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Abstract
Neurodegenerative disease is a brain disorder caused by the loss of structure and 
function of neurons that lowers the quality of human life. Apart from the limited 
potential for endogenous regeneration, stem cell-based therapies hold consid-
erable promise for maintaining homeostatic tissue regeneration and enhancing 
plasticity. Despite many studies, there remains insufficient evidence for stem cell 
tracing and its correlation with endogenous neural cells in brain tissue with three-
dimensional structures. Recent advancements in tissue optical clearing techniques 
have been developed to overcome the existing shortcomings of cross-sectional 
tissue analysis in thick and complex tissues. This review focuses on recent 
progress of stem cell treatments to improve neurodegenerative disease, and 
introduces tissue optical clearing techniques that can implement a three-
dimensional image as a proof of concept. This review provides a more compre-
hensive understanding of stem cell tracing that will play an important role in 
evaluating therapeutic efficacy and cellular interrelationship for regeneration in 
neurodegenerative diseases.

Key Words: Cell tracing; Neurodegenerative disease; Stem cells; Three-dimensional 
imaging; Tissue clearing
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Core Tip: Although the use of stem cells in neurodegenerative disease has become 
widespread, a proof of concept (PoC) for three-dimensional analysis of the interrela-

https://www.f6publishing.com
https://dx.doi.org/10.4252/wjsc.v13.i9.1215
http://orcid.org/0000-0002-9822-5771
http://orcid.org/0000-0002-9822-5771
http://orcid.org/0000-0002-9822-5771
http://orcid.org/0000-0002-2871-0093
http://orcid.org/0000-0002-2871-0093
http://orcid.org/0000-0002-2871-0093
http://orcid.org/0000-0001-6999-999X
http://orcid.org/0000-0001-6999-999X
http://orcid.org/0000-0001-6999-999X
http://orcid.org/0000-0001-7693-2064
http://orcid.org/0000-0001-7693-2064
http://orcid.org/0000-0002-9962-0941
http://orcid.org/0000-0002-9962-0941
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:songbw@cku.ac.kr


Kim IK et al. Stem cell tracing in neurodegenerative disease

WJSC https://www.wjgnet.com 1216 September 26, 2021 Volume 13 Issue 9

p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Medicine, research 
and experimental

Country/Territory of origin: South 
Korea

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): C, C 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: February 27, 2021 
Peer-review started: February 27, 
2021 
First decision: May 5, 2021 
Revised: May 20, 2021 
Accepted: August 30, 2021 
Article in press: August 30, 2021 
Published online: September 26, 
2021

P-Reviewer: Fang FC, 
Prodromidou K, Wang YF 
S-Editor: Wang JL 
L-Editor: A 
P-Editor: Wu RR

tionships in brain structure has not been performed in vivo. This review will introduce 
recent stem cell research for therapies and PoC for a three-dimensional analysis based 
on tissue optical clearing.
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INTRODUCTION
Most brain disorders lead to irreversible consequences in intra- and inter-cellular 
responses depending on their severity, which commonly causes deterioration of 
physical or intellectual function. In general, it is known that the adult central nervous 
system is not capable of neurogenesis, but recent research on stem cells has negated 
this precept[1,2]. To improve neural regeneration to replace damaged neural cells 
and/or re-establish dendritic connections, two basic strategies have been established 
over the past two decades[3-5]. First, endogenous neural stem cells (NSCs) participate 
in the self-repair process in the subventricular zone (SVZ) lining the lateral ventricles 
and the subgranular zone within the dentate gyrus of the hippocampus, despite 
limitations in cell number and regenerative ability[6]. Even if symptomatic treatment 
is performed when the boundaries of endogenous regeneration in the brain are 
crossed, they have limited implications, including sustainability and efficiency in the 
repair of neurodegenerative diseases. Second, exogenous transplantation of stem cells 
is expected to become a source of neurogenesis. Stem cells derived from pluripotent 
‘embryonic’ stem cells (ESCs), which are more lineage-committed reprogrammed 
‘embryonic-like’ pluripotent stem cells (PSCs) have been used as a therapeutic source 
in neurodegenerative diseases[7,8]. The fundamental mechanism underlying all 
therapies is a positive regulation of progressive loss of brain structure, function, or 
neuronal survival. Although stem cell-derived NSCs or neural progenitors can affect 
cell replacement therapy, direct transplantation of stem cells or stem cell-free therapy 
is mostly known to be exerted through paracrine effects, including cytokines, 
chemokines, and neurotrophic factors at the molecular level[9-11]. Unfortunately, the 
therapy currently available does not fully account for the mechanism of stem cell 
function in vivo, and it does not prove the relationship between exogenous stem cells 
and existing brain cells from the site of neurodegenerative disease[12]. To analyze an 
interconnected network with a molecular biological approach, an integrative descri-
ption of the microenvironment needs to comprehend the three-dimensional structure 
of the brain containing exogenous stem cells.

This review will focus on recent improvements of stem cell therapy for neurodegen-
erative disease, the methodological approach of cell tracking for the definition of stem 
cell proof-of-concept (PoC), and on the advanced technique of cell tracking for a three-
dimensional structure description after stem cell treatment. This clarification will 
influence future studies by providing insights into the three-dimensional structure 
approach of stem cell tracing for many therapies of neurodegenerative diseases.

STEM CELL THERAPY IN NEURODEGENERATIVE DISEASE
Neurodegenerative diseases are mainly classified by clinical characteristics which are 
based on major symptoms and the site of involvement, including Alzheimer’s disease 
(AD), Parkinson’s disease (PD), and Huntington’s disease (HD). AD and HD are 
caused by neuronal loss in the brain, and PD is known to involve a specific local loss of 
dopaminergic neurons in the substantia nigra of the brain[13]. In fact, AD is the most 
common neurodegenerative disease, usually chronic and progressive, showing a 
decline in intellectual function, such as memory, judgment, and language skills, and 
impairments in daily life ability, personality, and behavior. HD is also accompanied by 
abnormal behavioral movements and cognitive impairment. PD is a degenerative 
neurological disease with the second highest incidence after Alzheimer’s disease, 
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which is chronically manifested, as well as movement disorders such as tremors or 
paralysis of the arms, legs, and face, stiffness, stiffness, and postural instability, as well 
as pain, depression, and dementia. Although there are limited treatment options, the 
viability of cell therapy treatment has been the focus of recent research.

Stem cells were discovered in the early 1960s and are generally capable of 
continuous self-renewal and have the ability to differentiate into several types of cell 
lineages[14,15]. Stem cells include ESCs, progenitor cells, mesenchymal stem cells 
(MSCs), and PSCs, and are classified as totipotent, pluripotent, or multipotent 
according to their differentiation ability. Totipotent stem cells such as ESCs and PSCs 
can be isolated from the four cell stages of the embryo and can differentiate into all 
types of cells in the body, including tissues outside the embryo. Multipotent stem cells 
such as MSCs and progenitor cells can be isolated from various tissues in the adult 
human body and can differentiate into various cells, but only those of a closely related 
family type of cells. In recent years, the development of stem cell technology has 
expanded to many human body tissues, including treatment for degenerative 
neurological diseases using stem cells. The application fields of stem cells used in the 
treatment of neurodegenerative diseases are shown in Figure 1[16-23]. Because 
organizations with ineffective recovery systems cannot easily return after injury or 
extensive degenerative events, it is important to understand the characteristics of the 
available stem cell type and the specific mechanisms of neurodegenerative diseases, 
including AD, PD, and HD[12].

Stem cells and AD
The 2018 Global Alzheimer's Disease Report stated that 50 million people worldwide 
have the disease, and it is the most common cause of dementia, accounting for 50%-
70% of cases of dementia cases[24,25]. AD has been shown to cause intracellular 
formation of nerve fiber tangles caused by the deposition of β-amyloid (Aβ) peptides 
on the extracellular matrix between neurons and the accumulation of hyperphos-
phorylated tau proteins in neurons[26].

MSCs play a major role in the treatment of AD, such as immune regulation, 
reduction of Aβ plaque burden through internalization and Aβ degradation of 
endosomal–lysosomal pathway oligomers and neurotrophic/regenerative potential
[25,27]. Injection of green fluorescent protein (GFP)-labeled bone marrow (BM) MSCs 
in the hippocampus of an AD animal model has been shown to reduce the size of Aβ 
plaques and regulate functional immunity[28]. Transplantation of MSCs was shown to 
increase neurogenesis as demonstrated by immunostaining brain sections with an anti-
polysialylated form of the neural cell adhesion molecule and doublecortin antibodies
[29]. It was also confirmed that MSCs labeled with PKH26-111 were injected into AD 
mice through the tail vein to reach the brain, and the radioactivity of BMSCs was 
significantly higher in the AD model than in the control group in the gamma counter 
and gamma camera imaging[30]. The effect of intravenous injection of BM MSCs in a 
mouse model of Alzheimer's disease was confirmed through β-amyloid positron 
emission tomography imaging, memory function studies, and histopathological 
evaluation[31]. Another technique for tissue repair involves paracrine effects using the 
secretion of extracellular vesicles from MSCs. The secretion of MSC extracellular 
vesicles can target Aβ deposition and is being studied as an important method for AD 
treatment, including siRNA and enzymes[29,32,33]. MSC-derived cytokines and vas-
cular endothelial growth factors also showed regenerative effects in an AD model[34].

The mammalian brain has the capacity to repair itself through neurogenesis and 
gliogenesis to a limited degree; however, endogenous neurogenesis and gliogenesis 
decrease significantly with age and are unable to regenerate enough brain cells alone. 
Research using NSCs that express a phenotype similar to that of brain cells has great 
potential in the treatment of AD. Several recent studies have shown that NSCs can 
increase the survival and regeneration of endogenous neurons by producing neuro-
trophic factors, vascular endothelial growth factor (VEGF), and vessel density in the 
cortex[35], and that NSC-derived cholinergic neuron-like cells can also support a 
significant improvement in learning and memory ability with choline acetyltransferase 
(ChAT) activity[36]. Using a human source, NSC function was confirmed to signi-
ficantly reduce cerebral Aβ42 Levels[37]. Park et al[38] found that a human NSC line 
encoding the ChAT gene was also transplanted into the amyloid precursor protein 
(APP) swe/PS1dE9 AD model mice and induced the proliferation of endogenous 
NSCs and the production of growth factors and neurotrophic factors.

Significant experimental and clinical progress has been made with PSCs since they 
were discovered 10 years ago. They are now widely used in the treatment of AD to 
regulate endogenous neurogenesis, neuronal loss, and pathological changes. Adminis-
tration of PSCs derived from mouse skin fibroblasts by treating protein extracts of 
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Figure 1 Stem cell types and their application to neurodegenerative diseases. MSC: Mesenchymal stem cell; NSC: Endogenous neural stem cell; 
ESC: Embryonic stem cell; PSC: Pluripotent stem cells.

ESCs has been shown to mitigate plaque deposition and cognitive dysfunction in a 
5XFAD transgenic mouse model[39]. From human sources, PSC-or PSC-derived cells 
have been used to ameliorate degenerative disorders. Human iPSC-derived 
macrophage-like cells genetically modified to express neprilysin-2 or to mutate Tau 
Ex10+16, Aβ-degrading activity, differentiated into functional neurons, and reduced A
β levels after xenograft administration to the 5XFAD or APP PS1 tg/wt NOD-SCID 
transgenic AD mouse model[40,41].

Stem cells and PD
PD is a common neurodegenerative disease characterized by impaired motor function, 
which is known to be caused by the selective loss of dopamine (DA) neurons in the 
human midbrain. Various studies have been conducted extensively on both motor and 
non-motor deficits. Cognitive impairment begins to develop motor impairment at an 
early stage and continues to progress. Non-motor symptoms are also a cause of deteri-
oration in the quality of life of patients and treatments that can resolve cognitive 
impairment and dysfunction may be possible. Stem cells are generally used to consider 
neuroprotection, neuroplasticity, and immunomodulatory properties in PD 
pathogenesis.

Transplantation of human MSCs into 6-hydroxydopamine (6-OHDA)-induced 
lesions protected dopaminergic neurons and induced neurogenesis, resulting in 
therapeutic effects due to the release of soluble factors such as brain-derived neuro-
trophic factor (BDNF)[42]. MSCs were also found to regulate DA neuron apoptosis 
and oxidative stress and to improve motor function in the early stages of PD[43]. 
Intravenous administration of MSCs improved dysfunction and protected tyrosine 
hydroxylase-positive fibers in the striatum and substantia nigra pars compacta. It has 
been shown that the cytokine stromal cell-derived factor (SDF)-1α increases dopamine 
release from cells by inhibiting apoptosis in PC12 cells exposed to 6-OHDA, and 
confirmed that it is a principal component of the MSC-derived secre-tome[44]. To 
evaluate the effects of stem cell homing, Cerri et al[45] examined the intra-arterial 
infusion of MSCs in collaboration with a transient blood-brain barrier disruption by 
mannitol pretreatment. After 28 d of 6-OHDA induction, the progression of the 
damage site did not change; however, normalization of the pathological respons-
iveness of striatal neurons to dopaminergic stimulation was induced by MSC infusion. 
Furthermore, secretomes or exosomes derived from MSCs have been confirmed to 
have potential use in stem cells, including neuroprotective factors[46]. Conversely, the 
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inhibition of cell-to-cell transmission molecules, namely α-synuclein, in MSCs led to 
functional improvement of motor deficits based on a pro-survival effect on cortical and 
dopaminergic neurons[47].

NSC transplantation allowed parkinsonian rats to be recovered through the 
regulation of SDF-1/chemokine receptor 4 (CXCR4) expression. Intraperitoneal 
injection of the CXCR4 antagonist, AMD3100, increased mRNA and protein expression 
of SDF-1 and CXCR4 in the NSC-transplanted site of the right substantia nigra. 
Furthermore, apomorphine-induced rotational behavior was reduced significantly in a 
rat model of PD[48]. In the xenograft model, the characterization of PD sites was 
examined using a high-throughput quantitative proteomic approach at the SN, 
striatum, olfactory bulb, and SVZ after human NSC treatment. These effects demon-
strated that the rescue of SVZ function and the elicitation of endogenous response 
were induced by an increase in neurotrophic factors[49]. For three-dimensional micro-
engineered cell therapy, NSCs were cultivated in the Nichoids microscaffold, and then 
transplanted into lesions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Mechanical 
reprogramming of NSCs and recovery of PD symptoms produced an enhanced 
therapeutic effect in a murine experimental model of PD[50].

In a study conducted 20 years ago, transplantation of low-dose undifferentiated 
mouse ESCs into mice increased the proliferation of differentiated DA neurons and 
restored cerebral function in a PD animal model[51]. Another study demonstrated that 
a highly enriched population of midbrain neural stem cells derived from ESCs 
improved the electrophysiological and behavioral properties in a rodent model of PD
[52,53]. Recently, studies on ESC-derived DA neurons capable of translational use 
have been actively conducted. Using a two-step WNT signaling activation strategy, 
human ESCs were induced to midbrain DA neurons at the clinical-grade level, and 
engraftment of these cells upregulated their behavioral recovery of amphetamine-
induced rotation in a 6-OHDA model[54]. Furthermore, clinical-grade midbrain DA 
neurons, named MSK-DA01, safely demonstrated survival of the transplanted cells 
and behavioral amelioration in parkinsonian rats under GLP conditions without 
adverse effects[55]. PSCs were also examined for the improvement of PD at the pre-
clinical level. In a primate PD model, hPSC-derived DA neurons showed an 
improvement in long-term survival of cells and spontaneous movement, dopaminergic 
progenitors derived from a clinical-grade human PSC line were produced, and their 
therapeutic effects were confirmed in 6-OHDA-lesioned rats[56,57].

Stem cells and HD
HD is a common degenerative brain disease with autosomal dominant inheritance. It 
is the least researched of the three major neurodegenerative diseases[58]. HD, charac-
terized by progressive neuronal death, has various symptoms such as cognitive 
decline, behavioral changes, motor dysfunction, weight loss, sleep disturbance, and 
mental disorders[59]. This situation begins in the striatal part of the basal ganglia by 
increasing the number of CAG repeats in exon 1 of the huntingtin (HTT) gene, which 
encodes the huntingtin protein, leading to an atypically long polyglutamine region at 
the protein N-terminus[60]. Numerous therapies are aimed at slowing disease sym-
ptoms; however, stem cell therapy has been continuously studied by many researchers 
to restore the atrophied tissue, which can replace some abilities of degenerated cells
[61].

MSCs are a promising HD treatment because they are not only simple to acquire 
and cultivate, but also have unique nutritive activity and immunomodulatory 
functions. Simple treatment of human MSCs has been demonstrated to enhance neural 
differentiation capacity, neurotrophic factor stimulation, and anti-apoptotic effects 
using the R6/2-J2 animal model. Transplanted MSCs can integrate with host cells to 
increase the level of secretory factors such as von Willebrand factor, SDF-1, and 
CXCR4[62]. Both intranasal deliveries showed the possibility of improving the thera-
peutic efficacy of HD. MSCs pre-treated with lithium and valproic acid (VPA) 
enhanced that open motor function improved walking distance and average speed in 
N171-82Q transgenic mice. Lithium and VPA have been used as mood stabilizers to 
boost cell survival and efficacy[63]. The second study demonstrated that MSCs 
significantly increased the survival rate of R6/2 mice, simultaneously with improved 
sleep disturbances and motor performance. The PoC of MSCs was explained by 
detecting GFP-expressing cells in the olfactory bulb, midbrain, and striatum on day 5. 
Furthermore, increased expression of DARPP-32 and decreased expression of inflam-
matory modulators were found in the striatum for 7.5 wk[64]. Treatment methods 
using various molecules released from MSCs have also been proposed. MSC-secreted 
neurotrophic factors were injected with quinoline acid (QA), which functioned as 
excitotoxicity in the striatum, and changed striatal volume with QA lesion of the brain 
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in the rat HD model[65]. Two other studies demonstrated that MSCs that release 
HTT142 mutant and shRNA or aquaporin 4 antisense oligonucleotides can expand the 
therapeutic abilities for HD therapy[66,67]. Recently, MSC-conditioned medium (CM) 
derived from the amniotic membrane has been reported to have a protective effect on 
striatal degeneration and motor deficits in the R6/2 mouse HD model. In this recovery 
process, a significant decrease in microglial activation and nitric oxide synthase 
induced by MSC-CM was observed, resulting in the modulation of inflammatory cells
[68].

Pluripotent cell lines targeting HD have been developed by several research groups. 
The QA-lesioned HD rat model was monitored using an apomorphine-induced 
behavioral test and immunohistochemical staining after implantation of BDNF-overex-
pressing human NSCs (HB1.F3.BDNF) on the opposite side of the striatum. NSC PoC 
confirmed that the transplanted cells were moved to the QA lesion site with striatal 
GABAergic medium spiny neurons, containing DARPP-32 in the host brain[69]. A 
clonal conditionally immortalized NSC line (CTX0E03), which already showed safety 
and efficacy signals in patients with chronic ischemic stroke, was examined using the 
QA-lesioned HD model. Thirteen weeks post-transplantation, CTX0E03 survived in 
the striatum and cortex of the brain with QA lesions, differentiated into striatal 
neurons, and showed progenitor-palatal connections with the host tissue. Survived 
CTX0E03 reduced gliosis and host immune responses, but increased endogenous 
neurogenesis and angiogenesis[70]. The same research group also demonstrated the 
therapeutic potential of PSCs in a rodent model of HD. NSCs derived from a human 
PSC line (1231A3-NPCs) also showed reconstruction of the damaged neuronal 
connections and behavioral improvement for 12 wk post- transplantation[71]. Human 
embryonic stem cell-derived NSC lines were also reported in a therapeutic study in the 
striatum of R6/2 mouse HD fragment model (first confirmation) to confirm the 
efficacy of improving motor deficits and rescue synaptic alterations. The second 
confirmation for improving motor and late cognitive impairment was done using the 
Q140 knock-in mouse HD model[72]. Combination therapy related to transduction of 
HTT gene-regulated PSCs was also conducted. PSCs derived from fibroblast/dental 
pulp of wild or HD rhesus monkeys were transfected with shRNA targeting the HTT 
transcript and transplanted into the N171-82Q mouse model. The mutant HTT-PSC-
transplanted group was encouraged in their lifespan counterpart, with motor function 
and pathological changes, including integration and differentiation[73].

STEM CELL TRACING IN DEGENERATIVE BRAINS
Histological analysis
To track transplanted stem cells, many preclinical studies on brain injury use bromod-
eoxyuridine, PKH26, and 4,6-diamidino-2-phenylindole as fluorophores[74-76]. Stem 
cells pre-labeled with fluorophores can be identified via immunohistochemistry in 
fixed tissue using anti-fluorescent-tagged antibodies or staining methods that use 
color-changing substrates. At present, histology is the gold standard to test whether 
transplanted stem cells survive or differentiate into tissue cells in an animal model 
study[77]. However, this requires the sacrifice of numerous animals and provides no 
longitudinal or whole-body monitoring. With a lack of information on stem cell 
behavior, in vivo longitudinal, non-invasive, and repeatable methods have been 
developed to monitor transplanted cells. In addition, it is crucial to track the 
capabilities of transplanted stem cells to reconstruct brain functions and biological 
roles.

Imaging technology
Stem cell imaging methods can be divided into direct and indirect cell labeling 
depending on the possibility of re-imaging over a long period of time. Direct cell 
labeling is the most frequently used method and consists of incubation prior to 
implantation and labeling cells in vitro using reporter probes containing fluorophores, 
radiotracers, or paramagnetic nanoparticles (Figure 2)[78,79-81]. These reporter probes 
can bind to specific epitopes on the cell membrane, such as copper-64-labeled antibody 
or zirconium-89-desferrioxamine-NCS (89Zr-DBN)[82,83], or can be absorbed by 
passive diffusion or transporters such as indium-111- and 89Zr-oxine or 2-[18F]-fluoro-
2-deoxyglucose (18F-FDG)[30,79,84]. After incubation, cells are injected in vivo for 
monitoring by magnetic resonance imaging (MRI), positron emission tomography 
(PET), single photon emission computed tomography (SPECT), and optical imaging.
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Figure 2 Schematic overview of different methods for stem cell labeling. A: Schematic overview of the processes for direct cell labeling; B: Schematic 
overview of the steps for indirect cell labeling; C: A diagram of different imaging method for tracking stem cells. This figure was modified from references[80,81]. MRI: 
Magnetic resonance imaging; PET: Positron emission tomography; SPECT: Single-photon emission computed tomography.

The first study of MR tracking of progenitor cells transplanted into the central 
nervous system was reported in 1992, and a superparamagnetic contrast agent was 
used for imaging rat brain cells[85]. Direct tracking through MRI offers benefits such 
as morphological characterization, high spatial resolution, lack of radiation, and long-
term stem cell monitoring[86,87]. MRI requires the use of a contrast agent to visualize 
cells. For example, superparamagnetic iron oxide nanoparticles (SPIONs) have been 
shown to allow in vivo maintenance of neural progenitor cell viability, phenotype, 
proliferation, and differentiation[88,89]. Successful labeling of MSCs and progenitor 
cells with SPION has also been demonstrated in long-term, multimodal imaging and 
found no consequences on viability, differentiation capacity, or biological character-
istics[90-92].
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However, there are two limitations in labeling stem cells with magnetic contrast 
agents. After transplantation, the label was diluted because the stem cells continued to 
proliferate rapidly. Therefore, the MR signal decreased and lost rapidly over time 
because of cellular proliferation. In addition, SPIONs can be deposited in extracellular 
tissues when dead transplanted cells are entrapped by immune cells such as microglia 
in the central nervous system, leading to false signals in MRI[93].

PET and SPECT are nuclear medicine imaging techniques that represent promising 
imaging modality for tracking stem cells widely used in experimental trials. Before 
stem cells were transplanted into the host, radiotracers such as 18F-FDG, lipophilic 
99mTc-D,L-hexamethylene-propyleneamine oxime, and 111In-oxine are required to 
label the stem cells to detect the transplanted cells via PET or SPECT scanner[79,94-96]. 
There was no difference in viability or differentiation ability after labeling with 
radiotracers. No microstructural changes were observed. The positron emitted from 
the radioactive isotope rapidly loses kinetic energy while traveling through the 
surrounding tissue, and then interacts with the electron to emit two high-energy 
photons of 511keVat (high-frequency photons) moving in almost the opposite 
direction. PET camera scanners can detect and image these photons. SPECT is very 
similar to PET in the use of radioactive tracers and the detection of gamma rays. These 
methods provide sensitivity in the picomolar range and the ability to use the same 
tracer across multiple species. SPECT imaging has the added advantage of having a 
lower false-positive signal compared to MRI. However, they do not provide 
anatomical information and must be used in conjunction with MRI, computerized 
tomography, or X-rays[97].

Optical imaging, compared to MRI, PET, and SPET, has the benefits of lower cost, 
rapid acquisition, no radiation toxicity, and relatively high sensitivity[98]. Semicon-
ductor nanocrystals, also known as quantum dots (QDs), are a new class of biocom-
patible fluorescent materials that are relatively photostable and have a narrow 
luminescence band used for cell tracking. Near-infrared-emitting QDs may be partic-
ularly useful for tracking transplanted cells in the human brain, because longer 
wavelengths allow easier penetration of tissues such as bone and skin[99]. Biolumin-
escence imaging (BLI) has been widely applied in preclinical studies of stem cell 
imaging in the brain for several years. BLI has also been used to quantify gene 
expression and stem cell localization in mice and rats[100,101]. BLI is only limited to 
small animals, but not to large animals, because BLI can only penetrate a few 
centimeters of tissue.

Indirect cell labeling was modified by inserting an exogenous reporter gene into the 
cells. These reporter genes can produce specific proteins that function as radioactive 
probes, so the probe signal is not limited to the half-life of the tracer used and can be 
detected by PET, SPECT, and MRI for a long time. It not only allows long-term nonin-
vasive imaging of stem cells, but also distinguishes between viable and nonviable cells. 
The most widely used imaging reporter gene is luciferase from firefly Photinus pyralis 
(Fluc), which catalyzes the oxidation of D-luciferin to oxyluciferin by emitting visible 
light (the principle of BLI) in the presence of oxygen, magnesium, and adenosine 
triphosphate. Integration of Fluc into NSCs and MSCs has been successfully 
performed for cell monitoring using BLI[102-105]. Another example of an indirect 
method of tracking consists of an exogenous reporter gene delivered to cells of in-
terest, such as a ferritin heavy chain, which can act as a powerful MRI reporter to track 
cell distribution and migration in acute ischemic stroke[106]. However, the major 
drawback of reporter gene-based imaging is the incorporation of genomic material 
into the cell.

THREE-DIMENSIONAL IMAGING FOR STEM CELL TRACKING
Tissue optical clearing technique
Tissue imaging techniques for the depiction of three-dimensional structures and their 
molecular information are a growing trend that researchers need to facilitate volu-
metric imaging rather than the two-dimensional section used as the standard 
procedure. Due to the three-dimensional scalability of individual neurons and their 
interrelationships with brain cells, this imaging technique, namely Clear, Lipid-
exchanged, Acrylamide-hybridized Rigid, Imaging/immunostaining compatible, 
Tissue hYdrogel (CLARITY), was developed by the Stanford University Research 
Group in 2013[107]. According to the tissue-reagent reaction principle, three major 
techniques are now available: hydrogel-, solvent- (hydrophobic), and aqueous-based 
(hydrophilic) approaches[108]. Descriptions of these techniques are provided in 
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Table 1 Comparison of major clearing techniques

Hydrogel-based method Solvent-based method Aqueous-based method

Types CLARITY, MAP, SHIELD, PACT, PARS 3DISCO, iDISCO, BABB FocusClear, CUBIC, Scale12, SeeDB2

Component FocusClear/80% glycerol or histodenz Benzyl/alcohol series Urea, glycerol or sucrose

Process Hydrogel monomer infusion → 
hydrogel-tissue hybridization → 
Electrophoretic tissue clearing

Dehydration with lipid solvation → 
Clearing by RI matching

Decolorization by pigment removal → 
Delipidation using mild detergents → 
Expansion and RI matching

RI match 1.38–1.48 1.44–1.56 1.38–1.48

Features Minimizing structural damage and loss 
of biomolecules 

Fast and easy clearing. Permanent 
preservation of the endogenous 
fluorescent signal

Biocompatibility, biosafety and preservation 
of protein function. Penetrating more 
rapidly and deeply into tissues

Limitations Expansion of tissue size. Longer 
incubation

Toxic nature of many solvents, 
substantial shrinkage of tissue (up to 
50%)

Expansion of tissue size. Longer incubation

References [107,109] [110,111] [112,113]

RI: Refractive index; CLARITY: Clear, lipid-exchanged, acrylamide-hybridized rigid, imaging/immunostaining compatible, tissue hYdrogel; MAP: 
Magnified analysis of proteome; SHIELD: Stabilization to harsh conditions via intramolecular epoxide linkages to prevent degradation; PACT: PAssive 
clarity technique; PARS: Perfusion-assisted agent release in situ; 3DISCO: 3D imaging of solvent-cleared organs; iDISCO: Immunolabelling-enabled DISCO; 
BABB: Benzyl alcohol/benzyl benzoate; CUBIC: Clear, unobstructed brain or body imaging cocktails and computational analysis; SeeDB: See deep brain.

Table 1[107,109-113].
Intact tissue clearing methods continue to grow for three-dimensional imaging of 

the brain, centered on labeling options and imaging analysis tools. It is expected that 
this process may prove the discovery of novel physiological and pathological mecha-
nisms based on three-dimensional molecular information for neurodegenerative 
diseases. In the beginning, disconnected axons with APP accumulation and swelling 
were found in the traumatic mouse brain, revealing novel insights into three-
dimensional axon degeneration of temporal progression after axonal injury[114]. To 
identify specific brain regions with early susceptibility to AD progression, Canter et al
[115] created a spatiotemporal map of Aβ deposition by using whole-brain system-
wide control of interaction time and kinetics of chemicals immunolabeling in the 
5XFAD model, suggesting an understanding of the mechanisms of brain dysfunction 
and progressive memory loss[115]. Furthermore, neurons and mitochondrial proteins 
in the cerebellum of mouse and human brain tissues were first optimized by revealing 
mitochondrial disease. It has been demonstrated in a three-dimensional network that 
vascular, dendritic, or axonal networks finely determine the interrelationships 
between complex vascular structures and vasogenic factors in patients with mito-
chondrial disease[116].

Challenges and approaches for stem cell PoC
There are no PoC studies of three-dimensional stem cell tracing for treatment of 
neurodegenerative diseases. The only research on the existence of stem cells 
represented the spatial relationship with endogenous Gli1 positive MSCs in adult 
calvarial bones during postnatal craniofacial development, and indicated the 
osteogenesis mechanism for craniofacial research using the bone specific poly 
(ethylene glycol)- associated solvent system tissue clearing method[117].

The identification of the transplanted stem cells that can participate in the specific 
circuit and the host neurons that provide inputs to them may be critical for successful 
cell tracing for stem cell-based therapies for neurological disorders. To trace full or 
limited area projections in the brain, researchers need to be complemented by labeling 
or genetic manipulation in vivo before stem cell transplantation and by using high-
resolution image system including in vivo multi-photon or light-sheet microscopy
[118]. Neuro-specific proteins, DNA/RNA-conjugated fluorescent dyes, and 
viral/non-viral constructs have been used to explore the connectivity between 
reciprocal hosts and stem cell grafts[119]. For reliable three-dimensional analysis, the 
membrane-bound protein-specific phenotype of stem cells and the target circuits with 
strong can be set and verified in a genetic animal model of neurodegenerative disease
[120,121]. Furthermore, stem cell labeling based on gene delivery can be important to 
define the correlation analysis in three dimensions between PoC phenotypes of 
endogenous or exogenous stem cells, state-modified/unmodified proteins, and state-
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altering genes to understand the physiology and pathology of degenerative brains[108,
122].

CONCLUSION
For many decades, appropriate cell tracing strategies for PoC and the connectivity 
between host neurons and grafted stem cells have been observed using traditional 
two-dimensional tracing techniques. Through the development of tissue optical 
clearing techniques and their convergence technologies, however, it is possible to 
demonstrate tracing in three dimensions and to analyze the molecular pathological 
changes associated with endogenous cells functioning in neurodegenerative diseases. 
Studies on the ability of three-dimensional host-graft integration in diseases will help 
to serve from the basic application to the clinical monitoring of the potential strategies 
of stem cell therapy. An understanding of the three-dimensional imaging of stem cells 
may also help to approach fundamental questions regarding the cell conditions, that is, 
dose, time, phase, and disease mechanism, when regenerating naturally or therapeut-
ically in neurodegenerative disease.
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