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Abstract
Aberrant epigenetic alterations play a decisive role in cancer initiation and 
propagation via the regulation of key tumor suppressor genes and oncogenes or 
by modulation of essential signaling pathways. Autophagy is a highly regulated 
mechanism required for the recycling and degradation of surplus and damaged 
cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy 
has a divergent role. For instance, autophagy elicits tumor promoting functions by 
facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and 
cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these 
cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, 
metastasis, and resistance to anti-cancer therapies. In addition, recent studies have 
demonstrated that various tumor suppressor genes and oncogenes involved in 
autophagy, are tightly regulated via different epigenetic modifications, such as 
DNA methylation, histone modifications and non-coding RNAs. The impact of 
epigenetic regulation of autophagy in cancer cells and CSCs is not well-
understood. Therefore, uncovering the complex mechanism of epigenetic 
regulation of autophagy provides an opportunity to improve and discover novel 
cancer therapeutics. Subsequently, this would aid in improving clinical outcome 
for cancer patients. In this review, we provide a comprehensive overview of the 
existing knowledge available on epigenetic regulation of autophagy and its 
importance in the maintenance and homeostasis of CSCs and cancer cells.

Key Words: Autophagy; Cancer stem cells; Cancer cells; Epigenetics; Histone remodeling; 
DNA methylation; Non-coding RNA
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Core Tip: Cancer stem cells are a distinct population in the tumor bulk with enhanced 
self-renewal capability. Autophagy primarily exerts oncogenic activity and adaptive 
signals during cancer progression. Similarly, epigenetic modifications display a crucial 
role in tumor initiation and cancer development through its regulation of tumor 
suppressor genes and oncogenes. Emerging studies report epigenetic modifications 
regulate autophagy and metabolic pathways promoting tumor growth, elicit 
immunosuppressive activity and contribute to therapy resistance. Therefore, 
understanding this complex signaling patterns can theoretically lead to a more efficient 
and targeted cancer treatment.
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INTRODUCTION
Autophagy has been described to be a “self-eating” function. Autophagy is a tightly 
regulated catabolic process involved in the degradation of damaged organelles and 
misfolded proteins. The generated intermediate metabolites, such as free fatty acids, 
serve as an energy supply for cellular components, thus, supporting cellular 
homeostasis and differentiation[1]. Autophagy is activated by a multitude of environ-
mental factors, including hypoxia, nutrient availability, DNA damage, oxidative stress, 
inflammation, and infections[2-6]. Defective autophagy has been associated to several 
pathological conditions, including inflammatory disease and cancer[7]. In cancer, 
autophagy has a context dependent role in disease initiation and propagation[8].

The orchestrated events of autophagy lead to the lysosome fusion for degradation. 
Three distinct forms of autophagy exist: microautophagy, chaperone mediated 
autophagy (CMA), and macroautophagy. Microautophagy is a poorly understood 
process. In mammalian cells, microautophagy is involved in the direct internalization 
of the cytosolic substrates through indentation of the lysosomal membrane. This 
resembles the formation of the late endosomes multivesicular bodies[9]. CMA is a 
form of selective autophagy. CMA targets substrates encoded with a specific 
pentapeptide sequence (KFERQ-like motifs). Cytosolic chaperones recognize these 
proteins and bind to the sequence. This interaction promotes the translocation of the 
cargo protein to the lysosomal membrane and bind to lysosomal associated membrane 
protein 2A (LAMP2A). This interaction will eventually facilitate degradation[10]. In 
contrast, macroautophagy (herein referred to as autophagy) is involved in the 
clearance of bulk cargo. In this instance, double membraned vesicles called autopha-
gosomes, sequester their cytoplasmic cargo and fuse with the lysosome for the 
breakdown of the intracellular components. The biogenesis of the autophagosomes is a 
hallmark of autophagy[11,12]. The formation of the autophagosomes proceeds in 
multiple stages: initiation, elongation, and maturation. Thereafter, the autophagosome 
fuses with the lysosomes (Figure 1).

THE FORMATION AND MECHANISM OF CANONICAL AUTOPHAGY
A consensus of studies indicate that the autophagosome membrane originates from 
the mitochondria and the endoplasmic reticulum (ER)[13]. However, emerging studies 
implicate additional cellular compartments that act as autophagy contact sites, such as 
the plasma membrane, Golgi and recycling endosomes[14-16]. These sites contribute to 
the expansion of the nascent autophagosome. The process of autophagy is governed 
by autophagy related genes (ATGs).

Nutrient sensing and amino acid availability are finely regulated by mammalian 
target of rapamycin (mTOR) and 5’ adenosine monophosphate activated protein 
kinase (AMPK). It is generally assumed that under glucose deprivation, the mTOR 
pathway is inhibited; whereas, increased amino acid availability and the promotion of 
cellular anabolism inhibits autophagy by activating mTOR[17,18]. Both pathways 

https://www.wjgnet.com/1948-0210/full/v13/i6/542.htm
https://dx.doi.org/10.4252/wjsc.v13.i6.542


Mandhair HK et al. Epigenetic regulation of autophagy in cancer

WJSC https://www.wjgnet.com 544 June 26, 2021 Volume 13 Issue 6

Figure 1 Role of autophagy in cancer cells and cancer stem cells. Autophagy is a multifaceted pro-survival mechanism that supports the proliferation, 
growth, and stemness of cancer stem cells (CSCs). Autophagy facilitates CSCs plasticity by promoting immunosuppression, therapy resistance, metastasis, and 
invasion of CSCs. Several autophagy-related genes (ATGs) aid in the development, maturation and closure of the autophagosome (the ATG related signaling has 
been exhaustively discussed in our previous review; this figure has been adapted accordingly)[8,12]. CC: Cancer cell; ER: Endoplasmic reticulum; PE: 
Phosphatidylethanolamine; PI3P: Phosphatidyl-inositol-3-phosphate; TIL: Tumor-infiltrating lymphocytes; TME: Tumor microenvironment; WIPI: WD-repeat domain 
phosphoinositide-interacting protein.

converge on unc-51-like kinase 1 (ULK1). Under nutrient rich conditions, the ULK1 
complex is bound to mTOR and remains inactive[17,18].

The initiation of autophagy requires the activation of the ULK1 complex consisting 
of ULK2, FAK family kinase interacting protein of 200 kDa (FIP200), ATG13 and 
ATG101. This is followed by translocation to the ER and the phosphorylation of class 
III phosphatidylinositol-3-kinase vacuole protein sorting (VPS) 34 (VPS34/PI3KC3) 
complex, composed of VPS15, Beclin-1 (BECN1) and ATG14. This complex is also 
referred to as the BECN1 complex. The activation of these complexes generates a 
reservoir of phosphatidyl-inositol-3-phosphate (PI3P)[19]. ATG9 positive vesicles on 
ER contribute to the autophagosome nucleation. PI3P enriched membranes recruit 
effector proteins, such as WD-repeat domain phosphoinositide-interacting protein-2 
(WIPI-2) and double FYVE-containing protein 1 (DFCP1)[20,21].

Furthermore, WIPI-2 promotes the expansion of the phagophore which assists in the 
recruitment of two conjugation systems[22]. The first conjugation complex is the 
covalent conjugation of ATG12-ATG5-ATG16L proteins by ATG7 and ATG10. The 
second conjugation system functions as an E3-like ligase, mediated by ATG12 and 
ATG5; assisting in the attachment of ATG8 family member microtubule associated 
proteins 1A/1B light chain (LC3) to phosphatidylethanolamine. The membrane bound 
LC3 matures and expands the autophagosome. Prior to the closure of the matured 
autophagosome, the ATG proteins dissociate from the autophagosome membrane, 
leaving the lipidated LC3 (LC3B protein, MAP1LC3B gene encoding) inside the 
autophagosome[23] (Figure 1).

Proteins comprising an LC3-interacting region interact with LC3 and serve as cargo 
receptors to target defined structures. Cargo receptors like sequestisome-1 (SQSTM1, 
also known as p62) and neighbor of BRCA1 facilitate the degradation of misfolded and 
ubiquitin-positive proteins[24]. LC3B and SQSTM1 are referred as the gold standard of 
measuring autophagy[25].

The formation of the autophagosome without the hierarchical activity of the core 
autophagy proteins is referred to as non-canonical autophagy. Limited information is 
currently available characterizing these alternative mechanisms[8].
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TRANSCRIPTIONAL REGULATION OF AUTOPHAGY
Transcription factor EB (TFEB) plays a crucial role in lysosome biogenesis and 
autophagy by modulating the coordinated lysosomal expression and regulation (
CLEAR) gene network[26]. TFEB belongs to the microphthalmia family of basic helix-
loop-helix-leucine-zipper (bHLH-Zip) transcription factors (MiT family), including, 
transcription factor E3 (TFE3) and transcription factor EC[27]. These transcriptional 
factors are commonly dysregulated in cancer[27,28]. Nutrient sufficient conditions 
promote the phosphorylation at serine amino acids 142 and 211 in TFEB or at Serine 
321 in TFE3 mediated by mTOR or extracellular signal regulated kinase-2 (ERK2). 
These proteins then translocate into the cytosol by 14-3-3 proteins and remain inactive
[29-32]. In contrast, under starvation, lysosomal calcium is released, activating 
calcineurin, which triggers TFEB dephosphorylation, and nuclear translocation[33,34]. 
TFEB binding has been found to be enhanced under starved conditions as the 
promoters of autophagy core genes contain TFEB binding sites, including, UVRAG, 
WIPI, MAP1LC3B, SQSTM1, VPS11, VPS18 and ATG9B[35]. In contrast, zinc finger 
transcription factor (ZKSCAN3) has been identified as a master transcriptional 
repressor of autophagy[36]. Bladder cancer cells (UM-UC13) and colon cancer cells 
(RKO) transiently transfected with streptavidin flag tagged ZKSCAN3 vector was 
treated with Rapamycin (mTOR inhibitor) this downregulated LC3B protein 
expression. Thus, indicating the mTOR-TFEB/MiT family-ZKSCAN3 transcriptional 
axis is tightly regulating autophagy[37].

Nuclear factor kappa-B (NF-κB) is a crucial signaling pathway and exerts predom-
inately pro-survival regulation of several biological functions, for example, immune 
responses, inflammation, cellular proliferation, differentiation, and anti-apoptotic 
functions. To the contrary, NF-κB activation facilitated apoptosis by upregulating BAX 
in breast cancer cells[38,39]. Indeed, this action required the nuclear translocation of 
RELA/p65 to initiate the relocalization of nucleophosmin to the cytoplasm. In 
consequence, this stimulated the mitochondrial localization of BAX, independent of 
NF-κB transcriptional activity[40]. These findings reveal a context dependent role for 
NF-κB.

Emerging studies report a reciprocal crosstalk between NF-κB and autophagy. 
Notably, under nutrient deprived conditions, the expression of autophagic genes Lc3, 
Atg5 and Becn1 were found to be increased in an IKK dependent phosphorylation of 
the p85α regulatory subunit of PI3K[41,42], which led to Akt and mTOR inhibition
[42]. In contrast, in PTEN null prostate cancer cells, IKKα mediated mTOR activation 
resulted in autophagy suppression[43]. Interestingly, prolonged starvation promoted 
the accumulation of non-canonical NF-κB p52. These findings suggest the IKK 
complex is an essential mediator of autophagy and participates in the regulation of 
ATGs[41].

Furthermore, loss of IKKα in pancreatic acinar cells resulted in the accumulation of 
ubiquitinated proteins aggregating SQSTM1, with subsequent autophagy impairment 
and ER stress[44]. Moreover, knockdown of SQSTM1 in IKKα deficient pancreatic 
acinar cells ameliorated pancreatitis, reduced oxidative stress and ER stress markers
[44]. These findings demonstrate a crucial interaction between IKKα, autophagy and 
ER. Interestingly, RELA/p65 regulates BECN1 transcription as it can bind to BECN1 
promotor in T cells and induce autophagy[45]. Indeed, human T cell leukemia virus 
type 1 (HTLV-1) transformed T cells expressing retroviral oncoprotein TAX required 
BECN1, ATG5 and PI3KC3 to maintain constitutive activation of IκB kinase (IKK)/NF-
κB and Stat3[46].

In mantle cell lymphoma (MCL), it has been reported that transglutaminase 
TG2/NF-κB activation stimulated interleukin 6 (IL-6) dependent autophagy for 
cytoprotection and tumorigenesis. ATG5KO in SP53 and JeKo cell lines proved to inhibit 
these signaling patterns, whilst demonstrating impaired autophagic structures, such as 
autophagosomes and autolysosomes, reduced proliferation rate, decreased chemores-
istance, and increased apoptosis[47]. As expected, increased TG2, p50 and p65 levels 
were observed in MCL patients and correlated with poor prognosis[47]. These findings 
suggest therapeutically targeting TG2/NF-κB/IL-6 and autophagy may prove to be 
beneficial for MCL patients. Similar findings were reported in amino acid and serum 
deprived conditions in HeLa cells. Silencing BECN1 and ATG5 or BECN1 and VPS34 
decreased STAT3 phosphorylation and IL-6 as compared to the control[48].

NF-κB activation in mouse model of Ras induced lung adenocarcinoma requires 
SQSTM1. Sqstm1-/- mice significantly reduced Ras transformed cells in colony 
formation assay and tumor burden. Furthermore, genetic ablation of Sqstm1 impaired 
NF-κB activation as Ras is necessary to stimulate IKK through the poly ubiquitination 
of tumor necrosis factor receptor associated factor 6[49]. As consequence, increased c-
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Jun NH2-terminal kinase (JNK) phosphorylation in the knockdowns promoted the 
reduction of reactive oxygen species (ROS) scavenger FHC. This study identified 
SQSTM1 as a crucial mediator of Ras induced transformed cells. In squamous cell 
carcinoma and melanoma cells, Chloroquine (CQ; lysosomotropic agent) treatment 
induced NF-κB activation, and in turn, increased the expression of hypoxia inducible 
factor 1-alpha (HIF-1α), and IL-8. Additionally, ATG5 and ATG7 knockdown in 
Mel624 melanoma cells decreased NF-κB activation and increased SQSTM1 protein, 
though decreased expression LC3B protein, indicating the loss of autophagosome 
formation. SQSTM1 or JNK knockdown impaired CQ induced IKK phosphorylation, 
NF-κB activation and SQSTM1[50]. It can be postulated that NF-κB signaling pathway 
regulates SQSTM1 levels via a positive feedback mechanism. However, SQSTM1 
knockdown or NF-κB inhibition augmented CQ cytotoxicity leading to apoptosis in 
cancer cells[50]. To the contrary, NF-κB inhibition in macrophages due to IKKβ 
ablation or pharmacological IKKβ inhibitors, can enhance IL-1β secretion and 
mitochondrial damage by reducing SQSTM1 levels. NF-κB activation and SQSTM1 is 
capable of countering excessive inflammatory by suppressing NLR family pyrin 
domain containing 3 inflammasome activation[51]. In this instance, NF-κB activation 
mediates an anti-inflammatory response.

Of note, IKK complex is degraded by autophagy and inhibits NF-κB signaling. For 
instance, Bortezomib (proteasomal inhibitor) promoted the accumulation of poly 
ubiquitinated proteins in diffuse large b cell lymphoma (DLBCL) cell lines. This led to 
CHOP accumulation- an indicator of ER stress and LC3B dependent autophagy[52]. 
CQ treatment in DLBCL cell lines significantly reduced Bortezomib induced IκBα 
degradation and DNA binding activity of NF-κB/cREL and NF-κB nuclear translo-
cation. Moreover, immunofluorescence data revealed accumulation of IκBα/SQSTM1 
aggregation. Furthermore, the synergistic effect of CQ on Bortezomib promoted 
caspase 3 activation preceding apoptosis. These findings were confirmed in primary 
DLBCL and follicular lymphoma cells[52].

CANCER STEM CELLS
Tumorigenic potential in neoplasms is defined by phenotypical and functional hetero-
geneity. The intra-tumoral heterogeneity is a hallmark in cancer initiation, 
chemotherapeutic resistance and, in turn, negatively influences the clinical outcome 
for cancer patients[53]. Multiple factors contribute to this diversity, including, genetic 
mutations, pathologic epigenetic alterations, tumor microenvironment (TME) and the 
presence of cancer stem cells (CSCs; also known as tumor initiating cells)[53-55]. CSCs 
exhibit stem cell-properties with enhanced capabilities to escape immune response, 
self-renew, proliferate and metastasize[53]. In CSCs, the acquisition of genetic 
mutations and atypical epigenetic modifications are key underlying mechanisms 
involved in immunosurveillance and therapeutic resistance[56]. Overall, these factors 
grant CSCs resilience to chemotherapeutics and radiation[56-58]. The presence of CSCs 
have been detected in hematological malignancies[59-61], as well as in multiple solid 
cancers, including, glioblastoma[62], pancreatic[63], breast[64], ovarian[65] and liver
[66].

The role of autophagy in CSCs
Autophagy is a bimodal process with a context dependent role in tumorigenesis 
(Figure 1). In the early stage of tumor formation, autophagy is regarded as a longevity 
and elicits tumor suppressive functions by fostering the clearance of damaged 
mitochondria, preserving cellular integrity by limiting genotoxic stress and tissue 
damage, and decreasing inflammation[67]. During advanced stages of tumorigenesis 
and neoplastic transformation, autophagy deserts the above role and executes 
oncogenic activity by providing adaptive responses towards extracellular stimuli, 
including oxidative stress, hypoxia, and nutrient deprivation. Autophagy provides 
CSCs with recycled bioenergetic substrates for growth, supports migration and 
invasion by modulating the focal adhesion molecules dependent on ATG5 and FIP200
[68]. In addition, autophagy stimulates the secretion of pro migratory cytokines 
through Rho family of small GTPases CDC42, for example, IL-6[69]. For further 
details, we would like to refer to our previous review deciphering the divergent roles 
of autophagy in CSCs and cancer cells[8].

Liu et al[66] reported, PIK3C3 governs the stemness and expansion of CD133+ liver 
CSCs independent of LC3B. Notably, PIK3C3 silencing reduced the protein expression 
of CD133 and NANOG. Overexpression of PIK3C3 increased the number of sphere 
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formation in xenograft model treated with VPS34-IN-1 (PI3KC3 inhibitor), while 
reducing the proportion of CD133+ CSCs, as wells as the tumor formation capability
[66]. Lung CSC stemness is dependent on TP53 signaling. TP53 knockdown prevented 
autophagy inhibition when ATG5 is silenced, suggesting that autophagy requires TP53 
to sustain lung stemness[70]. HIF genes are transcriptionally active under oxygen 
sensing, such as hypoxia. Hypoxia promotes the transcription of pluripotent stem cell 
inducing transcription factors NANOG, SOX2, OCT4, KLF4, MYC in numerous cancer 
models[71,72]. In addition, primary prostate tumors expressing increased NANOG, 
OCT4 and HIF1α markers correlated with increased prostate tumor stage[71]. The 
leukemia stem cells (LSCs) in acute myeloid leukemia (AML) are dependent on ATG5 
expression, an essential protein for basal autophagy. ATG5 knockdown or 3-Methyl-
adenine (3-MA, autophagy inhibitor) demonstrated less proliferative capacity of LSCs 
and an increased proportion of cells in G0/G1 phase in comparison to G2[73]. Breast 
CSCs expressing CD44+/CD24- exhibit stem cell like properties through amplified 
expression of OCT4, NANOG and SQSTM1 genes. Xenograft models with depleted 
SQSTM1, abolished CSCs frequency and tumor growth[74]. The role of autophagy in 
epithelial-mesenchymal transition (EMT) is complex. CD44+/CD24- breast cancer stem-
like phenotype is regulated by ATG5 gene. ATG5 knockdown and CQ treatment 
suppressed Vimentin (an invasion marker) in response to transforming growth 
factor1-β (TGF-1β) and in parallel increased CD24 transcription, and disrupted 
invasion[75]. On the other hand, death-effector domain-containing DNA-binding 
protein (DEDD) abrogated EMT transcriptional factors (SNAIL and TWIST) by 
inducing autophagy through PI3KC3/BECN1 complex and resulted to their 
degradation. Additionally, DEDD acted as a tumor suppressor by inhibiting tumor 
development and metastasis in breast cancer[76].

The role of autophagy in differentiated cancer cells
Primary DLBCL tumors expressing high BECN1 with low B cell lymphoma-2 (Bcl-2) 
correlated with the presence of LC3. This association led to favorable clinical outcome 
of patients[77,78]. Conversely, in gastric cancer, BECN1, LC3 and SQSTM1 substan-
tially correlated with lymph node and hepatic metastasis and invasion. Unlike the 
previous studies, these indicators correlated with poor clinical outcome for patients 
with early-stage disease[79]. Similar findings were observed in patients with non-small 
cell lung cancer (NSCLC)[80]. Autophagy deficiency in triple negative breast cancer 
(TNBC) cells suppressing the trafficking of CD3+/CD28+ T cells within tumors in vivo. 
It can be speculated that autophagy deficiency results to T cell mediated immunosup-
pression. Furthermore, in TNBC patients, a negative correlation was identified with 
CD8+ T cell tumor infiltration and LC3B expression[81]. Moreover, downregulation of 
ATG7 has been reported in TNBC patients, and this correlated with a poor survival 
outcome. Corresponding in vitro findings demonstrated ATG7 overexpression 
impaired proliferation, migration and decreased EMT proteins (e.g., N-cadherin, SMA, 
Vimentin, SNAIL and SLUG) and upregulated E-cadherin, through abrogation of 
aerobic glycolysis metabolism[82].

Notably, autophagy repression improves antigen presentation by augmenting CD8+ 
T cell proliferation and function by attenuating tumor growth in vivo[83]. CQ 
treatment with dual immune-checkpoint therapy (anti-PD1 and anti-CTLA-4 
antibodies) led to enhanced anti-tumoral activity by elevating the immune response. 
Therefore, it can be elucidated that pronounced autophagy degrades MHC-I to 
promote immune evasion[83].

Interestingly, autophagosomes containing cytoplasmic cargo and tumor specific 
antigens that fail to fuse with the lysosome are released into the extracellular milieu by 
cells under stressful conditions, including, hypoxia[84]; this is termed as tumor cell-
released autophagosomes (TRAPs)[85,86]. In colorectal cancer and invasive 
melanomas, abundance of autophagosomes were reported and were associated with 
tumor cell proliferation, malignancy, and poor clinical outcome[87,88]. TRAPs 
harvested from supernatant of tumor cells or malignant effusions or ascites of cancer 
patients expressed LC3B positive autophagosomes accompanied with HMGB1 
expression[84,86]. HMGB1 is a pro autophagic protein that directly interacts with 
BECN1 by displacing Bcl-2[89]. TRAPs promoted B cell differentiation into IL-10 
producing regulatory B cells (B regs)[86]. TRAPs were reported to polarize monocytes 
to M2- like phenotype and enhance programmed death ligand-1 (PD-L1), CD163 and 
IL-10 levels with poor HLA-DR (MHC-II cell surface receptor) expression[90]. TRAPs 
elicit further immunosuppressive functions by diminishing CD4+ and CD8+ T cell 
proliferation and suppress interferon-gamma secretion; thus, promoting tumor growth 
and metastasis[86,90-92].
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EPIGENETIC REGULATION OF CSCS AND CANCER CELLS
Epigenetics is the chemical and physical modification of DNA and chromatin, and 
these changes result in the regulation of gene expression without altering DNA 
sequences. Epigenetics mediate the gene expression via DNA methylation, histone 
modifications and non-coding RNAs (ncRNAs) that modifies the accessibility of the 
chromatin or changes the expression of different genes[93]. Epigenetic modifications 
are stimulated by individual genetic background or environmental factors, and 
therefore, can influence the occurrence of pathological conditions, including, cancer
[93]. As a consequence, detrimental alterations in the epigenome can be the cause, 
mediator or consequence of genomic instabilities and contribute to cancer initiation 
and progression[94,95]. The underlying epigenetic signature in cancer cells is also 
referred to as “epimutation”, and similar to a gene mutation, can lead to unco-
ntrollable cell growth resulting to multiple forms of resistance: growth-inhibiting 
signals, apoptotic, immortalization, angiogenesis, as well as invasion and metastasis
[93].

DNA methylation
DNA methylation is the covalent binding of a methyl group to the 5'-position of 
cytosine, resulting to the formation of 5'-methylcytosine (5mC). It is catalyzed by DNA 
methyltransferase (DNMT) enzymes, which transfer the methyl groups from S-
adenosyl methionine[93]. Methylation predominately affects cytosine nucleotide, as it 
is located next to the guanine on the 5'-side of the sequence, cytosine-p-guanine (CpG). 
DNA sections with high frequency sequences of CpG sites (so-called CpG islands) are 
found in the promoter region of several genes[96,97].

One of the epigenetic characteristics of cancer is genome-wide DNA hy-
pomethylation, leading to the overexpression of oncogenes or causing genome 
instability, whereas, individual tumor suppressors or DNA repair genes are repressed 
by local hypermethylation[96,98,99]. In addition, 5-hydroxymethylcytosine (5hmC) is 
the second most important modification of DNA bases. 5hmC is formed by the 
oxidation of 5mC[100]. The 5hmC content appears to be tissue-specific and is 
associated with the regulation of stem cells pluripotency and carcinogenesis[100].

DNA methylation patterns are plastic. Depending on the degree of cell differen-
tiation; type and age, they vary among individuals and cell types. DNA methylation 
analysis of tumors provides information concerning the transcriptional regulation and 
repression of gene expressions with tumor biological relevance[94,95,101]. Accumu-
lating studies demonstrate that promoter hypermethylation of individual tumor 
entities assign as diagnostic, prognostic, or predictive biomarkers[94,95,98,99,102,103].

Histone remodeling and modifications
The second major mechanism of epigenetic regulation is histone modification, a 
process that controls gene expression patterns by changing the chromatin structure, 
making the DNA and the genes encoded on it accessible to the transcription apparatus
[104,105]. Histones are nuclear proteins that associate with DNA in the nucleus and 
help condense it into chromatin structure. The smallest packaging unit of the 
compressed DNA is named a nucleosome, composed of two of each histone protein 
H2A, H2B, H3 and H4. The remaining histone H1 links the individual nucleosomes
[105]. Histones consist of a globular center and flexible terminal arms (“histone tails”). 
In addition to the histone nuclei, the amino acids in these arms in particular can be 
chemically modified[105]. Beside methyl groups, other chemical tags, such as acetyl or 
phosphate residues or the addition of ubiquitin and similar smaller proteins are 
attached to histones. The result is variable patterns and a regular histone code that is 
interpreted differently by the cell's genetic apparatus[104].

The following modifications are frequently observed: H3K27ac (acetylation of H3 to 
lysine 27), H3K4me1, H3K4me3, H3K36me3, H3K27me3 and H3K9me3 (methyl 
group(s) to lysines)[106]. For instance, specific acetylation of histone H3 (H3K9ac) 
leads to accessibility of the chromatin and increased in the gene expression. In 
contrast, the methylation of the amino acid lysine in histone 3 (H3K27me2 or 
H3K27me3) results in compression of the chromatin with subsequently reduced 
transcription of the affected gene loci[106,107]. By determining these histone modific-
ations, different chromatin states of region can be defined[107]. Histone modifications 
can be subjected to tightening or loose packaging under pathological conditions, 
including, cancer[108,109]. Histones are modified by specific enzymes. Therefore, 
chromatin-modifying enzymes are ideal targets for the development of specific 
inhibitors to modulate atypical histone modifications. Different histone deacetylase 
(HDAC) inhibitors (HDACis) have been approved and are currently effective drug 
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targets in oncology.

ncRNAs
ncRNAs are additional epigenetic regulators[93,110]. This group includes long 
ncRNAs (lncRNAs), comprising of at least 200 nucleotides and mainly regulate the 
expression of target genes. They do this by forming mRNA-riboprotein complexes 
with proteins. These complexes are bound to specific sites in the genome and modify 
those regions[110]. In comparison, short ncRNAs, such as microRNAs (miRNAs), 
consisting of 17-25 nucleotides regulate the expression at the post-transcriptional level
[111]. They bind to the untranslated mRNA region of a target gene and suppress 
mRNA translation through degradation. Alternatively, gene expression is activated by 
an RNA interference mechanism (RNAi), using the RNA-induced silencing complex
[102,111]. Therefore, lncRNAs and miRNAs effect a complex fine-tuning of the gene 
products on various molecular levels and play crucial role in carcinogenesis[112].

EPIGENETIC REGULATION OF AUTOPHAGY IN CSC AND CANCER 
CELLS
Autophagy has been implicated in cancer as an entity governing cancer progression, 
invasion, and metastasis. Additionally, multiple studies have recognized the 
contributory role of DNA methylation, histone modifications and ncRNAs in cancer. 
Recent accumulating reports have unveiled the convergence of autophagy and 
epigenetics in CSCs and cancer cells (Figure 2).

DNA METHYLATION REGULATING AUTOPHAGY
DNA hypomethylation
Autophagy associated genes display oncogenic function due to DNA 
hypomethylation, consequently leading to tumor progression. In ovarian CSCs, 
hypomethylation of ATG4A and histone cluster 1 H2B family member N (HIST1H2BN) 
were identified. Moreover, patients that harbor these genetic characteristics were 
found to have a poor clinical outcomes and survival[113]. Overexpression of ATG4A in 
SKOV3 and CP70 ovarian carcinoma cells demonstrated the tumorigenic functions of 
AT4A. For example, transcription factors associated to the regulation of human 
embryonic stem cells (ESCs) pluripotency, were found to be enhanced, such as, SOX2, 
NANOG, OCT4 and CD44[113]. These findings highlight the function of ATG4 
promoter hypomethylation in ovarian cancer and a rational to target DNA 
methylation in these patients as a therapeutic opportunity[113]. Zhu et al[114] reported 
overexpression ATG7 promoted demethylation of ubiquitin specific peptidase (USP28) 
mediated through TET methylcytosine dioxygenase 1 (TET1), leading to increased 
USP28 expression; resulting to accumulation of CD44 protein that contributed to the 
invasion and lung metastasis of bladder CSCs.

Likewise, promoter hypomethylation of extracellular leucine rich repeat and 
fibronectin type III domain containing 2 (ELFEN2) was reported in patients with an 
astrocytoma, which correlated with increased ELFEN2 expression. Similar associations 
were found in glioma patients. ELFEN2 is a putative oncogene and elicits tumorigenic 
behavior by promoting autophagy via increasing the expressions of BECN1, ATG7, 
ATG3 and LC3B proteins[115]. In lung adenocarcinoma, the promoter of MAP1LC3A 
was found to be hypomethylated and contributed to resistance to epidermal growth 
factor receptor-tyrosine kinase inhibitors by promoting cytoprotective autophagy
[116]. Aberrant DNA methylation has been described to modulate the TME. For 
example, hypomethylation of PIK3R5 was identified in inducible pluripotent stem cells 
conditioned with media of Lewis lung carcinoma[117].

Chen et al[118] reported the anti-tumoral role of autophagy in esophageal squamous 
cell carcinoma (ESCC). Hypomethylation of phospholipase C epsilon 1 (PLCE1) in 
primary ESCC tumors elicited poor clinical prognosis. PLCE1 triggers tumorigenesis 
through autophagy suppression and downregulation of P53 activity and MDM2 
ubiquitination resulting in P53 degradation. PLCE1 silencing induced autophagy and 
subsequently attenuated tumor cell proliferation through P53[118]. Moreover, 
Caveolin-1 (CAV1) has been associated with glucose metabolism. In primary colorectal 
tumors and various corresponding cell lines, an abnormal overexpression of CAV1 due 
to promoter hypomethylation was demonstrated. CAV1 silencing led to the promotion 
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Figure 2 Epigenetic regulation of autophagy in cancer cells and cancer stem cells. Autophagy in cancer cells and cancer stem cells is tightly 
regulated by the dynamic interplay of different epigenetic modifications, such as DNA methylation, histone remodeling and non-coding RNAs. Pathological epigenetic 
changes in cancer can directly regulate autophagy by targeting the core genes or indirectly through the regulatory elements. ER: Endoplasmic reticulum; M: Methyl 
group; TF: Transcription factor.

of autophagy through AMPK and P53 dependent cell cycle arrest[119].

DNA hypermethylation
Promoter hypermethylation is an important causative factor in repressing tumor 
suppressor genes; for example, hypermethylation of BECN1 gene. In primary sporadic 
breast tumors, monoallelic loss of BECN1 was found in 45% of tumors and this loss 
was accompanied with significant promoter hypermethylation[120]. Equally, ATG2B, 
ATG4D, ATG9A and ATG9B promoter hypermethylation was identified in specimens 
of invasive ductal carcinoma. In autophagy, these genes are relevant. For instance, 
ATG2 homologs act as peripheral membrane proteins and are associated to cellular 
nucleation. ATG4D is part of the ATG4 family and is associated in regulating the 
ATG8-LC3 conjugation system. ATG9 protein is a functional orthologue that interacts 
with the phagophore[121]. Genome-wide methylation analysis and bisulfite 
sequencing reported low levels of ULK2 transcripts due to hypermethylation in 
glioblastoma[122]. In NSCLC, promoter methylation of transcription factor 21 is 
associated with repressed autophagy; this negatively correlated with tumor stage, 
metastasis, and invasion[123]. Methylation analysis revealed silencing of  
MAP1LC3Av1 caused by Helicobacter pylori infection in non-cancerous and cancerous 
gastric mucosae cells, which led to impaired autophagy[124]. Equally, MAP1LC3Av1, 
not MAP1LC3B, was frequently inactivated in ESCC due to demethylation and overex-
pression of MAP1LC3Av1 in those cells and exhibited anti-tumoral activity, such as 
decreasing the tumor volume and weight in vivo[125].

In gastric cancer, promoter hypermethylation of tumor suppresser gene KLOTHE 
was identified. Overexpression of KLOTHE engaged in autophagy induction by 
increasing LC3-I/II ratio and decreased the protein phosphorylation of insulin growth 
factor-1 receptor, insulin receptor substrate-1, PI3K, Akt and mTOR signaling, as well 
as apoptosis in gastric cancer cells[126]. Hypermethylation of BCL2/Adenovirus E1B 
19KDa Protein-Interacting Protein 3 (BNIP3) promoter has been reported in human 
colorectal cancer cells. Treatment with demethylating agents, such as 5-aza-2’-
deoxycytidine (DAC) is capable of restoring this BNIP3 via KRAS dependency and 
MAPK kinase activation[127]. GABARAP family members were differentially 
expressed in human breast cancer biopsies, suggesting global aberrant DNA 
methylation. Grade III lymph node-positive breast cancer tissues strongly correlated 
with the downregulation of GABARAPL1[128]. It was determined that nicotinamide 
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N-methyl transferase (NNMT) negatively regulates autophagy. NNMT knockdown 
enhanced liver tumor growth under nutrient deprived conditions through PP2A 
methylation and decreased the ULK1 activity augmenting protective autophagy[129]. 
ATG5 promoter was hypermethylated in melanoma and was associated with 
suppressed basal autophagy, hence, promoting oncogene induced cell proliferation in 
primary epidermal melanocytes[130].

HISTONE REMODELING AND MODIFICATION REGULATING AUTOPHAGY
Histone deacetylation/acetylation
Several findings report core autophagy-related genes could be silenced via histone 
deacetylations[131]. In human and mouse CSCs, HDAC enzyme activity has been 
suggested to function as a pluripotent factor. Pharmacological inhibition or 
knockdown of HDAC6, inhibited CSCs proliferation and reduced the protein levels of 
POU5F1, NANOG and SOX2 (pluripotent factors) in human NT2/D1 and murine P19 
embryonic carcinoma CSCs[132]. HDAC6 silencing led to the activation of autophagy 
with increased proteins levels of ATG5, ATG7 and decreased SQSTM1. ATG7 and 
ATG12 knockdown NT2/D1 decreased HDAC6 protein levels and promoted differen-
tiation. In comparison, HDAC6 silencing, downregulated autophagy and promoted 
apoptosis in differentiated breast cancer cells[132]. These findings are indicative of the 
discriminatory role of HDAC6 in the maintenance of CSCs, as well as differentiated 
cancer cells. Similarly, glioma CSCs expressing increased levels of HDAC6 contributed 
to their stemness[132,133]. Chemotherapy and radiotherapy resistance is often 
mediated by the stemness characteristic of CSCs and is an important prognostic factor 
in various tumors. Yang et al[133] indicated HDAC6 inhibition rendered the 
transcription of SHH signaling pathway, decreased glioma CSCs neurosphere 
formation and protein expression of SOX2 and BMIL1, suggesting the induction of cell 
differentiation. Subsequently, HDAC6 knockdown resulted to radiosensitivity in 
glioma CSCs[133]. HDAC6 silencing achieved radio sensitization through the 
activation of BECN1; however, autophagy inhibition through 3-MA countered this 
phenomenon[134]. It can be proposed that HDAC6 promotes radio resistance by 
suppressing BECN1.

A study on neuroblastoma cohort indicated that ATG4D positively correlated with 
HDAC10 expression. HDAC10high expression was correlated with significantly poor 
survival outcome of patients. In addition, HDAC10 overexpression in neuroblastoma 
cells promoted Doxorubicin resistance in neuroblastoma cells through HSC70/HSP70 
interaction via its deacetylation function[135]. SIRT6 (Sirtuin family member of NAD 
dependent deacetylase) was reported to be overexpressed in primary ESCC samples. 
SIRT6 initiated LC3B mediated autophagic flux in ESCC cells by interacting with 
ULK1 and inhibited mTOR. In parallel, SIRT6 promoted cellular proliferation and 
participated in regulating the G2M phase. These observations support the potential 
oncogenic role of SIRT6 and its role in activating autophagy[136]. HDAC1 suppression 
led to tumor growth regression by inciting mitotic defects and caspase-independent of 
autophagic cell death via LC3B in hepatocellular carcinoma (HCC)[137]. Similarly, 
overexpression of HDAC8 is prevalent in oral squamous cell carcinoma and HDAC8 
silencing led to anti-proliferative effects and cell death mediated through caspase 9, 3 
and 7. The administration of CQ with silenced HDAC8 substantially reduced cellular 
viability (as compared to HDAC8 knockdown without CQ)[138]. In salivary mucoepi-
dermoid carcinoma cells, HDAC7 silencing attenuated cellular proliferation and c-
MYC expression and triggered G2/M phase cell cycle arrest mediated through P27. 
This stimulated apoptosis and autophagy[139].

To the contrary, HDAC activity has been implicated in positive regulation of 
autophagy in differentiated cancer cells. It has been reported that HDAC6 dependent 
autophagy compensated for the impaired ubiquitin-proteosome pathway[140]. Ectopic 
overexpression of HDAC6 in hepatocellular carcinoma cell line Hep3B reduced cell 
growth and proliferation without inducing pro-apoptotic proteins. Notably, HDAC6 
activated autophagic cell death. Xenograft mouse model demonstrated similar 
findings and determined that autophagy cell death required the activation of BECN1 
and JNK[141].

The Bromodomain and extra-terminal domain (BET) family are epigenetic 
regulators that preferentially bind to acetylated histones. Proteomic analysis revealed 
binding of BET proteins caused them to localize by the chromosome recruiting 
positive transcription elongation factor b (P-TEFb). Transcriptional kinase cyclin 
dependent kinase-9 (CDK9) and regulatory subunits CyclinT1, T2 or K bind to BRD4 
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resulting in the phosphorylation of pol II (RNA polymerase II), which results in gene 
transcription[142]. The BET family is composed of four members: BRD2, BRD3, BRD4 
and BRDT[143]. BRD4 has a prominent role in G1 phase in the cell cycle[144]. Colocal-
ization of BRD4 and P-TEFB was identified in late mitotic to early G1 phase. This 
interaction promoted the recruitment of P-TEFb to mitotic chromosomes to stimulate 
gene transcription relating to growth and trigger progression to S phase[145].

Impairment of histone acetylation results in aberrant gene expression. For example, 
BRD4 overexpression has been attributed to enhanced transcription of MYC[146]. In 
colon cancer cell lines and primary tumors, BRD4 is frequently aberrantly hyper-
methylated, leading to BRD4 downregulation. Its re-expression in vivo impaired tumor 
growth indicating its role as a tumor suppressor[147]. Several studies have implicated 
BRD4 in multiple cancers, including, breast cancer, medulloblastoma, prostate cancer 
and hematological malignancies[143,148-151].

BET inhibitor JQ1 and genetic silencing of BRD4 in pancreatic ductal adenocar-
cinoma (PDAC) KP-4 cells led to an increase in LC3B and WIPI expression and 
autophagic flux, suggesting the formation of autophagosomes and upregulation of 
autophagosome-lysosome fusion protein[152]. BRD4 is a negative repressor of 
autophagy; its knockdown upregulated the autophagy genes BECN1, VMP1 (vacuole 
membrane protein-1), PIK3C3, ATG2A, ATG9B and MAP1LC3B, the autophagy cargo 
proteins SQSTM1 and OPTN (optineurin), as well as the autophagosome-lysosome 
fusion genes PLEKHM1 and TECPR1. Consistent findings were observed in overex-
pression studies, whilst the addition of JQ1 countered these findings. BRD4 
knockdown promoted an upregulation in the lysosome biogenesis and function genes 
and at protein levels: LAMP1, LAMP2, acid sphingomyelinase (ASM), a-glucosidase 
(GAA), and heavy chain of mature cathepsin B (CTSB HC) and cathepsin D (CTSD 
HC). Furthermore, silencing studies confirmed that the BRD4-NUT axis is capable of 
transcriptionally regulating autophagy independently of the MiT family (TFEB, TFE3 
and MITF)[152].

As discussed previously, starvation induced autophagy acquires the activation of 
AMPK and the direct phosphorylation of ULK1 and inhibition of mTOR. ATG7 is 
crucial in starvation induced autophagy for autophagosome formation, recycling of 
amino acids, mitochondria integrity and the clearance of ubiquitin-positive aggregates
[153]. The role of AMPK, mTOR and ULK1 has gained much attention in numerous 
solid cancers[146,154-158]. Treatment of AML cell lines and primary CD34+ enriched 
LSCs with the Bet inhibitor JQ1 led to the downregulation of c-MYC protein[159]. 
Autophagy activation was preferentially observed in JQ1-resistant AML primary cells 
and in selected LSC cell lines KG1 and KG1a. AMPK (pThr172)/ULK1 (pSer555) 
pathway was found to induce autophagy independent of mTOR, thereby conferring 
resistance to JQ1 mediated apoptosis[160]. AMPK provides metabolic adaption in 
cancer cells in vitro and xenograft models through maintenance of ATP and NADH 
homeostasis[161]. AMPK deletion in MLL-AF9 (mixed lineage leukemia-AF-9 genes) 
suppressed disease propagation and depleted the LSCs in the hypoxic environment of 
the bone marrow[159]. Sakamaki et al[152] suggests AMPK and SIRT1 (Sirtuin-1) 
function as nutrient sensing mechanisms with the ability to directly interact with BRD4 
to govern the transcription of autophagy genes. As such, nutrient deprivation would 
initiate the dissociation of BRD4 from the autophagy gene promoters, thus, inducing 
de-repression of autophagy gene transcription and cell survival[152].

Interestingly, the BR4 inhibitor 9f induced ATG5 dependent autophagy associated 
cell death in breast cancer cells by preventing the interaction between BRD4-AMPK. 
Furthermore, ATG5 silencing led to LC3B lipidation and accumulation of SQSTM1; 
however, this did not disrupt AMPK activation. These results indicate that 9f 
modulates autophagy through ATG5 by using the AMPK-mTOR-ULK1 pathway
[155]. ATG5 silencing in bladder cancer cells diminished anti-proliferative ability of 
BRD4 inhibitor JQ1. In addition, AMPKα knockdown elicited similar results. 
Collectively, these findings suggest ATG5 dependent autophagy is induced by JQ1, 
utilizing the LKB1-AMPK-mTOR axis[157]. It was reported that inactivation of Akt 
(Ser473)-mTOR (Ser2448) contributed to cellular resistance to JQ1 in ovarian cancer 
cells and overexpression of AKT1 reversed the resistant phenotype[146]. To the 
contrary, Akt inhibitors are thought to overcome BET inhibitor resistance in primary 
prostate cancer cells harboring mutated Speckle Type POZ Protein[162].

Histone methylation
G9a (also known as EHMT2) is a histone methyltransferase (KMT) enzyme targeting 
the lysine. Specifically, this enzyme mediates the histone H3K9 mono-methylation and 
demethylation at histone 3 lysine 9 (H3K9me1 and H3K9me2). Functionally, this 
promotes the recruitment of additional epigenetic regulators and repressors of 
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transcription[163]. Gene silencing usually requires the methylation of H3K9. G9a 
silencing led to the formation of vacuole like structures in the pancreatic cancer cell 
line SU86.86. These findings indicate that G9a regulates the MAP1LC3B and WIPI1 
promoters, as well as, diabetes and obesity regulated (DOR) gene promoters. Starvation 
induced autophagy led to the reduction of H3K9me2 and an increased H3K9ac[164]. 
Treatment of MCF-7 breast cancer cells with the G9a inhibitor BIX0124 led to the 
recruitment of NF-κB on the BECN1 promoter and elevated the intracellular ROS. 
These events reduced the levels of H3K9me2, resulting in an open chromatin structure. 
This increased the upregulation of BECN1 and promoted autophagy. Breast tumor 
samples with high G9a and low BECN1 expression exhibited a poor prognosis[165]. It 
can be postulated that BECN1 is a tumor suppressor governed by G9a. Immunohisto-
chemistry data of paired lung adenocarcinoma and lung squamous cell carcinoma 
samples revealed a significant higher expression of G9a correlating with metastasis 
and a poor prognosis of patients[166]. In comparison, low expressions of H3K9me2 
and G9a could predict a better prognosis for patients with gastric cancer[167].

Autophagy is an essential pro-survival mechanism and provides adaptive 
responses. The inhibition of G9a elicits autophagy. mTOR is an integral part of 
nutrient and energy sensing. G9a inhibitor BIX01294 administration in HeLa, SHEP1 
and U2OS cell lines induced LC3B. Interestingly, BIX01294 treatment decreased the 
phosphorylation of ribosome protein S6 kinase (S6K), an essential mTOR substrate
[168]. RHEB overexpression studies in bladder transitional cancer cells attenuated 
autophagy and autophagic cell death capacity of BIX01294, indicating G9a inhibition is 
mTOR mediated[169]. Similarly, GA001, an G9 antagonist, induced autophagy in 
breast cancer cells via the AMPK-mTOR-ULK1 pathway[170]. Ding et al[168] suggests 
that G9a mediates H3K9 methylation, serving as a potential sensor between amino 
acid availability, cellular growth and proliferation functioning by the activation of 
transcription factor 4 (ATF4). ATF4 is part of the unfolded protein response triggered 
by metabolic stress[171]. Glioblastoma cell lines: A172 and U87MG, treated with 
BIX01294 and knockdown of G9a, revealed activation of LC3B dependent autophagy. 
Inhibition of G9a, activated Akt/HIF1α expression. Tumor cells treated with BIX01294 
exhibited elevated LC3B and PKM2 protein levels resulting in activation of autophagy
[172].

Hypoxic stress has shown to increase H3K9me2 and decrease in acetylated H3K9, in 
multiple cancer cell lines. Additionally, hypoxia mimetics similarly enhanced the 
global expression of H3K9me2, G9a expression and activity. Hypoxic stress decreased 
the mRNA levels of MIH1 (involved in mismatch repair) and DHFR (dihydrofolate 
reductase) genes and increased H3K9me2 levels in their promoter regions[173]. 
Hypoxia induced autophagy has been implicated in CSCs of different tumor types, 
including breast and glioma, and this correlated with poor clinical outcome[174,175]. 
Ablation of BECN1, ATG5 and ATG7 has been reported to enhance cell death in 
hypoxia condition[176]. Kaempferol (flavonoid, HDACi) was found to mediate 
autophagy in gastric cancer cells by increased protein expression of LC3B, BECN1 and 
ATG5 and reduced levels of SQSTM1[131]. Kaempferol induced autophagy by 
targeting G9a expression. G9a knockdown and Kaempferol co-treated experiments 
indicated a reduction in G9a binding to LC3B promoter. However, 3-MA rescued this 
effect by repressing LC3B and cell death[131]. It has been proposed that inhibition of 
HDAC-G9a pathway may potentiate anti-tumoral activity in cancer cells[177].

NCRNA REGULATING AUTOPHAGY
lncRNA
Transcriptome analysis detected upregulation of gallbladder cancer drug resistant-
associated IncRNA1 (GBCDRInc1) in gallbladder cancer tissues, and this increase is 
implicated in chemoresistance of gallbladder cancer cells[178]. Phosphoglycerate 
kinase 1 (PGK1) was found to directly interact with GBCDRInc1 by preventing its 
ubiquitination and breakdown of PGK1, resulting to the formation of ATG5-ATG12 
complexes. GBCRlnc1 knockdown models treated with CQ reduced the autophagic 
activity and enhanced sensitivity to Doxorubicin in resistant gallbladder cancer cells in 
vitro and in vivo[178]. In colorectal cancer, the expression of LncRNA-H19High is 
associated with poor recurrent free survival. H19 is associated to 5’Fluorouracil (5-FU) 
chemoresistance mediated by increased autophagy induction via SIRT1[179]. LncRNA 
MALAT-1 is upregulated in DLBCL compared to normal B lymphocytes. Silencing of 
MALAT-1 decreased lymphoma proliferation and invasion, enhanced cell cycle arrest 
and apoptosis. MALAT-1 knockdown promoted the generation of autophagosomes by 
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increasing the protein levels of LC3 I/II along with SQSTM1 expressions to induce 
autophagy. MALAT-1 silencing in xenograft model significantly reduced tumor 
volume and weight[180].

Short ncRNA and miRNA
Several studies have shown the controversial role of miRNA (miR) in the context of 
autophagy, tumorigenesis and chemoresistance of cancer cells. Indeed, miR-1251-5p 
levels were significantly elevated in advanced stages of primary ovarian tumors. MiR-
1251-5p elicited oncogenic behavior through hyperproliferation, mediating cell cycle 
and initiating the LC3B dependent autophagy by targeting the tubulin binding 
cofactor CC (TBCC) in ovarian cancer[181]. Metastatic breast cancer invading 
lymphatic nodes, expressed increased miR-224-5p levels which correlated with low 
levels of LC3B protein and increased SQSTM1, suggesting the suppression of 
autophagy in a SMAD4 dependent manner[182]. SMAD4 protein is a crucial mediator 
of TGF-β[183]. Interactions between acute promyelocytic leukemia cells and bone 
marrow stromal cells activate NF-κB signaling, resulting in a negative regulation of 
miR-23a-5p. Consequently, increased levels of the autophagic proteins (for example 
BECN1, ATG5-ATG12 complex and LC3B), indicated the induction of cytoprotective 
autophagy. MiR-23a-5p overexpression led to Arsenic trioxide (APO) and Daunor-
ubicin (DNR) sensitivity[184]. Autophagy inhibition with adjuvant ATO treatment re-
established chemotherapy sensitivity in leukemic cells[184]. Invasion and migration of 
glioma cells is dependent on P72 expression, the downregulation of BECN1 and 
autophagy, causing an increase in miR-34-5p and miR-5195-3P expression[185].

Similarly, glioma stem cells are reliant on MIR93 (miR-93) for cell growth and sphere 
formation in vitro by repressing BECN1, ATG5, ATG4B and SQSTM1 proteins[186]. 
ATG7 gene overexpression facilitated in the degradation of the forkhead transcription 
factor FOXO4a mediated through autophagy. Subsequently, repressing miR-145 
transcription and further reducing its binding to 3’UTR (3’ untranslated region) of PD-
L1, thus promoting PD-L1 expression. These events enhance the stem like property, 
tumorigenesis, and invasive features of bladder cancer cells[187]. Similarly, in cervical 
and lung cancer, MiR7-3HG targeted the 3’UTR of AMBRA1 mRNA promoting the 
downregulation of AMBRA1, acting as oncogenesis and MYC phosphorylation, 
leading to autophagy blockade[188].

Notably, certain tumor suppressor miRNAs elicit anti-tumoral activity through the 
regulation of autophagy. For instance, miR-1262 was detected in gastric cardia 
adenocarcinoma[189]. ULK1 gene expression was negatively regulated with the 
expression of miR-1262. Functional assays, such as, proliferation and cell cycle 
analysis, colony formation and wound healing elucidated the tumor suppressive 
function of miR-1262[189]. MiR-101 negatively regulates basal and Rapamycin-induced 
autophagy in breast cancer cells by targeting ATG4D, RAB5A and STMN1 genes[190]. 
Likewise, miR-137 overexpression inhibited ATG5 dependent autophagy in pancreatic 
cells by sensitizing the cells to the anti-tumoral activity of Doxorubicin in vitro and in 
vivo[191]. MiR-130a downregulated DICER1 and ATG2B mRNA expressions in chronic 
lymphocytic leukemia. This led to a reduction in the autophagosome generation due to 
autophagy inhibition and promoting apoptosis[192]. Consistent with the previous 
findings, autophagy inhibition is essential in treating AML by targeting HMGB1[193]. 
Increased MiR-32a levels accompanied by low HMGB1 expression, inhibited all-trans 
retinoic acid and induced autophagy in AML cells via stimulating LC3 Lipidation
[193]. MiR-224-3p overexpression repressed glioblastoma cell proliferation and ablated 
hypoxia stimulated protective autophagy through targeting ATG5 and FIP200 genes
[194].

CLINICAL IMPLICATIONS: TARGETING AUTOPHAGY THROUGH EPI-
GENETIC MODULATIONS
Epigenetic therapeutics are promising targets to modify autophagy and to reactivate 
repressed tumor suppressor genes in different tumor types (Figure 3). Epigenetic 
abnormalities have been identified in several cancers modulating ATGs (Table 1). 
Inhibition of DNMTs and HDACs have been clinically developed to achieve the above 
objective.

It is reported that DAC treatment and additional administration of Panobinostat or 
valproic acid (HDAC inhibitors) downregulated oncogenic MYC expression and 
epigenetic modifiers, such as lysine demethylase KDM2B (demethylase for 
H3K36me2/ H3K4me3) and histone-lysine methyltransferase SUV39H1, leading to 
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Table 1 DNA methylation or histone modification modulates important autophagy-related genes in cancer stem cells and cancer cells

Epigenetic Type of epigenetic 
modification Cancer model Genes Autophagy 

modulation Ref.

Hypermethylation Breast cancer ATG2B, ATG4D, ATG9A, 
ATG9B, Beclin-1, ARHI

Repressed Li et al[120], Zhang et al[121] and 
Yu et al[203]

Hypermethylation Colorectal cancer BTG1, PCDH17, BTG1, 
BTG3, MAP1LC3Av1

Repressed Muhammad et al[124], Zhao et al
[204], Hu et al[205] and Gou et al
[206]

Hypermethylation Glioma and 
Glioblastoma

Ulk2, ANKDD1A Repressed Shukla et al[122] and Feng et al
[207]

Hypomethylation Glioblastoma ELFN2 Activated Liu et al[115]

Hypermethylation Hepatocellular 
carcinoma

BCLB Repressed Liu et al[208]

Hypermethylation Liver cancer PP2A Activated Shin et al[129]

Hypermethylation Lung cancer TCF21, TUSC3 Repressed Chen et al[123] and Peng et al
[209]

Hypomethylation Lung cancer LC3A Activated Nihira et al[116]

Hypermethylation Medulloblastoma ATG16L1 Repressed Cruzeiro et al[210]

Hypermethylation Melanoma ATG5 Repressed Liu et al[130]

Hypermethylation Ovarian cancer ARHI Repressed Yu et al[203]

DNA 
methylation

Hypomethylation Ovarian cancer ATG4A Activated Liao et al[113]

Histone methylation or 
acetylation 

Breast cancer EHMT2, Beclin-1 Repressed Park et al[165] and Sun et al[211]

Histone methylation Bladder cancer SMYD3 Activated Shen et al[212]

Histone acetylation Colorectal cancer FOXO1 Activated Zhao et al[213]

Histone demethylation Gastric cancer KDM2B Repressed Zhao et al[214]

Histone demethylation or 
deacetylation

Glioma KDM4A, SIRT3 Repressed Wang et al[215] and Qiao et al
[216]

Histone deacetylation Hepatocellular 
carcinoma

HDAC6 Activated Jung et al[141]

Histone deacetylation Neuroblastoma HDAC10 Activated Oehme et al[135]

Histone methylation Neuroblastoma G9a Repressed Ke et al[217]

Histone deacetylation Prostate cancer SIRT1 Activated Powell et al[218]

Histone 
modification

Histone deacetylation Salivary 
mucoepidermoid 
carcinoma

HDAC7 Activated Ahn and Yoon[139]

anti-leukemic activity in AML. Moreover, genes associated with metabolism were 
enriched under the combination therapy[195]. Monotherapy of DAC at low doses 
ablated clonogenicity of primary leukemic cells. Combined therapy of DAC and 
Azacitidine (DNMT inhibitor), decreased tumorigenicity in a xenograft model of 
breast cancer and in human primary breast cancer cells. Additionally, human breast 
CSCs displayed decreased self-renewal capacity in mammospheres[196]. In colorectal 
cancer, HDAC1 inhibitors, such as valproic acid and suberoylanilide hydroxamic acid, 
increased the expression of UVRAG (component of BECN1 complex). Increased 
UVRAG levels attenuated 5-FU mediated toxicity in colorectal cancer cells. HDAC1 
inhibition potentiated cell death via DNA damage[197]. The novel HDAC8 inhibitor 
(HMC) elicited pro-apoptotic functions by activating ATG5 and LC3B autophagy 
proteins in MCF-7 breast cancer cells. Co-treatment of HMC with 3-MA or CQ 
autophagy inhibitors partially countered HMC-induced cell death, suggesting 
autophagy elicited a protective role[198].

Trichostatin A (HDAC inhibitor) and valproic acid promoted autophagy and 
apoptosis in pancreatic cancer cells[199]. CM-272 (G9a/DNMT dual methyltransferase 
inhibitor) elicited immunogenic cell death and apoptosis in human bladder cancer. 
Furthermore, CM-272 decreased proliferation, inhibited cell cycle progression and 
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Figure 3 Epigenetic modulation of autophagy in resistance cancer cells and cancer stem cells. Cancer stem cells (CSCs) are a heterogenous 
collection of different cells that acquire genetic aberrations and epigenetic modifications during carcinogenesis. The protective role of autophagy in CSCs facilitates 
radio/chemotherapeutic resistance. Targeting specific epigenetic alterations could potentially repress autophagy and sensitize the CSCs population to cell death. CC: 
Cancer cell; TIL: Tumor-infiltrating lymphocytes.

induced autophagy; this correlated with a decrease in H3K9me2 and 5-methylcytosine. 
In vivo model demonstrated CM-272 enhanced the response to anti-PDL1 and 
attenuated tumorigenesis in PIK3CA mutated bladder cancer cells. DMNT1 inhibition 
enhanced MHC-I in breast cancer leading to the recruitment and activation of CD8+ T 
cells[200].

LncRNA-HOTAIR elicited anti-tumoral activity in chondrosarcoma by upregulating 
miR-454-3p leading to STAT3 activation and elevation of ATG12 protein[201]. 
Combination treatment of valproic acid and Temsirolimus (mTOR inhibi-
tor/autophagy inducer) augmented cytotoxic effects by significantly inhibiting tumor 
cell proliferation and growth in murine xenograft model of Burkitt lymphoma[202].

CONCLUSION
Abnormal epigenetic alterations have been implicated in cancer initiation, 
development, and therapy resistance. Epigenetic mechanisms, such as DNA 
methylation, histone modification or ncRNAs, can regulate crucial cellular processes 
like autophagy. In aggressive tumors, epigenetic changes of autophagy can 
deliberately influence immunosurveillance, maintenance, therapy resistance and 
invasion. Therefore, understanding the underlying mechanisms involved in epigenetic 
regulation of autophagy can enhance cytotoxic effects, and thus eliminate tumor cell 
resistance and prevent disease reoccurrence. Moreover, the application of epigenetic 
modulators, such as demethylating agents or HDAC inhibitors not only aim to 
normalize atypical epigenetic patterns on DNA sequences or histones but provide a 
newer therapeutic opportunity to regulate autophagy in malignant cells. Preclinical 
and small cohort studies have provided evidence that this approach can be effective 
and improve cancer prognosis in patients. In hindsight, a challenge lies in using 
epigenetic modulators on a defined section of the genome. For instance, clinically 
approved DNA methylation inhibitors or HDACis act genome wide. Currently, 
patient-specific modification of target genes, using CRISPR/Cas9-based epigenome 
editors are being developed. It is therefore imperative to identify and validate novel 
therapeutic approaches to directly target epigenetic changes of autophagy-dependent 
genes or pathways in resistant cancer cells and CSCs, as this will potentially improve 
personalized cancer therapy and clinical outcome for cancer patients.
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