
World Journal of
Stem Cells

ISSN 1948-0210 (online)

World J Stem Cells  2021 June 26; 13(6): 485-669

Published by Baishideng Publishing Group Inc



WJSC https://www.wjgnet.com I June 26, 2021 Volume 13 Issue 6

World Journal of 

Stem CellsW J S C
Contents Monthly Volume 13 Number 6 June 26, 2021

REVIEW

Genome engineering and disease modeling via programmable nucleases for insulin gene therapy; 
promises of CRISPR/Cas9 technology 

485

Eksi YE, Sanlioglu AD, Akkaya B, Ozturk BE, Sanlioglu S

Immunotherapy in the treatment of lymphoma503

Popovic LS, Matovina-Brko G, Popovic M, Popovic M, Cvetanovic A, Nikolic I, Kukic B, Petrovic D

Recent trends in stem cell-based therapies and applications of artificial intelligence in regenerative 
medicine

521

Mukherjee S, Yadav G, Kumar R

Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells542

Mandhair HK, Novak U, Radpour R

Review of the potential of mesenchymal stem cells for the treatment of infectious diseases568

Sharma A, Chakraborty A, Jaganathan BG

MINIREVIEWS

Growing and aging of hematopoietic stem cells594

Udroiu I, Sgura A

Therapeutic potential of periodontal ligament stem cells605

Queiroz A, Albuquerque-Souza E, Gasparoni LM, França BN, Pelissari C, Trierveiler M, Holzhausen M

Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells 619

Szydlak R

Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases632

Mannino G, Russo C, Longo A, Anfuso CD, Lupo G, Lo Furno D, Giuffrida R, Giurdanella G

ORIGINAL ARTICLE

Basic Study

Chondrogenic potential of mesenchymal stem cells from horses using a magnetic 3D cell culture system645

Fülber J, Agreste FR, Seidel SRT, Sotelo EDP, Barbosa ÂP, Michelacci YM, Baccarin RYA

Heat shock protein 20 promotes sirtuin 1-dependent cell proliferation in induced pluripotent stem cells 659

Ullah M, Qian NPM, Yannarelli G, Akbar A



WJSC https://www.wjgnet.com II June 26, 2021 Volume 13 Issue 6

World Journal of Stem Cells
Contents

Monthly Volume 13 Number 6 June 26, 2021

ABOUT COVER

Editorial Board Member of World Journal of Stem Cells, Carlo Cenciarelli, PhD, Research Scientist, Institute of 
Translational Pharmacology, the National Research Council of Italy, Via Fosso del Cavaliere, 100, Rome 00133, 
Italy. carlo cenciarelli@ift.cnr.it

AIMS AND SCOPE

The primary aim of World Journal of Stem Cells (WJSC, World J Stem Cells) is to provide scholars and readers from 
various fields of stem cells with a platform to publish high-quality basic and clinical research articles and 
communicate their research findings online. WJSC publishes articles reporting research results obtained in the field 
of stem cell biology and regenerative medicine, related to the wide range of stem cells including embryonic stem 
cells, germline stem cells, tissue-specific stem cells, adult stem cells, mesenchymal stromal cells, induced 
pluripotent stem cells, embryonal carcinoma stem cells, hemangioblasts, lymphoid progenitor cells, etc. 

INDEXING/ABSTRACTING

The WJSC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation 
Reports/Science Edition, Biological Abstracts, BIOSIS Previews, Scopus, PubMed, and PubMed Central. The 2020 
Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJSC as 3.231; IF without journal self cites: 
3.128; Ranking: 18 among 29 journals in cell and tissue engineering; Quartile category: Q3; Ranking: 113 among 195 
journals in cell biology; and Quartile category: Q3. The WJSC’s CiteScore for 2019 is 4.9 and Scopus CiteScore rank 
2019: Histology is 15/60; Genetics is 124/324; Genetics (clinical) is 35/90; Molecular Biology is 177/381; Cell 
Biology is 143/274.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yun-Xiaojian Wu; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Stem Cells https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1948-0210 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

December 31, 2009 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Monthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Shengwen Calvin Li, Tong Cao, Carlo Ventura https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/1948-0210/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

June 26, 2021 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2021 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/1948-0210/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJSC https://www.wjgnet.com 619 June 26, 2021 Volume 13 Issue 6

World Journal of 

Stem CellsW J S C
Submit a Manuscript: https://www.f6publishing.com World J Stem Cells 2021 June 26; 13(6): 619-631

DOI: 10.4252/wjsc.v13.i6.619 ISSN 1948-0210 (online)

MINIREVIEWS

Biological, chemical and mechanical factors regulating migration 
and homing of mesenchymal stem cells

Renata Szydlak

ORCID number: Renata Szydlak 
0000-0003-2760-2952.

Author contributions: Szydlak R 
wrote the paper.

Supported by National Center for 
Research and Development in 
Poland, No. 
STRATEGMED2/265761/10/NCB
R/2015.

Conflict-of-interest statement: The 
author declares having no conflict 
of interests for this article.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Cell and tissue 
engineering

Renata Szydlak, Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian 
University Medical College, Kraków 31-034, Poland

Corresponding author: Renata Szydlak, PhD, Postdoc, Research Assistant Professor, 
Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical 
College, Kopernika 7, Kraków 31-034, Poland. renata.szydlak@doctoral.uj.edu.pl

Abstract
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized 
cells, which can be isolated from various tissues. Currently, MSCs are key players 
in cellular therapy and regenerative medicine. However, the possibility of using 
MSCs in the treatment of many diseases needs to be preceded, though, by in-
depth analysis of their properties, especially by determining the mechanism of 
tissue homing as well as the mechanism, due to which cells contribute to tissue 
regeneration. This review is intended to present information on recent findings 
regarding the mechanism of recruitment and tissue homing by MSCs and discuss 
current hypotheses for how MSCs can reach target tissues.

Key Words: Mesenchymal stem cell; Cell migration; Regenerative medicine; Mesenchymal 
stem cell-based therapy
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Core Tip: Mesenchymal stem cells (MSCs) have been extensively studied for their 
therapeutic potential in clinical practice and regenerative medicine. MSCs can migrate 
towards damaged tissue and act as reservoirs for regenerative molecules and growth 
factors. Consequently, MSC-based therapies rely on the successful migration of these 
cells into the damaged tissue following administration. Here we look at the factors 
influencing the migration and colonization of damaged tissues by MSCs.
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INTRODUCTION
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, 
which can be isolated from various tissues. Friedenstein et al[1] described a bone 
marrow-derived fibroblast-like cell for the first time, which later became the most 
extensively studied MSC and are sometimes regarded as the “gold standard.” Later, 
these cells were identified in nearly every tissue type (peripheral blood, adipose tissue, 
bone marrow, dental pulp)[1-4]. The human umbilical cord (UC), cord blood, placenta, 
and amniotic fluid have been shown to contain MSCs[5,6].

Independently of the tissue source, the harvested cells must have common charac-
teristics to be defined as the MSCs. Therefore, to organize the nomenclature and define 
the characteristics of human MSCs, the International Society for Cellular Therapy 
proposed three minimum criteria characterizing human MSCs[7]. Accordingly, to 
classify cells as MSCs cumulatively three conditions must be met by cells: (1) Adhere 
to plastic during in vitro cultivation; (2) Express a set of surface markers, CD73, CD90, 
and CD105, simultaneously lacking CD34, CD45, CD14, CD11b, CD79a, CD19 and the 
major histocompatibility complex class II; and (3) Demonstrate multipotency and 
significant plasticity of trilinear differentiation to osteoblasts, adipocytes, and 
chondrocytes[7,8]. Even though a wide range of selection markers defining MSCs was 
identified, no single marker specific to them has been indicated.

Because of their unique properties, MSCs provide extraordinary therapeutic 
potential that is used to treat a wide range of disorders. MSCs show high proliferative 
potential and the ability to differentiate into derived cell lines from all germ leaves. 
Also, these cells have unique immunomodulatory properties and the ability of 
directional migration in response to inflammatory factors, and the ability to colonize 
damaged tissues, where they participate in their regeneration[9]. MSCs have a special 
ability to secrete many biological factors, including cytokines and growth factors, 
involved in various processes conducive to tissue remodeling, such as angiogenesis 
and immunomodulation, but these cells may stimulate endogenous repair 
mechanisms[10-12].

The success of MSC-based therapy depends on MSC homing efficiency, which here 
means the ability of these cells to reach the damaged tissue. This process is possible 
thanks to their ability to adhere, migrate, and implant in the target tissue. The homing 
process can be accomplished with both local and systemic injections (Figure 1)[13]. For 
local injection, MSCs are transplanted into the target tissue and then directed to the 
site of injury via a proinflammatory cytokine gradient. In systemic injection, MSCs are 
administered into the bloodstream and then have to go through a multistep process to 
leave the circulation and move to the site of the injury. In this case, it is assumed that 
MSCs exhibit migration mechanisms similar to leukocytes. However, it should be 
emphasized that they occur with the participation of other adhesion molecules, and 
MSCs are larger than leukocytes[13]. The therapeutic effectiveness and tissue 
colonization by MSCs are influenced by several factors that can be divided into 
biological (e.g., the presence of adhesive molecules, cell source, donor age, doubling 
rate), biochemical (e.g., cytokines, chemokines, growth factors), and biophysical (e.g., 
cell size, cell deformability, shear force). There are also other factors such as cultivation 
conditions, method of cell administration, number of injected and implanted cells, 
general health of the host, and compliance of the recipient[14-18]. This review 
summarizes information about the factors influencing tissue migration and 
colonization by MSCs.

ROUTES OF THERAPEUTIC CELL DELIVERY
The site used for the administration of MSCs for therapeutic purposes can influence 
the route taken by cells to reach the desired destination[19]. For therapy, MSCs can be 
administered through intracardiac, intra-arterial (IA), intraperitoneal, or intravenous 
(IV) injection. Although intravenous administration is least invasive, more excellent 
engraftment rates were demonstrated by IA and intracardiac administration as 
compared to IV administration in models of myocardial infarction[20-22]. They 
administered radiolabeled cells in models with brain injury and found that IA injection 
in the extracranial right internal carotid artery (near target) led to greater homing of 
cells in the brain as compared to IV injection in the femoral vein. Walczak et al[22] 
demonstrated that the IA injection near the desired organ gave better results than IV 
injection at a distant point[22]. In cases of IV administration, MSCs accumulated in 
filtering parts of the body such as the spleen, liver, or lung, but this accumulation was 
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Figure 1 Mesenchymal stem cells migration cascade after injection. MSCs: Mesenchymal stem cells.

reduced in cases of IA injection[20,23,24]. However, there was a higher chance of 
microvascular occlusions with IA injection, a condition known as passive entrapment
[22]. In cases of IA and intracardiac administration, a significantly more MSCs were 
able to reach and engraft at an ischemic site as the cells bypassing the lungs.

The intraperitoneal administration of MSCs is occasionally used. It was used to 
administer MSCs to fetuses in mice with muscular dystrophy as IV injection was 
considered to be inappropriate for this particular case[25]. The donor cells were 
detected in muscular as well as non-muscular tissues. Finally, one can also use the 
method of local delivery by injection of MSCs directly into the target site. Beggs et al
[26] administered Dil-labeled MSCs into baboons through IV injection but could not 
detect cells in limb muscles[26].

On the other hand, when they injected the cells directly into the muscle, DiO-labeled 
MSCs could be caught there[26]. However, Muschler et al[27] reported that this 
method is not feasible in most clinical cases because it is too invasive, particularly in 
the brain or heart[27]. Moreover, locally injected cells may die before their role in 
healing because of a limited supply of oxygen and nutrients.

Because intravascular infusion is the most common form of therapy, it is crucial to 
understand the mechanisms by which MSCs might be delivered to the microcircu-
lation, become adherent to the walls of blood vessels and subsequently migrate 
through them. It is also useful to consider whether endogenous MSCs can circulate 
‘normally’ in the blood.

BIOLOGICAL FACTORS INVOLVED IN THE MIGRATION OF MSCs
Tissue origin and culture conditions
Most research to date has focused on the behavior of exogenous bone marrow MSCs 
(BM-MSCs), which may differ from MSCs obtained from other sources. Recent work 
suggests that MSCs obtained from perinatal tissues for therapeutic purposes may have 
more advantages, such as better cell availability and ethical aspects. Sheriff et al[28] 
conducted a study comparing the adhesive properties of UC-MSCs and BM-MSCs and 
their interactions with platelets, which may be of particular importance for systemic 
injections[28]. This study showed that UC-MSCs had a greater ability to adhere to 
extracellular matrix proteins compared to BM-MSCs and that UC-MSCs also caused 
platelet activation[28]. In another comparative study by Alanazi et al[29], BM-MSCs, 
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UC-MSCs, and tubercular-MSCs isolated from trabecular bone were tested. They 
showed that there were some differences in adhesive properties as well as in migration 
through the porous filter[29].

The migration properties of MSCs can also be influenced by cultivation conditions. 
Rombouts et al[30] showed that freshly isolated MSCs have higher tissue colonization 
capacity compared to in vitro cultured cells[30]. Probably this is the result of aging and 
differentiation of MSCs under in vitro culture conditions[31,32]. Culture conditions 
also have a significant impact on the homing capacity as they can modify the 
expression of surface markers involved in this process. For example, hypoxia and the 
presence of cytokines [e.g., interleukin (IL)-6, hepatocyte growth factor] can regulate 
the expression of the chemokine receptor (CXCR)4 receptor, which is involved in the 
migration of MSCs[33,34].

Adhesion molecules supporting MSCs migration
Exogenous MSCs injected into the body can bind non-specifically in microvessels or 
with adhesion molecules such as integrins, bind to endothelial cells or extracellular 
matrix proteins (i.e. collagen, fibronectin, laminin), and then transmigrate through the 
endothelium and basal membrane to tissues[35-39]. MSCs are thought to use the same 
migration mechanism as leukocytes[13]. However, in contrast to the well-described 
mechanisms of leukocyte adhesion and migration, the mechanism of tissue homing by 
MSCs has not yet been fully understood, even though many studies are assessing MSC 
adhesive molecules and possible mechanisms of vascular wall adhesion and migration 
(Table 1) as well as the role of chemokines in guiding MSCs to target tissues[40].

Before MSCs migrate through the vessel wall, they “crawl” on its surface, looking 
for the best place for adhesion and then transmigration through the endothelium 
(Figure 1)[13]. Interactions of integrins that are expressed in the MSC cell membrane 
and adhesion molecules on the endothelial surface [(vascular cell adhesion molecule 
(VCAM)-1) and intercellular adhesion molecule (ICAM)] can lead to the formation of 
so-called docking structures and transmigration wells that are sites rich in ICAM-1, 
VCAM-1 molecules, proteins, and cytoskeleton components (e.g., α-actinin).

If the homing concept is correct, tissues would need to recruit circulating MSCs 
from the flow to ensure effective delivery to damaged sites. For this purpose, MSCs 
have on their surface many different adhesion molecules shared by leukocytes. These 
adhesion molecules include CD24, CD29 (β1-integrin), CD44, and CD49a-f (α1-α6-
integrin), although other studies found no CD24[41,42]. Adhesion molecules that are 
found on endothelial cells are also expressed by MSCs. These molecules include 
VCAM-1, ICAM-1, and ICAM-2[43].

It seems that the number and type of adhesion molecules found to be present on 
MSCs may be influenced by the source of MSCs and the method used for their 
isolation and culture. For example, adhesion molecules expressed by MSCs at passage 
four and passage six were found to be different[44]. There was a linear relationship 
between passage number and the expression of CD49, but a decrease in the expression 
of CD44 was noted at passage six. However, other reports indicated no difference 
between the molecules expressed by MSCs at passages 3, 5, and 7 (e.g., CD73, CD90, 
and CD105)[45]. Concerning the origin of MSCs, it was found that adhesion molecules 
expressed by MSCs isolated from bone marrow and those isolated from adipose tissue 
differed. Differences in expression were noted for cell adhesion molecules CD49d 
(integrin α4), CD54 (ICAM-1), CD34, and CD106 (VCAM-1) with large variation in 
CD106 (VCAM1) and CD54 (ICAM-1)[45]. It is therefore likely that the source and 
methods of isolation and expansion must be taken into consideration when evaluating 
adhesive properties of MSC adhesion.

Several mechanisms involving different adhesion molecules have been proposed for 
recruiting flowing MSCs to the vasculature. During a study on MSC recruitment to the 
vasculature in mice, Rüster et al[42] found that P-selectin and α4β1-integrin/VCAM-1 
played a significant role in recruitment in venules[42]. In comparison with the wild-
type controls, the Pselectin-/- mice demonstrated a lesser degree of MSCs rolling in 
the ear venules. The function of other adhesion molecules was also investigated 
through in vitro studies that made use of endothelial cells as a substrate for the 
adhesion. During a flow-based assay, the number of MSCs demonstrating adherence 
decreased considerably when P-selectin was blocked on the tumor necrosis factor-α 
(TNF-α)-treated endothelial cells[42]. However, it was found that MSCs neither 
expressed Pselectin glycoprotein ligand-1 (CD162) nor the alternative P-selectin 
ligand, CD24, on their surface[42]. In the same study, adherence of MSCs to the TNF-
α-treated endothelial cells was found to be reduced after blocking α4β1-integrin or 
VCAM-1 to a similar degree to each other, showing a role for this pathway[42]. It 
should be highlighted that in these studies the flow was reduced to very low shear 
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Table 1 Molecules involved in migration and tissue homing by mesenchymal stem cells

Molecules Stage of homing Ref.

Langer et al[55], 2009Adhesion molecules CD24, CD29, CD44, CD49a-f, 
CD51/61VCAM-1, ICAM-1, ICAM-2, 
Pselectin

Rolling, adhesion, transendothelial 
migration

Eseonu and De Bari[66], 
2015

Kitaori et al[67], 2009

Su et al[68], 2017

Zhang et al[73], 2015

Chemokines receptors and 
chemokines

CXCR1/2/3/4/5/6, CCR1/2/4/6/8/9, 
MIP-1α, MCP-1, SDF-1

Chemotaxis

Fu et al[74], 2019

De Becker et al[70], 2007

Yuan et al[75], 2012

Proinflammatory cytokines and 
growth factors 

TGF-β, IGF-1, TNF-α, IL-1β, IL-8, IL-6, IL-3, 
SCF, HGF, EGF, VEGF, FGF, PDGF, IGF

Chemotaxis

Gao et al[76], 2001

Majumdar et al[43], 2003Extracellular matrix 
metalloproteinases

MMP-1, MMP-2 Invasion

Schrepfer et al[82], 2007

VCAM: Vascular cell adhesion molecule-1; ICAM: Intercellular adhesion molecule; CXCR: Chemokine receptor; MIP-1α: Macrophage inflammatory 
protein-1α; MCP-1: Monocyte chemoattractant protein-1; SDF-1: Stromal cell-derived factor-1; TGF-β: Transforming growth factor-β; IGF-1: Insulin-like 
growth factor 1; TNF-α: Tumor necrosis factor-α; IL: Interleukin; SCF: Stem cell factor; HGF: Hepatocyte growth factor; EGF: Epidermal growth factor; 
VEGF: Vascular endothelial-derived growth factor; FGF: Fibroblast growth factor; PDGF: Platelet-derived growth factor; IGF: Insulin-like growth factor; 
MMP: Matrix metalloproteinase.

stress to allow attachment followed by an increase in flow to “washout.” In another 
study, small numbers of MSCs adhered to cytokine-treated endothelial cells after 
prolonged perfusion at 0.1 Pa, also through VCAM-1[46].

In the studies conducted by Luu et al[47], MSCs were also perfused over endothelial 
cells treated with TNF-α[47]. It was found that MSC adhesion was negligible at a wall 
shear stress of 0.05 Pa, which resembles the low end of venular shear. If the flow was 
decreased to 0.01 Pa to allow attachment, then washed out at 0.05 Pa, adhesion could 
be detected on stimulated but not unstimulated endothelial cells[47]. MSCs adhered in 
large numbers if allowed to remain stationary and in contact with endothelial cells for 
30 min before washout at 0.05 Pa. Chamberlain et al[48] also found little adhesion of 
perfused MSCs to endothelial cells unless flow was stopped, and the cells were 
allowed to settle before washing out[48]. These data suggested that attachment of 
flowing MSCs in intact vessels would be rare under normal circulatory conditions, but 
that MSCs could adhere to endothelium only if already arrested or trapped[48].

A wide range of different cells express the glycoprotein CD44 on their surface, 
which can act as a ligand to allow adhesion via several other molecules, including 
hyaluronan[49]. Its role as a ligand for P-selectin has also been reported, and it may be 
the ligand for Pselectin expressed by MSCs. Studies indicate that hematopoietic cells E-
/L-selectin ligand is capable of binding with E-selectin[50,51]. While MSCs have a 
high expression of CD44 molecules on their surface, it was found that MSC adhesion 
was not decreased by blocking E-selectin on endothelial cells[42]. However, other 
researchers have found CD44 on MSCs to interact with E-selectin[52].

The molecular mechanisms involved in mouse MSC recruitment to the heart were 
investigated in animals suffering myocardial infarction[53]. Upregulation of several 
genes was recorded in the heart after infarct, and these included the genes for VCAM-
1, ICAM-1-1, and Eselectin. Recruitment of murine MSCs in the infracted myocardium 
decreased when MSCs were treated with the antibody against β1-integrin. Blockade of 
α4β1-integrin (CD49d/CD29) did not affect recruitment, and the particular α-integrin 
subunit working in this process was not identified, although the presence of α9-, α6- 
and α8-integrins were demonstrated[53].

So far, several adhesion molecules have been identified to be involved in MSC 
transendothelial migration. These include very late antigen-4 (VLA-4), VCAM-1, 
ICAM-1, and P-selectin[42,53]. Adhesive particles, including integrins, selectins, and 
chemokine receptors, are involved in the rolling, adhesion, and transmigration of 
MSCs. MSCs have been shown to express a diversity of receptors associated with 
intercellular contacts and adherence to extracellular matrix proteins, such as integrins 
α1, α2, α3, α4, α5, αv, β1, β3 and β4, and other adhesive molecules, i.e. VCAM-1, 
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ICAM-1, ICAM-3, and CD166. Some studies have shown that the interaction of MSCs 
with the endothelium is mediated by P-selectin. Other studies have shown that E-
selectin and L-selectin are not expressed in the MSC cell membrane. and their 
involvement in the interaction with the wall of blood vessels is not significant[42]. It 
has also been reported that, if present, this mechanism only has an indirect function 
due to the strong interaction of VLA-4/VCAM-1 particles, which are crucial receptors 
for MSC transendothelial migration. Steingen et al[54] reported that MSCs can migrate 
through non-activated endothelium using VLA-4/VCAM-1 molecules and tend to 
integrate with the endothelial layer instead of undergoing full diapedesis. Among the 
integrin family, integrin α4β1, which is a cell surface heterodimer and mediates cell-
cell and cell-environment contact, plays an essential role in migration and chemotaxis. 
However, because transendothelial migration of MSCs has not been entirely blocked 
by anti-VLA-4 and anti-VCAM-1 antibodies, it can be assumed that other integrins are 
also involved in this process[54].

Participation of platelets in the migration of MSCs
Platelets have been reported to be involved in the recruitment of MSCs in both in vitro 
and in vivo models. In a flow-based adhesion assay, Langer et al[55] noticed an increase 
in the recruitment of MSCs to human arterial endothelial cells when the endothelial 
cells were preincubated with platelets[55]. In particular, preincubation with platelets 
caused more excellent MSC adhesion in comparison with the activation of endothelial 
cells with IL-1β. In vivo studies generated results that followed these findings. MSC 
adhesion was found to be decreased considerably in a murine model with carotid 
artery injury after treatment with anti-GPIb and platelet-depleting antibody. It was 
also demonstrated that αvβ3-integrin blockade reduced the adhesion of platelets to 
immobilized MSCs[55]. In a model of pulmonary arterial hypertension, infused rat 
MSCs protected a rise in right-sided blood pressure and cardiac hypertrophy[56]. 
MSCs were found in the lung, and their adhesion there was reduced by blockade of P-
selectin and GpIIbIIIa. The same receptors were found to support the attachment of 
MSCs along with platelets to collagen in an in vitro flow assay. It was concluded that 
platelets mediated MSC homing to the lung. In a recent study, there was preferential 
trafficking of infused MSCs to an inflamed vs control ear, but this was decreased if 
platelets were depleted from the blood[57]. Direct observation of microvessels showed 
MSCs were adherent along with platelets and neutrophils. The above studies strongly 
suggest that MSCs will interact with platelets in the blood and that this interaction will 
modify their behavior in vivo.

BIOCHEMICAL FACTORS INVOLVED IN THE MIGRATION OF MSCS
Cytokines, chemokines, and growth factors controlling trafficking of MSCs
In MSC trafficking, chemokines released from tissues and endothelial cells can 
promote the activation of ligands involved in adhesion, migration, chemotaxis, and 
homing of MSCs in target tissues. Many reports suggest that damaged tissue releases 
specific factors that act as chemoattractants to facilitate the adhesion, migration, and 
homing of MSCs in affected areas. Studies have shown that MSCs are capable of 
migrating to inflamed tissues in response to factors that are regulated under inflam-
mation[4,58,59]. To date, many chemokines and growth factors have been identified 
that are involved in the migration process. These include inflammatory cytokines such 
as TNF-α, IL-1β, IL-6, and IL8 and many growth factors, e.g., epidermal growth factor, 
vascular endothelial-derived growth factor-A, fibroblast growth factor, platelet-
derived growth factor (PDGF-AB), hepatocyte growth factor, transforming growth 
factor-β1, stromal cell-derived factor, and insulin-like growth factor (IGF1)[39,59-62].

Some studies have shown the expression of chemokine receptors by MSCs, 
including CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CCR1, CCR2, CCR4, 
CCR6, CCR7, CCR8, CCR9, and CCR10, and indicated the functional roles of some of 
them in the migration process of MSCs[60,63-65]. It has been proved that CXCR1, 
CXCR2, CXCR4, CCR1, CCR2, IL-8, macrophage inflammatory protein-1α, and 
monocyte chemoattractant protein-1 are involved in the migration of MSCs to 
damaged tissue[66]. Other studies have shown that the stromal cell-derived factor-
1/CXCR4 axis plays an essential role in the movement of MSCs isolated from the bone 
marrow[67,68]. Thus, it is likely that the chemokines released from the tissues cause 
the intracellular CXCR4 receptor to move to the cell surface, which contributes to the 
migration of MSCs to the destination.
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It has also been shown that an increase in IL-8 concentration in damaged tissues can 
activate MSC migration[63]. The active role of IL-6, PDGF, PDGFR-α, PDGFR-β, 
vascular endothelial growth factor receptor 1, and insulin-like growth factor-1 have 
been indicated in BM-MSC migration studies[66]. PDGFR is strongly expressed on the 
surface of BM-MSCs, and PDGF induces BM-MSCs migration. The migration test 
through a porous filter also showed that PDGF had a stronger effect on MSC 
chemotaxis than stromal cell-derived factor-1 and monocyte chemoattractant protein-1
[69]. Inflammatory cytokines such as IL1β and TNF-α stimulate the production of 
matrix metalloproteinase (MMPs) by MSCs and trigger the activation of chemotactic 
migration through the extracellular matrix[35]. According to studies, many 
chemokines play a role in the induction of MSC migration, but characteristics 
including the settlement of MSCs require further in vitro and in vivo studies.

Extracellular matrix remodeling enzymes
It has also been confirmed that an essential role of MSC migration is played by 
proteolytic enzymes-MMPs, which regulate the degradation of the extracellular matrix
[36,70]. Different MMPs and their signaling pathways have been shown to affect MSC 
differentiation, migration, angiogenesis, and proliferation. The migration and invasion 
of MSCs into damaged tissues are facilitated by the expression of CXCR4, MMP-2, and 
MT1-MMP[71,72].

BIOPHYSICAL FACTORS INVOLVED IN THE MIGRATION OF MSCS
Influence of hemodynamic forces
Exogenous MSCs injected into the body during migration through peripheral blood 
circulation towards the damaged tissue are exposed to various hemodynamic forces 
applied to the vessel walls, including shear stress and cyclic mechanical load. It has 
been observed that mechanical loads affect the migration of MSCs. As an example, 
studies have shown that cyclic mechanical stretching (10%, 8 h) promoted MSC 
migration but led to a decrease in the invasive potential of MSCs[73,74].

Shear stress is another type of force inside the blood vessels. However, few studies 
have focused on the effects of shear stress on MSC migration. It was observed that 
shear stress (approximately 0.2 Pa) promoted MSC migration in the wound healing 
test while higher shear stress (> 2 Pa) significantly inhibited MSC migration[75].

Cell size, cell deformability, mechanical entrapment
Although there is ample evidence that specific ligand-receptor pairs are involved in 
tissue homing MSCs, mechanical entrapment of MSCs at sites of injury or in a tumor 
occurs at least in part in limited environments. The key difference between MSCs and 
lymphocytes is their size, with cell diameters ranging from 15-30 μm to 4-12 μm, 
respectively[76,77]. This larger cell size, especially after ex vivo cultivation, can lead to 
the passive retention of MSCs in small diameter vessels such as terminal arterioles, 
capillaries, and extra-glomerular venules due to mechanical entrapment[78]. Indeed, 
the vast majority of MSCs administered intravenously are cleared rapidly from the 
blood and are found in the pulmonary capillaries within minutes of an injection[23,79,
80]. In both, animal models and clinical trials, this rapid entrapment is followed by 
removal from the lungs and accumulation in the spleen and liver[23,79-81]. The 
mechanical entrapment in the lungs is because the pulmonary capillaries have a 
diameter of 10-15 μm[76,82-84]. Studies conducted by Dutly et al[84] with micros-
pheres have shown that objects with a diameter greater than or equal to 10 μm are 
very susceptible to this phenomenon[84]. Importantly, endogenous MSCs in the bone 
marrow are smaller in size, about 10 µm, which allows efficient trade in the systemic 
circulation[78]. Like MSCs, it is believed that they increase in size when activated by 
inflammatory factors at sites of tissue damage.

It can be assumed that the ability of cells to deform may facilitate the movement of 
larger cells through smaller vessels[18,59,85]. Although cellular deformability may to 
some extent facilitate the traverse of larger cells through smaller vessels[85].

IA infusions can reduce the entrapment of MSCs in the lung by providing one pass 
through the systemic circulation and exposure to peripheral tissues before entering the 
lungs. However, mechanical confinement may still be the predominant driver of MSC 
biodistribution. To date, little research has been done to determine the importance of 
active and passive arrest in the lung or other tissues. However, it is likely that both 
mechanisms are important and can be manipulated to increase the efficiency of 
targeting MSCs.
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The vast majority of exogenously injected MSCs have limited access to damaged 
target tissue due to mechanical entrapment. To partially overcome this barrier and 
improve targeting, preadministration of vasodilators such as sodium nitroprusside 
was used in mouse models[82,83] to reduce lung entrapment. In addition, many 
researchers have developed ex vivo expansion protocols by which MSC cultures with 
smaller mean cell diameters can be obtained[86,87].

CONCLUSION
In conclusion, although MSC-based therapies give hope for effective treatment of 
many incurable diseases, the low percentage of MSCs homing to damaged tissue 
remains a big challenge in regenerative medicine. Even though many factors have 
been identified to be involved in the MSC migration process, undoubtedly, one of the 
great needs of MSC-based therapy is the improvement of the effectiveness of MSC 
homing and obtaining high-grade target tissue uptake. To date, it has been observed 
that only a small percentage of the injected MSCs authentically reach and remain in 
the target tissue[88]. Why is the homing efficiency so low? Several factors are 
presumed to be involved. A lot of transplanted MSCs may be trapped in the lung 
capillaries[89,90]. Hence, to reduce lung entrapment, some research groups have taken 
an approach with vasodilators like heparin[76,91]. Moreover, some of the MSCs are 
distributed into the liver, spleen, and sites of inflammation or damage.

As discussed above, this migration of MSCs is regulated by a wide spectrum of 
factors. Essentially, the homing process is based on specific molecular interactions 
rather than passive distribution. Thus, effective migration of MSCs and implantation 
into the target tissue requires a high expression level of the appropriate adhesion 
molecules. For example, Wynn et al[92] observed that a small population of MSCs 
expressed the CXCR4 receptor and that only these cells can migrate specifically to the 
bone marrow[92]. Also, the expression of the surface markers involved in the homing 
process may be modified by culture conditions[31,60]. The methods of preparing the 
MSCs for injection as well as the methods of injecting these cells remain at the experi-
mental level. Parallel studies on the biology of MSCs and clinical trials are still 
ongoing. While much remains to be done, addressing the basic biological mechanisms 
underlying tissue homing in MSCs in vivo will reveal new optimization pathways.

To overcome the problems with a low level of retention of regenerative cells, 
various strategies have been taken to improve the MSC homing as discussed 
elsewhere recently[93]. In general, these approaches include targeted administration, 
genetic modification, in vitro stimulation, cell surface engineering, magnetic guidance, 
radiotherapeutic techniques, and target tissue modification[93,94]. Many of these 
approaches are still debatable because many of them have not been validated in vivo 
yet. For example, targeted administration may not always be feasible or may be a 
highly invasive procedure depending on the target tissue. In addition, modifying 
MSCs does not prevent their distribution to organs other than the target. Also, 
modifying target tissue by chemical or genetic methods raises patient safety concerns. 
While it is still an active area of study, these limitations pose huge barriers to their 
application in the clinic. It is expected that future research will disclose which of these 
approaches provide the most effective treatment. Such research is essential for 
advancing the field of cell-based therapies and increasing the efficacy of therapies in 
applications ranging from immune modulation to regeneration.
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