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Abstract
Artificial intelligence (AI) is a quickly expanding field in gastrointestinal 
endoscopy. Although there are a myriad of applications of AI ranging from 
identification of bleeding to predicting outcomes in patients with inflammatory 
bowel disease, a great deal of research has focused on the identification and classi-
fication of gastrointestinal malignancies. Several of the initial randomized, 
prospective trials utilizing AI in clinical medicine have centered on polyp 
detection during screening colonoscopy. In addition to work focused on colorectal 
cancer, AI systems have also been applied to gastric, esophageal, pancreatic, and 
liver cancers. Despite promising results in initial studies, the generalizability of 
most of these AI systems have not yet been evaluated. In this article we review 
recent developments in the field of AI applied to gastrointestinal oncology.

Key Words: Artificial intelligence; Oncology; Gastroenterology; Endoscopy; Machine 
learning; Computer-assisted decision making; Computer-aided detection; Computer-aided 
diagnosis
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Core Tip: Artificial intelligence (AI) technologies have become a topic of intense investigation in clinical 
medicine. In gastrointestinal oncology AI has been employed in multiple areas, with notable progress seen 
in computer-aided detection and computer-aided diagnosis. Most efforts have focused on colorectal 
cancer, but AI systems have also been developed for malignancies involving the esophagus, stomach, 
pancreas and liver. Although studies in this field have demonstrated excellent diagnostic characteristics, 
many have limited external validity. This article will review the current evidence for AI technologies 
applied to the detection and diagnosis of gastrointestinal malignancies.

Citation: Minchenberg SB, Walradt T, Glissen Brown JR. Scoping out the future: The application of artificial 
intelligence to gastrointestinal endoscopy. World J Gastrointest Oncol 2022; 14(5): 989-1001
URL: https://www.wjgnet.com/1948-5204/full/v14/i5/989.htm
DOI: https://dx.doi.org/10.4251/wjgo.v14.i5.989

INTRODUCTION
The first documented gastrointestinal (GI) endoscopic procedure was performed by Dr. Adolph 
Kussmaul in the 19th century using a modified Desormeaux device illuminated by a gasoline lamp with 
reflective mirrors[1]. Since the 1800s, there have been remarkable technological advancements in the 
field of endoscopy allowing for diagnostic and therapeutic interventions ranging from early detection of 
cancerous lesions to the treatment of life-threatening gastrointestinal bleeding. Mastering endoscopic 
techniques takes years of training followed by decades of experience. Even among experts, however, 
there is still considerable interprovider variability and room for improvement in the detection rate of 
gastrointestinal malignancies.

Artificial intelligence (AI) represents an attractive solution to these issues. Over the past two decades, 
numerous systems have been developed for computer-aided detection (CADe) and computer-aided 
diagnosis (CADx) of gastrointestinal lesions. Furthermore, some of the first prospective, randomized 
trials applying AI in clinical medicine have evaluated CADe for colorectal polyps[2]. Additional 
randomized trials are underway evaluating a broad spectrum of AI technologies in GI oncology. As 
products become commercially available, it will be important for gastroenterologists to familiarize 
themselves with technologies and the data supporting them.

DEFINITIONS
AI refers to technology designed to mimic human intelligence. A subset of AI is machine learning, a 
technique in which computers use data to improve their performance without explicit instruction. The 
majority of AI systems studied in GI oncology are based off two major approaches: traditional machine 
learning and deep neural networks.

Traditional machine learning is based on a set of algorithms that require a significant amount of input 
in order to make a particular decision. Much of the learning for traditional machine learning is based on 
pattern recognition relating to features such as color, texture, intensity, and shape. Many studies 
utilizing traditional machine learning implemented support vector machines (SVM) or a modified form 
of SVM. The crux of SVM is based on identifying hyperplanes allowing for the separation of data points. 
Initially this method was selected because of its high ratio of accuracy to computational power, allowing 
for application in real time. As technology pushed forth in the 21st century, various groups began 
exploring the use of deep neural networks, in many cases convolutional neural networks (CNN), for the 
detection and diagnosis of concerning lesions. Deep neural networks function by extracting data via a 
series of filters that is then processed by a neural network while preserving spatial and temporal 
features. This allows for dynamic learning while the algorithm extracts clinically relevant data.

Most machine learning models have several settings defined by the developer known as hyperpara-
meters. These parameters are used to optimize the performance of the model. They are generally 
classified as model hyperparameters (e.g., number of layers in a neural network) and training 
hyperparameters (e.g., learning rate).

When developing a machine learning model, data is divided into training, validation and test 
datasets. The training dataset is used to create the model. The validation dataset is used to optimize 
hyperparameters and evaluate for overfitting. The test dataset is used to evaluate the performance of the 
model.

Preprocessing refers to the methods applied to images prior to analysis by the machine learning 
model. Techniques include histogram equalization to adjust contrast and gaussian filtering to remove 
noise. Transformation of the images can be achieved via resizing and processing through multiple 
layers, where deeper layers typically contain an increasing number of dimensions.

https://www.wjgnet.com/1948-5204/full/v14/i5/989.htm
https://dx.doi.org/10.4251/wjgo.v14.i5.989


Minchenberg SB et al. AI in GI oncology

WJGO https://www.wjgnet.com 991 May 15, 2022 Volume 14 Issue 5

Data augmentation is a process to artificially enlarge a dataset when developing an AI algorithm. It is 
typically performed via rotation, flipping, shear, and zoom of the original data, thus expanding the 
amount of data in the training dataset.

Trials applying AI in GI oncology typically report the following metrics: sensitivity, specificity, 
positive predictive value (PPV), negative predictive value (NPV), accuracy, precision and area under the 
receiver operating characteristic curve (AuROC). In order to measure the performance of a detection 
method or segmentation task, the intersection over union (IoU) can be calculated by dividing the area of 
overlap (overlap of prediction label and ground-truth labels) by the area of union (area of both the 
predicted and ground-truth labels). The IoU varies from study to study, and a predetermined threshold 
is typically set to determine true positive (TP) and false positive (FP). Often an IoU ≥ 0.25-0.5 defines a 
true positive (TP) and an IoU < 0.25-0.5 is considered a false positive (FP). Many prospective studies use 
a clinical definition of true positive as the number of correctly identified lesions by either AI or 
endoscopists. Using the discussed parameters, various AI-based approaches for the detection of GI 
cancers can be compared.

COLONOSCOPY
Globally, colorectal cancer (CRC) is the third most commonly diagnosed cancer and the fourth leading 
cause of death[3]. Colonoscopy has been associated with a decrease in the incidence and mortality of 
CRC through the detection and removal of precancerous polyps[4,5]. Adenoma detection rate (ADR) is 
often used as a gold standard metric for colonoscopy quality, and studies have shown that ADR may be 
inversely proportional to the rate of interval CRC after colonoscopy[6]. Studies have also shown, 
however, that roughly one fifth of adenomas are missed, even by expert endoscopists[7]. Evidence 
suggests that unrecognized polyps that appear within the endoscopic field of view are an important 
contributor to this problem. For instance, Aslanian et al[8] demonstrated that nurse observation during 
colonoscopy resulted in a trend towards improvement in the ADR. In addition, Marcondes et al[9] 
demonstrated that the ADR declines at the end of the day, suggesting endoscopist factors such as 
fatigue may play a role in polyp detection. Several CADe systems based on traditional machine learning 
techniques or deep learning have been designed as an attempt to combat these problems, serve as a 
safety net or “second set of eyes” during colonoscopy, and thus augment ADR.

Once polyps are identified, polyp characterization is the next crucial step. Optical biopsy refers to the 
use of endoscopy to predict histology in vivo. The successful application of optical biopsy to polyps 
would reduce costs associated with pathologic assessment and prevent unnecessary polypectomies. 
Computer-based optical biopsy also has the potential to level the playing field for advanced endoscopic 
techniques such as endocytoscopy (a specialized endoscopic imaging modality that allows for ultra-high 
level of magnification during live endoscopy) and allow providers to use these techniques with less 
interprovider variability. The American Society of Gastrointestinal Endoscopy Preservation and 
Incorporation of Valuable Endoscopic Innovations (PIVI) proposed standards for “resect and discard” (≥ 
90% agreement with histopathology for post-polypectomy surveillance intervals) and “diagnose-and-
leave” (≥ 90% NPV for adenomatous histology) strategies for diminutive polyps[10]. A systematic 
review and meta-analysis revealed that optical biopsy using narrow-band imaging (NBI) met the PIVI-2 
threshold for the “diagnose-and-leave” strategy, but only in the sub-group of expert endoscopists[11]. 
Not surprisingly, multiple CADx systems for the characterization of colorectal polyps have been 
developed to capitalize on the promises of optical biopsy and overcome the limitations of current 
technologies.

CADe
Perhaps the most well-studied application of AI in gastroenterology is polyp detection (Figure 1). 
Researchers in this field initially developed methods that recognized manually extracted polyp features 
such as shape, color and texture[12]. These early efforts were based on the analysis of static endoscopic 
images or video frames[12,13]. The most recent technologies employ deep-learning algorithms that are 
capable of detecting polyps in real-time[14,15]. There are now commercially available AI-based polyp 
detection technologies available in the United States, Europe and Asia[16-18].

Several prospective, randomized trials have been performed that have examined the efficacy of 
applying CADe to colonoscopy using deep learning methods (Table 1)[2,19-24]. Mohan et al[25] 
performed a meta-analysis, including 6 of these trials with a pooled patient population of 4962 patients. 
They found that ADR was significantly higher when using CADe assisted colonoscopy compared with 
standard colonoscopy [relative risk = 1.5, 95% confidence interval (CI): 1.3-1.72; P < 0.0001]. 
Colonoscopy withdrawal time was slighter greater in the CADe assisted group (mean difference = 0.38 
minutes, 95%CI: 0.05-0.72; P = 0.02).

Although these findings are promising, these trials have several limitations. First, the augmented 
ADR seen in these trials was largely driven by improved detection of diminutive adenomas (size < 5 
mm), the clinical benefit of which remains an area of active debate[26]. Secondly, only one trial was 
double-blinded[23]. In the single-blind trials, being observed may have facilitated a “competitive spirit” 
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Table 1 Characteristics of randomized trials applying computer-aided detection to colonoscopy

Ref. Training/validation datasets Testing datasets AI system

ADR 
with 
AI 
(%)

ADR 
without 
AI (%)

Withdrawal 
time with AI 
(min)

Withdrawal 
time 
without AI 
(min)

Wang 
et al
[2], 
2019

29 20 6.9 6.4

Wang 
et al
[23], 
2020

34 28 7.5 7.0

Liu et 
al[24], 
2020

5545 images from 1290 
colonoscopy videos performed 
in China. Images were labeled 
by endoscopists. Training: 4495 
images. Validation: 1050 
images. 

CVC-ClinicDb: 612 image frames of 
polyps from 29 colonoscopy videos 
performed in Spain. Polyp location 
manually annotated by endoscopists. 
27113 images from 1138 colonoscopy 
videos performed in China. 20% 
contained histologically confirmed 
polyps. Videos of 138 histologically 
confirmed polyps from 110 patients 
in China. 54 full-length colonoscopy 
videos from 54 patients in China. 

CNN based on 
SegNet architecture.

29 21 6.6 6.7

Repici 
et al
[19], 
2020

Based on data from previous clinical trial[74]. Videos of 2684 histolo-
gically confirmed polyps from 840 patients in Europe and the US. 
Training and validation: 2346 polyps from 735 patients. Testing: 338 
polyps from 105 patients. 

GI-Genius, 
Medtronic; CNN, 
details not available.

55 40 7.0 7.3

Gong 
et al
[20], 
2020

All images were obtained from colonoscopies of > 5000 patients in 
China. Trained 3 DCNNs on still images: DCNN 1: 3264 in-vitro, 10180 
in-vivo, and 4230 unqualified images used to train the system to 
determine whether a scope was inside or outside the body. 1000 
images per category used for testing. DCNN 2: 5189 images of the 
cecum and 5630 non-cecum images used to train the system to identify 
the cecum. 500 images per category used for testing. DCNN 3: 2602 
clear images, 1877 images in cleansing process, and 1899 blurry images 
used to train the system to recognize slipping. 200 images per category 
used for testing. k-fold cross-validation procedure was implemented 
with k = 10. 

DCNN 1-3 trained 
and tested in four 
independent 
convolutional neural 
networks: VGG16
[75], DenseNet-169
[76], ResNet-50[77], 
Inception-v3[78].

16 8 6.4 4.8

Liu et 
al[21], 
2020

151 videos containing endoscopist-confirmed polyps and 384 polyp-
negative videos from colonoscopies in China. Training and validation: 
101 polyp-positive cases and 300 polyp-negative cases. Testing: 46 
polyp-positive cases and 88 polyp-negative cases. 

CADe system, Henan 
Xuanweitang 
Medical Information 
Technology; 3-
dimensional CNN.

39 24 6.8 6.7

Su et al
[22], 
2020

23612 images from colonoscopies of > 4000 patients in China. Images 
were labeled by 2 endoscopists. Training: 15951. Validation: 3681. 
Testing: 3980. 5 DCNN models were created to time the withdrawal 
phase, supervise withdrawal stability, evaluate bowel preparation, and 
detect colorectal polyps in real time. 

Model B, based on 
AlexNet architecture
[79]. BP based on 
ZFNet[80] and Model 
PD YOLO V2[81]. 
Model E developed 
using a DCNN with 
one fully connected 
layer.

29 17 7.0 5.7

AI: Artificial intelligence; ADR: Adenoma detection rate; CADe: Computer-aided detection; CNN: Convolutional neural networks; DCNN: Deep 
convolutional neural network; GI: Gastrointestinal.

or Hawthorne effect in provider participants, leading to improved inspection techniques[8]. Third, all 
but one of these trials were performed at a single center[19]. Thus, the results of these studies may not 
be broadly generalizable. Given these promises and limitations, the European Society of Gastrointestinal 
Endoscopy published guidelines in 2019 suggesting “the possible incorporation of computer aided 
diagnosis… into colonoscopy, if acceptable and reproducible accuracy for colorectal neoplasia is 
demonstrated in high quality multicenter in vivo clinical studies[27].” Guidance and guidelines have 
been produced to aid gastroenterologists in conducting, reviewing and interpreting CADe studies with 
the goal of accelerating the entrance of this technology into routine clinical practice[28].

CADx
CADx systems for the characterization of colorectal polyps have been developed using a variety of 
imaging modalities including white light endoscopy, magnifying NBI (M-NBI), autofluorescence 
endoscopy, endocytoscopy, and magnifying chromoendoscopy (Figure 2). The majority of studies 
examining these technologies are retrospective in nature. Only six prospective trials have been 
performed, and none of them were randomized controlled trials[10,29-33]. Aihara et al[32] published the 
first prospective CADx trial for colorectal lesions in 2013. Investigators used autofluorescence 
endoscopy to distinguish between neoplastic and non-neoplastic lesions. They evaluated 32 patients 
with 102 colorectal lesions. The CADx system had a sensitivity, specificity, PPV, and NPV of 94.2%, 
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Figure 1 Example output from a computer-aided detection system using white light endoscopy (Fujifilm Corp., Tokyo). When a lesion is 
detected the endoscopist is notified by a hollow, bounded box. Used with the permission of Fujifilm.

Figure 2 Example output from a computer-aided diagnosis system using narrow-band imaging (Fujifilm Corp., Tokyo). The system predicts 
whether or not the lesion of interest is neoplastic. Used with the permission of Fujifilm.

88.9%, 95.6%, and 85.2% respectively[32]. Kuiper et al[30] performed another trial using autofluor-
escence endoscopy and CADx that included 87 patients with 207 colorectal lesions. This study achieved 
a NPV 73.5%. In a subsequent study using the next generation model of the same device on 27 patients 
with 137 diminutive colorectal polyps, Rath et al[31] reported an improved NPV of 96.1% meeting the 
PIVI-2 criteria for the “diagnose-and-leave” strategy. A more recent study utilizing autofluorescence 
endoscopy was published by Horiuchi et al[33] in 2019. The authors evaluated 95 patients with 429 
diminutive colorectal polyps and found a NPV for rectosigmoid polyps of 93.4%. When evaluating 
rectosigmoid and non-rectosigmoid polyps together, however, the NPV decreased to 80.8%. Kominami 
et al[29] utilized M-NBI in a study of 41 patients with 118 colorectal lesions. That trial achieved a NPV of 
93.3% and the recommendations for follow-up colonoscopy based on the CADx system and pathology 
were identical for 92.7% of patients. Thus, their system surpassed the PIVI criteria for both the 
“diagnose-and-leave” and the “resect-and-discard” strategies. Mori et al[10] performed the largest 
prospective CADx trial to date, which included 325 patients with 466 diminutive polyps. The CADx 
algorithm in this trial analyzed endocytoscopy images after application of NBI or methylene blue dye. 
The authors found that for the 250 rectosigmoid polyps in their study, using the most conservative 
estimate, the NPV was 93.7%, meeting the PIVI-2 threshold to support a “diagnose-and-leave” strategy.

ESOPHAGOGASTRODUODENOSCOPY
Many upper GI malignant processes, including esophageal and gastric pre-cancerous and cancerous 
lesions are easy to miss and can be confused with benign processes such as esophagitis or gastritis. In 
addition, if a patient has numerous lesions, it becomes difficult to determine which lesions require 
biopsy. Even with a significant amount of training, 20%-25% of early gastric cancer is missed when 
utilizing high-definition white light endoscopy[34]. Consequently, much work has focused on using AI 
to improve the detection and diagnosis of these increasingly prevalent lesions.
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Detection of early gastric cancer
In 2015, Miyaki et al[35] utilized SVM to delineate early gastric cancer using esophagogastroduoden-
oscopy (EGD) with M-NBI on 95 patients from a single hospital in Japan. This was the first study to 
delineate gastric cancerous lesions relative to noncancerous reddened lesions or surrounding tissue 
using an SVM based traditional machine learning algorithm[35]. This idea was expanded on by 
Kanesaka et al[36] who utilized SVM in real time with M-NBI to detect lesions concerning for early 
gastric cancers. In this retrospective study the CADe system achieved an accuracy, sensitivity, and 
specificity of 96.3%, 96.7%, and 95%, respectively[36]. Kanesaka et al[36] demonstrated the power of 
SVM relating to detection of gastric cancer but their study was limited by its sample size (81 test 
images), lesion type (focused only on depressed-type lesions), and selection bias. In 2018, Hirasawa et al
[37] developed a CNN-based system for detecting early and advanced gastric cancer. This system was 
trained on 13584 images and tested on 2296 from 69 patients demonstrating a sensitivity of 92.2% and a 
PPV of 30.6%[37]. Most false positives were related to gastritis[37]. Overall, this study provided 
sufficient evidence that a deep neural network-based approach was feasible for the detection of early 
gastric cancer, but several limitations were also noted. Li et al[38] applied a CNN based system to M-
NBI for the detection of early gastric cancer. This system was trained on 2088 images and tested on 341 
images achieving an accuracy, sensitivity, and specificity of 90.91%, 91.18%, and 90.64%, respectively, 
with a significant improvement in sensitivity relative to “expert” endoscopists[38]. The accuracy, 
sensitivity, and specificity of the Li et al[38] study were lower than results published by Kanesaka et al
[36] with SVM. These differences, however, are difficult to compare directly given varied nomenclature 
and histologic interpretation by groups from different countries.

Zhu et al[39] developed another CNN-based system in 2019 with the ability to determine the invasion 
depth of gastric cancer. 790 images were used for training and 203 images were used to test the system
[39]. They were able to achieve a sensitivity and specificity of 76.47% and 95.56%, respectively, with a 
PPV and NPV of 89.66% and 88.97%, respectively on the test dataset[40]. They also demonstrated that 
the CNN-based system had a significantly higher accuracy for the determination of invasion depth 
compared to a small group of 17 endoscopists[39]. This study was the first to use CNN to evaluate the 
depth of gastric cancer and has significant potential clinical utility. Major limitations include a small 
sample size, lack of validation and testing on video or live endoscopy, and the fact that the data was 
collected from a single center using a single type of endoscope.

Wu et al[39] described the use of CNN to help eliminate blind spots and detect early gastric cancer. In 
regards to classifying gastric locations, their CNN-based approach had an accuracy of 90% and 65.9% 
when dividing the stomach into 10 and 26 parts respectively[39]. For the detection of early gastric 
cancer, this study achieved promising results with an accuracy of 92.5%, sensitivity of 94.0%, specificity 
of 91.0%, PPV of 91.3%, and NPV of 93.8%[39]. In 2021, Wu et al[39,40] published the first multi-center 
randomized control trial investigating the detection of blind spots and early gastric cancer using an 
updated version of their CNN based AI discussed above. In this study, 1050 patients from 5 hospitals 
were randomized to receive AI-assisted endoscopy or standard-of-care endoscopy. The AI-assisted 
group had significantly fewer blind spots. The accuracy, sensitivity, and specificity of the system were 
84.69%, 100%, and 84.29% respectively for the detection of gastric cancer[40]. The trial yielded a lower 
accuracy and specificity relative to previous publications and the single center study by Li et al[38] 
However, this was the first study of its kind to evaluate a CNN-based system prospectively in a 
randomized clinical trial.

Barrett’s esophagus
In the United States, esophageal adenocarcinoma accounts for approximately two thirds of newly 
diagnosed esophageal cancers and is associated with a poor prognosis if identified in the late stages[41]. 
When identified, esophageal premalignant lesions can be treated via ablation or endoscopic resection, 
drastically improving outcomes[42,43]. Traditionally, “random” biopsies were obtained with a 
relatively low diagnostic yield as lesions concerning for neoplasia in patients with Barrett’s esophagus 
(BE) are often challenging to identify. Recently, several groups have studied the implementation of AI 
during EGD for screening and surveillance of BE. In 2016, van der Sommen et al[44] published the first 
study using machine learning for the detection of early neoplastic lesions in BE. The algorithm achieved 
a sensitivity of 86% and specificity of 87%[44] but the initial algorithm did not outperform an expert 
endoscopist during the length of their study. Swager et al[45] expanded on this concept and developed a 
machine learning algorithm for volumetric laser endomicroscopy (VLE). The resultant system achieved 
a sensitivity and specificity of 90% and 93%, respectively[45]. It also outperformed a clinical VLE 
prediction score[45]. In 2019, the ARGOS consortium developed a CADe system to detect Berrett’s 
lesions using white light endoscopy (WLE), which achieved an accuracy, sensitivity, and specificity of 
92%, 95%, and 85%, respectively[46]. Although their approach yielded highly accurate results, it was 
tested on high quality images and limited by human perceptual bias as the algorithm was trained to 
detect abnormalities based on variations in color and texture. The ARGOS consortium sought to 
improve on their initial approach by developing a deep learning-based CADe system built on a hybrid 
ResNet-UNet CNN[47]. This method achieved 89% accuracy, 90% sensitivity, and 88% specificity for the 
detection of neoplasms and nondysplastic BE[47]. Their deep-learning based CADe system also out 
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performed 53 international endoscopic assessors ranging in experience from research fellows with no 
endoscopic expertise to board-certified endoscopists with greater than 5 years of experience[47]. The 
authors also implemented their algorithm during live endoscopic procedures on 10 patients with BE
[48]. The system achieved an accuracy, sensitivity, and specificity of 90%, 91%, and 89%, respectively 
during clinical use[48]. Hashimoto et al[49] also demonstrated the power of a CNN-based algorithm for 
the detection and classification of early esophageal neoplasia. On 458 test images they achieved a 
sensitivity of 96.4%, specificity of 94.2%, and accuracy of 95.4% at a speed allowing for implementation 
during live endoscopy[49]. Though we are starting to see the implementation of CNN-based systems 
prospectively in the clinical trial setting, in the near future we will likely see the first publication of 
multi-center, randomized clinical trials utilizing AI for the detection of neoplasia in patient with BE.

Detection of esophageal squamous cell carcinoma
In 2019, Horie et al[50] published the first study applying CNN-based systems to EGD for the detection 
of esophageal cancer. This was a single center trial that used 8428 images from 384 patients for training 
and 1118 images from 97 patients for testing[50]. The system achieved a sensitivity of 98% and 
specificity of 79% with a PPV of 40% and NPV of 95% for the diagnosis of esophageal cancer[50]. 
Shadows were the most common cause of false positives and background mucosal inflammation was 
the most common cause of a false negative[50]. Cai et al[51] utilized CNN for the detection of 
esophageal squamous cell carcinoma (SCC) by initially training it with 2428 images from 746 patients 
and testing it on 187 images form 52 patients. They achieved an accuracy, sensitivity, specificity, PPV, 
and NPV of 91.4%, 97.8%, 85.4%, 86.4%, and 97.6% respectively[51]. They also demonstrated that the use 
of CNN significantly increased both accuracy and sensitivity of esophageal SCC detection by junior, 
mid-level, and senior endoscopists while reviewing still images[51]. Guo et al[52] trained a CNN-based 
system on 6473 narrow-band images that was validated using 6671 images and which achieved a 
sensitivity of 98.04% and a specificity of 95.03% for the detection of precancerous lesions or early 
esophageal SCC. Authors also tested the system on 27 non-magnifying videos and achieved a per-frame 
sensitivity of 60.8% and per-lesion sensitivity of 100%[52]. When applied to 20 magnifying videos, the 
per-frame sensitivity increased to 96.1%, and the per-lesion sensitivity remained at 100%[52]. Another 
group using CNN with endoscopy to detect SCC demonstrated no significant difference in accuracy, 
sensitivity, and specificity between AI diagnosis or endoscopist diagnosis using narrow-band imaging 
or white light imaging[53]. Liu et al[54] constructed a 2 stream CNN system achieving an accuracy of 
85.83%, sensitivity of 94.23%, and specificity of 94.67% outperforming SVM based methods with the 
same data set. Fukuda et al[55], developed a CNN based algorithm to detect SCC with NBI/BLI to 
detect and characterize suspicious lesions. For lesion detection, the system achieved a sensitivity, 
specificity, and accuracy of 91%, 51%, and 63% respectively[55]. The algorithm outperformed experts 
with regards to sensitivity but underperformed when it came to specificity and accuracy[55]. However, 
when it came to characterization of lesions, the CNN based algorithm outperformed expert endoscopists 
by achieving a specificity, sensitivity, and accuracy of 86%, 89%, and 88% respectively[55]. As can be 
seen for many other CADe and CADx systems, over a relatively short time period, we have seen 
significant advances in the early detection of pre-malignant lesions and a shift from traditional machine 
learning to deep neural networks.

CAPSULE ENDOSCOPY
Traditional endoscopic techniques allow for the visualization of the esophagus, stomach, duodenum, 
terminal ileum, and colon. With the advent of push enteroscopy, we have the ability to reach the 
proximal jejunum, but are still unable to explore most of the small intestine. Capsule endoscopy (CE) 
uses a 26 mm × 11 mm pill sized video camera that is swallowed and allows for the wireless 
transmission of video from the whole GI tract. CE allows for visualization of portions of the jejunum 
and ileum previously unreachable or difficult to reach. Unlike traditional endoscopy, CE is unable to be 
controlled by an operator so important pathology can be missed, and there is no way to intervene 
immediately if an abnormality is identified. CE is also limited by an eight- to twelve-hour battery life 
and the risk of obstruction in patients with strictures. Even with its limitations, CE has become an 
important tool for the diagnosis of GI pathology.

Decades after its initial conception, the first CE was approved for use in 2001 by the Food and Drug 
Administration (FDA), ushering in a new era of discovery[56]. As the practice of CE became more 
mainstream, physicians were tasked with interpreting many hours of video averaging between 30-120 
min with a staggering 50000-60000 frames per study[57,58]. It is an incredibly arduous task for an 
endoscopist to maintain their attention and consistently identify evidence of pathology in as little as 1 
frame while combing through hours upon hours of video. The miss rate in this setting has been reported 
to be at least 50% in a small blinded study from 2012[59]. Recently we have seen the parallel 
development of AI algorithms to help interpret the swaths of data generated by CE studies. Initially the 
development approach was based on traditional machine learning with many studies utilizing SVM, but 
the field has made a substantial shift towards deep learning primary through CNN, which, in general 
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have afforded favorable performance characteristics.
A major application of CE is the ability to noninvasively identify polyps and lesions concerning for 

malignancy throughout the GI tract. Early efforts consisted of traditional machine learning algorithms 
such as SVC that were designed to identify the presence or absence of a polyp instance. One early paper 
using a binary classifier based on geometrical analysis demonstrated 47% sensitivity per frame and over 
81% sensitivity per polyp with a specificity of 90%[60]. Using a boosting-based approach, Silva et al[61] 
achieved a sensitivity of 91.0% and a specificity of 95.2% for polyp detection with CE. This was 
expanded on by Iakovidis et al[62], whose color feature-based pattern recognition was utilized to 
subclassify lesions. Liu et al[63] implemented multiscale textural features and an SVM based feature 
selection method to enhance the process of polyp classification that was 97.3% accurate, 97.8% sensitive, 
and 96.7% specific. Various groups sought to improve traditional machine learning approaches by using 
a genetic fuzzy based improved kernel SVM[64] and by using ensemble learning[65].

A study from 2020 investigated the application of a CNN based system to CE for the detection of 
protruding lesions including polyps, nodules, epithelial tumors, submucosal tumors and venous 
structures[66]. In this particular study the sensitivity and specificity for detecting any protruding lesion 
[on test images] were 90.7% and 79.8% respectively[66]. Subgroup analysis of the data yielded a 
sensitivity of 86.5% for polyp detection[66]. When applied to patients the sensitivity for protruding 
lesions increased to 98.6%[66]. Currently, the well-established SVM-based detection methods for polyps 
appear to be superior for the detection/classification of polyps but perhaps further training and studies 
are required for CNN to outperform SVMs, and all of these studies are pre-clinical.

ENDOSCOPIC ULTRASOUND
AI applications for endoscopic ultrasound (EUS) are still in nascent stages. The majority of work 
utilizing AI for EUS has focused on diagnosing pancreatic cancer. A variety of conventional machine 
learning techniques including PCA, SVM and artificial neural networks have been utilized[67-69]. 
Recently, Kuwahara et al[70] performed the first deep learning based study using a CNN to predict 
malignancy in intraductal papillary mucinous neoplasms. They trained their algorithm on 3970 still 
images and achieved a sensitivity, specificity, PPV, NPV, and accuracy of 95.7%, 92.6%, 91.7%, 96.2%, 
and 94.0%, respectively. Of note, the human accuracy for predicting IPMN malignancy in this study was 
only 56.0%. In 2020, Marya et al[71] performed a retrospective study using a CNN-system to differ-
entiate autoimmune pancreatitis from pancreatic ductal adenocarcinoma (PDAC). The system was 90% 
sensitive and 93% specific for differentiating autoimmune pancreatitis from PDAC.

Outside of the field of pancreatic cancer, Minoda et al[72] published a retrospective study evaluating 
the ability of a CNN-system to diagnose gastrointestinal stromal tumors among subepithelial lesions 
(SEL) using EUS images. Among 30 SELs ≥ 20 mm the system achieved an accuracy, sensitivity, and 
specificity or 90.0%, 91.7%, and 83.3% respectively. Finally, Marya et al[73] utilized a CNN to identify 
focal liver lesions (FLL) and classify them as malignant or benign. The authors included a total of 210685 
EUS images in their study. Their algorithm correctly identified 92% of FLLs. When evaluating video 
data, they achieved a sensitivity of 100% and specificity of 80% for the classification of malignant FLLs.

CONCLUSION
AI technology applied to gastrointestinal oncology has an exciting and potent future and the potential to 
decrease morbidity, mortality and costs. Research groups have demonstrated how AI can augment the 
detection and diagnosis of numerous GI malignancies. This field is growing rapidly, but it is still in its 
infancy. Although we have recently seen the first prospective, randomized trials emerging in several 
spaces, most studies in this field are still retrospective. Furthermore, the majority of datasets used to 
train the algorithms used in these studies were collected from single-center databases in heterogenous 
patient populations. Consequently, these studies are at high risk of selection bias and with models at 
risk for overfitting. In order to create robust tools ready for general clinical practice, multicenter, 
randomized controlled clinical trials conducted by endoscopists of various skill levels on diverse patient 
populations and utilizing robustly trained and validated models are needed. Additionally, it will be 
important to monitor the efficacy of these tools in the real-world setting. Finally, clinicians will need to 
collaborate with lawmakers and other stakeholders to determine how best to regulate these technologies 
and establish clear policies on accountability. In clinical practice today, AI serves as a “safety net” for 
physicians. It is there to serve as a second set of eyes to support a diagnosis only. We believe it will be 
many years before AI is used to make definitive diagnosis or drive management decisions. Gastroenter-
ologists should work to familiarize themselves with the strength and limitations of these technologies so 
they can take an active role in a future AI-assisted healthcare system.
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