our knowledge of a 
specific mechanism in the disease models[73]. Nowadays, genetic engineering tools have facilitated 
generation of transgenic animals and knockouts, either by commercial houses or in academic 
laboratories[62,73-75]. There are many genetic models for NAFLD, each one based on different 
pathways affected in the disease[76]. The genetic models most commonly used in the study of NAFLD 
are reported in (Table 1).

Chemical models
The most widespread chemical models for studying NAFLD are those based on liver damage through 
tetracycline, carbon tetrachloride (CCl4), thioacetamide (TAA), and streptozotocin[9,65]. These models 
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can produce significant liver damage depending on the experimental exposure time (days, weeks, or 
months) and the dose delivered, but in the focus is generally, on producing liver steatosis and fibrosis
[63,65,74,77]. Treatment with the chemicals diethylnitrosamine (DEN) or dimethylnitrosamine (DMN) is 
typically used to induce HCC and the approach may be too aggressive for studying NAFLD alone[56,60,
74]. The porphyrinogenic agents (3,5-diethoxycarbonyly-1,4-dihydrocollidine (DDC) and griseofulvin 
(GF) and the chemical monosodium glutamate (MSG) are less often used but can also induce steatosis 
and NASH[78]. The chemical Tunicamycin produces ER stress in the hepatocytes which can in turn 
induce steatosis[79,80]. Overall, chemical models represent a faster and more dramatic way to study 
liver damage, but the disease initiation and progression bears less resemblance to human NAFLD than 
diet or genetic models.

Surgical models
Hepatobiliary system surgery can induce NAFLD in experimental models. The most common surgical 
model is Bile Duct Ligation (BDL), which is used to produce fibrosis, cirrhosis and as a consequence, 
liver failure in rodents[65,74,81]. BDL can be performed in mice and rats[65], but this model is difficult 
to implement in mice, as several surgical complications can arise[56]. Surgical models are the least used 
models of NAFLD because of their complexity and lack of similarity to human NAFLD.

Combined models
Genetic models do not usually develop NASH, fibrosis, or HCC spontaneously, so they are often 
supplemented with diet to achieve worse liver damage[9,57,62]. This is also the case with chemical 
models, in which the dose for inducing liver damage is often too aggressive but combining a low dose 
with some NAFLD-inducing diet modifications can help producing a model that progresses at a slower 
pace, which allows detection of the different stages of NAFLD progression[60,65,66,77]. These combined 
models genetic plus diet or chemical plus diet, are also a common option for studying NAFLD[76].

METABOLOMICS IN NAFLD RODENT MODELS
Currently, liver function is routinely controlled by blood analysis in which clinicians test for transam-
inases, albumin, platelets, bilirubin and clotting factors. Patients presenting abnormal levels of these 
parameters, especially transaminases, and whose medical history reveals risk factors for diabetes, 
obesity or metabolic syndrome, undergoes a non-invasive imaging method, mainly ultrasonography 
and elastography, to confirm the presence of steatosis and fibrosis in the liver. If the result is positive, 
the NAFLD fibrosis score and FIB-4 index scores can be applied. Depending on the score, patients are 
classified as at low, medium or high risk of fibrosis. The goal of these imaging methods is to detect 
whether fibrosis is present, due to the different follow-up required in patients with fibrosis. An invasive 
imaging method, biopsy, is performed on those with a high risk of fibrosis or with an unclear diagnosis 
under non-invasive imaging methods[8,82-84]. Nowadays, biopsy remains the gold-standard for 
diagnosis of hepatic steatosis, NASH and fibrosis, as histology confirms tissue damage[7,8]. Biopsy has a 
relatively high incidence of false negatives, since the fragment finally analyzed only represents about 
1/50000 of the organ and analysis may vary between pathologists[7]. Moreover, non-invasive imaging 
methods also present disadvantages. Steatosis can only be detected at over 30% and these methods 
cannot determine whether NASH is present[85,86]. We are still far from achieving the main objective: 
NAFLD prevention and a rapid diagnosis. New non-invasive diagnostic methods are needed, and one 
alternative could be use of metabolomics in the search for new biomarkers.

Personalized medicine has become a fundamental strategy in the future of healthcare. The possibility 
of tailor-made treatments for patient groups will help streamline healthcare costs and enhance efficacy 
and safety of interventions. The transition to a personalized medicine model has been facilitated by 
recent advances in "omics" technologies that are allowing the degree of personalization in the diagnosis 
and treatment of different diseases to be increased to levels unimaginable just a few years ago[87]. 
Metabolomics is an emerging research area and can be considered, at a biochemical level, as the end of 
the “omic” cascade since changes in the metabolome constitute the organism's last response to genetic, 
chemical and environmental alterations[63].

Small biochemicals are the end products of all the regulatory processes present in a cell, tissue, or 
organism, including transcriptional and translational regulation and posttranslational modifications. 
Consequently, metabolic changes are among the best reporters of the organism's response to a disease 
process. The application of metabolomics to the study of metabolic diseases may increase our 
understanding of the pathophysiological processes involved, and thus help us to identify potential 
biomarkers. The identification and quantification of these low molecular weight molecules define the 
metabolic phenotype of these diseases and studying the metabolic changes that occur in response to 
different pathophysiological processes may help establish the mechanisms underlying the disease.

Metabolites can be measured in several body fluids or tissues, although plasma and urine are the 
most frequently used samples in metabolic research, they are readily available and have clinical 
relevance as a source of potential biomarkers. Almost all cells in the body communicate with plasma, 
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either directly or through different tissues and biological fluids, releasing at least part of their 
intracellular content. By contrast, urine is produced by renal filtration of plasma and is widely 
considered to be among the most important samples for diagnosis as it contains not only many plasma 
components but also the catabolic products of different metabolic pathways.

Metabolic fingerprinting and metabolic profiling are two different approaches to the study of 
metabolites in biological samples. Metabolic fingerprinting does not aim to identify the entire set of 
metabolites but rather to compare patterns or fingerprints of metabolites that change in response to a 
disease state, pharmacological therapies, or environmental alterations. This approach can be used as a 
diagnostic tool to evaluate the disease state by comparing healthy controls and disease subjects. 
Nonetheless, qualitative and quantitative analyses are required to understand the mechanisms 
underlying a disease. Metabolite profiling focuses on the analysis of a group of metabolites related to a 
specific metabolic pathway. In this approach, target metabolites are selected beforehand and are 
assessed using specific analytical methods.

The analytic techniques used to study the metabolome are mass spectroscopy (MS), nuclear magnetic 
resonance (NMR), or a combination of both[88,89]. Each technique has its own strengths and 
weaknesses[88,90]. An advantage of NMR technique, is that it can be used to study tissues, including 
liver, without destroying the sample with the proton high-resolution magic-angle spinning probe (HR-
MAS)[90,91].

Metabolomics is a very powerful tool for the study of metabolic diseases[90,92], yet applications of 
metabolomics to NAFLD is an understudied area. Nonetheless, some studies demonstrate the 
importance of measuring metabolites for better characterization of the disease. NAFLD is a metabolic 
illness, hence metabolomics as a technique offers the opportunity to better understand the metabolic 
alterations in NAFLD progression[87,92,93] and patient stratification[89]. MS and NMR have been used 
to study NAFLD progression in rodent models. Articles yielded from the keyword search using the 
term "metabolomics" and "rodent models" are shown in (Table 2). Metabolomics studies have been 
carried out in dietary, chemical, genetic and combined models of NAFLD. Including metabolic 
alterations could broaden the search for specific metabolomics biomarkers which would help in disease 
diagnosis.

Despite the diversity of models used in previous metabolomics studies on NAFLD rodent models 
(Table 2), some common findings can be extracted. Fatty acids are stored as triacylglycerols in the liver 
when not catabolized by β-oxidation. Consequently, fatty liver seems to be a rearrangement of lipids in 
the liver and not just fat storage. Most studies in liver tissue of rodent models have revealed massive 
accumulation of triacylglycerols (see liver extract studies in Table 2). The well-known adipocyte origin 
of some of these triacylglycerols suggests AT as a potential source of triacylglycerols deposited in the 
liver in NAFLD. Furthermore, almost all studies in NAFLD rodent models report alterations in other 
metabolites like glucose, lactate, pyruvate, and alanine, suggesting that NAFLD is involved in cytosolic 
glycolysis and oxidative stress[97,112,119]. Metabolism of branched-chain amino acids also seems to be 
altered in NAFLD. A previous study including human subjects and animal models in the context of 
hepatic insulin resistance demonstrated a link between BCAA and the tri-carboxylic acid cycle[106,108]. 
The integration of findings in human and rodent model studies seems very complex. In a translational 
human-animal study, Han et al[123] studied the progression of fatty liver and liver steatosis, finding 
changes in metabolic networks related to amino acids and bile acids. However, these results were 
significantly different between animals and humans. Among others, taurine, a well-known amino acid 
with protective and antioxidant properties, was increased in humans but not in rat models. Finally, 
consistent finding in different rodent and human studies on NAFLD is an increased level in serum of 
bile acids, important molecules which signal many processes in the liver and are involved in lipid and 
glucose homeostasis.

CONCLUSION
NAFLD is the most prevalent liver disease worldwide. Approaches from different perspectives have led 
to increased insight into many aspects of the disease. Knowledge of the disease has increased with the 
use of animal models, especially those in rodents. Although, the perfect animal model does not exist, 
some models perfectly mimic several aspects of NAFLD development and have become very useful 
tools to address the disease in the search for biomarkers of the early reversible stages. Studying 
metabolism in these models provides a direct reflection of what happens inside the cell. Metabolomics 
seems an important tool for studying metabolic pathways and crosstalk between organs affected in 
animal models of NAFLD, and for identifying and validating relevant biomarkers with biological 
understanding.
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Table 2 Studies related to “non-alcoholic steatohepatitis”, “rodent models” and “metabolomics”

Rodent model Produced by Animals used Biological sample Platform used Ref.

Dietary HFD C57BL/6 mice. 6-wk-old Liver extract and 
serum

UPLC-QTOF-MS and 
GC-MS

Kim et al[94]

HFD and Paigen diet BALB/c mice. 6-wk-old Liver extract and urine 1H-NMR Klein et al[95]

HFD and HCD C57BL/6N mice. 6-wk-old Urine 1H-NMR Jung et al[96]

HFD and HCD Wistar rats. 6-wk-old Liver extract 1H-NMR Bertram et al[97]

HFD C57BL/6S1ac mice. 4-wk-old Urine 1H-NMR and UPLC-
QTOF-MS

Li et al[98]

HFD C57BL/6J mice. 6-wk-old Serum UHPLC-QTOF-MS 
and GC-MS

Lai et al[99]

High-fructose and 
saturated fatty acid  diet

Sprague-Dawley rats Liver extract HR-MAS and 1H-
NMR

Tranchida et al[100]

HFHCC diet C57BL/6J mice. 8-wk-old Liver extract and 
plasma

GC-TOF MS and 
CSH-QTOF MS

Tu et al[101]

HFD Sprague-Dawley rats. 4-6-
wk-old

Liver extract LC-MS Wan et al[102]

HFD Sprague-Dawley. 6-wk-old Urine and feces 1H-NMR Chen et al[103]

MCD C57BL/6J mice. 8-wk-old Feces GC-MS Ye et al[104]

HFD Swiss albino mice Serum and feces 1H-NMR Carvalho et al[105]

High fat-sucrose diet Sprague-Dawley rats. 6-wk-
old

Serum HPLC-QTOF-MS Xu et al[106]

MCD and atherogenic 
diet

C57BL/6J mice. 10-wk-old Liver extract MS Montandon et al[107]

HFD Sprague-Dawley rats. 6-8-
wk-old

Serum LC-MS Cui et al[108]

HFD Sprague-Dawley, Fisher 344 
and Brown-Norway rats. 5-
wk-old

Liver extract LC-MS Boyce et al[109]

Genetic Db/db mice C57BL/6J mice. 10-wk-old Liver extract 1H-NMR and UPLC-
QTOF-MS

Kim et al[110]

Ob/ob mice B6.Cg-Lepob/J mice. 8-wk-
old

Liver extract HR-MAS and1H-
NMR

Gogiashvili et al[111]

Chemical DEN Sprague-Dawley rats. 4-wk-
old

Liver extract 1H-NMR Wang et al[112]

CCl4 Wistar rats Plasma UPLC-QTOF-MS Li et al[113]

CCl4 Sprague-Dawley rats. 4-wk-
old

Urine GC-TOF MS Jiang et al[114]

CCl4 Wistar rats Liver extract GC-MS Song et al[115]

CCl4 Sprague-Dawley rats Urine 1H-NMR Wu et al[116]

CCl4 Wistar rats Urine GC-MS Fang et al[117]

CCl4 Sprague-Dawley rats. 1-yr-
old

Serum and urine UPLC-QTOF-MS Chang et al[118]

CCl4 Sprague-Dawley rats. 7-wk-
old

Serum 1H-NMR Li et al[119]

CCl4 Sprague-Dawley rats Serum 1H-NMR Liu et al[120]

DEN Sprague-Dawley rats.  6-wk-
old

Serum 1H-NMR Yang et al[121]

Combined model Combined (genetic + 
dietary) with HCD

Acyl knockouts mice on a 
C57BL6/J background. 4-
wk-old

Serum LC-MS Zhao et al[122]
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CCl4: Carbon tetrachloride; CSH-QTOF MS: Reverse-phase lipid chromatography-quadrupole/time-of-flight mass spectrometry; DEN: Diethylnitrosamine; 
GC-MS: Gas chromatography-mass spectrometry; GC-TOF MS: Gas chromatography-time-of-flight mass spectrometry; HCD: High-carbohydrate diet; 
HFD: High-fat diet; HFHCC: High-fat, high cholesterol, cholate diet; HPLC-QTOF-MS: High-performance liquid chromatography quadrupole time of 
flight mass spectrometry; 1H-NMR: Proton nuclear magnetic resonance; LC-MS: Liquid chromatography-mass spectrometry; MCD: Methionine, and 
choline-deficient diet; MS: Mass spectroscopy; UPLC-QTOF-MS: Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry.
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